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Abstract

We present the first coupled formal and empirical analysis of the Satellite Range
Scheduling application. We structure our study as a progression; we start by studying
a simplified version of the problem in which only one resource is present. We show that
the simplified version of the problem is equivalent to a well-known machine scheduling
problem and use this result to prove that Satellite Range Scheduling is NP-complete.
We also show that for the one-resource version of the problem, algorithms from the
machine scheduling domain outperform a genetic algorithm previously identified as one
of the best algorithms for Satellite Range Scheduling. Next, we investigate if these
performance results generalize for the problem with multiple resources. We exploit two
sources of data: actual request data from the U.S. Air Force Satellite Control Network
(AFSCN) circa 1992 and data created by our problem generator, which is designed
to produce problems similar to the ones currently solved by AFSCN. Three main re-
sults emerge from our empirical study of algorithm performance for multiple-resource
problems. First, the performance results obtained for the single-resource version of the
problem do not generalize: the algorithms from the machine scheduling domain per-
form poorly for the multiple-resource problems. Second, a simple heuristic is shown to
perform well on the old problems from 1992; however it fails to scale to larger, more
complex generated problems. Finally, a genetic algorithm is found to yield the best
overall performance on the larger, more difficult problems produced by our generator.
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1 Introduction

The U.S. Air Force Satellite Control Network (AFSCN) is responsible for coordinating

communications between numerous civilian and military organizations and more than 100

satellites. Space-ground communications are performed via 16 antennas located at nine

ground stations positioned around the globe. Customer organizations submit task requests

to reserve an antenna at a ground station for a specific time period based on the windows

of visibility between target satellites and available ground stations and the needs of the

task. Alternate time windows and ground stations may also be specified. Over 500 task

requests are received by the AFSCN scheduling center for a typical day. The communication

antennas are over-subscribed, in that many more task requests are received than can be

accommodated.

Currently, human scheduling experts construct an initial schedule that typically leaves about

120 conflicts representing task requests that are unsatisfiable (because of resource unavail-

ability). However, satellites are extremely expensive resources, and the AFSCN is expected

to maximize satellite utilization; out-right rejection of task requests is not a viable option.

To resolve a conflict, human schedulers need to contact the organizations which generated

the conflicting task requests; these organizations are given an explanation of the reason

for the conflict and are presented with possible alternatives. Only in a worst case sce-

nario is a task request canceled. This is a complex, time-consuming arbitration process

between various organizations to ensure that all conflicts present in the initial schedule are

resolved and that customers can be notified 24 hours in advance of their slot scheduling.

The generic problem of scheduling task requests for communication antennas is referred to

as the Satellite Range Scheduling Problem [1].

In reality, the processes and criteria that human schedulers use to develop conflict-free

schedules are generally implicit, sometimes sensitive (due to rank, mission and security

classification of the customers), and difficult to quantify, making automation extremely

difficult. Instead, we focus on a single, although crucial, aspect of the problem: minimizing

the number of conflicts in the initial schedule. Human schedulers do not consider any

conflict or group of conflicts worse than any other conflict [2, 1, 3]. Therefore, in general, the

human schedulers themselves state that minimizing the number of conflicts up-front reduces
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(1) their work-load, (2) communication with outside agencies, and (3) the time required

to produce a conflict-free schedule. We consider the objective of conflict-minimization

for Satellite Range Scheduling because it is a core capability, the process lends itself to

automation, and we can show the relationship to existing research.

This paper presents the first coupled formal and empirical analysis of the Satellite Range

Scheduling application. Although it is an important application for both the government

(e.g., military and NASA) and civilian applications (access to commercial satellites), the

majority of work has been in proposing new heuristic methods without much examination

of their strengths and limitations. While the applications were relatively new, this was

appropriate, but at this stage, we need to understand the attributes of current problems

and solutions to propose future directions for this dynamic application.

To put the application in context, we first relate Satellite Range Scheduling to other well-

known and studied scheduling problems. To do this, we distinguish a progression of two

forms of Satellite Range Scheduling (or, for brevity, “Range Scheduling”): Single-Resource

Range Scheduling (SiRRS) and Multi-Resource Range Scheduling (MuRRS). In Single-

Resource Range Scheduling, there is only one resource (i.e., antenna) that is being scheduled;

Multi-Resource Range Scheduling includes tasks that can potentially be scheduled on one

of several alternative resources. A special case of MuRRS occurs when the various tasks

to be scheduled can be decomposed into multiple, but independent single resource range

scheduling problems where there are no interactions between resources. Generally however,

we assume that alternatives are actually on different resources.

The problem of minimizing the number of unsatisfied task requests on a single antenna

(SiRRS) is equivalent to minimizing the number of late jobs on a single machine. The

decision version of this problem (is there a schedule with X late jobs, where X is the known

minimum number of late jobs) is known to be NP-complete. We use this result to formally

establish that Range Scheduling is also NP-complete. Nevertheless, finding optimal or near

optimal solutions to many realistic single resource problem instances is relatively easy. For

some reasonable size problems, branch and bound methods can be used to either find or

confirm optimal solutions.

To the best of our knowledge, the connection between SiRRS and scheduling a single ma-
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chine has not previously been explored. We studied both exact methods (e.g., branch and

bound methods) and heuristic methods taken from the single machine scheduling literature

to address the problem of SiRRS. These methods are also compared to scheduling algo-

rithms found in the satellite scheduling literature. The Range Scheduling specific methods

were largely designed for MuRRS, and in fact, we found that the single machine schedul-

ing heuristics generally out-perform heuristics which proved effective for Range Scheduling

when compared on SiRRS problems.

The remainder of the paper discusses the MuRRS problem. Our results on SiRRS prob-

lems raise several questions about what methods are most appropriate for MuRRS. Do the

results from SiRRS generalize to MuRRS? How good are the previously developed heuristic

solutions to the MuRRS problem?

To answer these questions, we studied the performance of a number of algorithms on a

suite of problems. As it happens, MuRRS is not a single well defined problem, but rather

an on-going application in a dynamic environment. Previous researchers at the Air Force

Institute of Technology (AFIT) tested their algorithms on actual data from 1992; we refer

to these data as the “AFIT benchmark”. An important issue is whether the results from

those data hold for current application conditions. For example, in 1992, approximately 300

requests needed to be scheduled for a single day, compared to 500 requests per day in recent

years. More requests for the same (actually somewhat fewer) resources have a clear impact

on problem difficulty. Thus, we studied the algorithms with both AFIT (from 1992) and

simulated current data and investigated whether the problems in the AFIT benchmarks are

representative of the kinds of Range Scheduling problems that are currently encountered

by AFSCN.

We can show that the AFIT benchmarks are simple in the sense that a heuristic can be used

to quickly find the best known solutions to these problems. The heuristic splits the tasks

to be scheduled into “low-altitude satellite” requests and “high-altitude satellite” requests.

Because low-altitude satellite requests are highly constrained, these requests are scheduled

first. A theorem and proof are presented showing that when a set of low-altitude requests

is restricted to specific time slots, a greedy scheduling method exists that is optimal. The

proof allows tasks to be scheduled on multiple alternative resources as long as the resources
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have identical capabilities.

However, we can also show that MuRRS problems exist where simple heuristics do not

yield optimal results. In order to better study larger satellite range scheduling problems,

we developed a system for generating realistic problem instances. With larger problem

instances from the new problem generator, we find that the heuristic of splitting tasks into

low and high altitude requests is no longer a good strategy. Additionally, in contrast to

our results on the SiRRS problem, our results on the new problems are consistent with

the findings of Parish [3]: the Genitor algorithm outperforms other heuristics on the new

problem instances. Thus, it appears that although the algorithms previously tested for the

Satellite Range Scheduling problem do not excel on the SiRRS problem, these algorithms

do generalize to more modern versions on the MuRRS problem.

2 Satellite Range Scheduling: Definitions and Variants

For purposes of analysis, we consider two abstractions of the Satellite Range Scheduling

problem. In both cases, a problem instance consists of n task requests where the objective

is to minimize the number of unscheduled tasks. A task request Ti, 1 ≤ i ≤ n, specifies both

a required processing duration T Dur
i and a time window T Win

i within which the duration

must be allocated; we denote the lower and upper bounds of the time window by T Win
i (LB)

and TWin
i (UB), respectively. We assume that time windows do not overlap day boundaries;

consequently, all times are constrained to the interval [1, 1440], where 1440 is the number

of minutes in a 24-hour period. Tasks cannot be preempted once processing is initiated,

and concurrency is not allowed, i.e., the resources are unit-capacity. In the first abstrac-

tion, there are n task requests to be scheduled on a single resource (i.e., communications

antenna). Clearly, if alternative resources for task requests are not specified, there are no

resource interactions; thus, the tasks can be scheduled on each resource independently. We

refer to this abstraction as Single-Resource Range Scheduling (SiRRS), which we investi-

gate in Section 4. In the second abstraction, each task request Ti additionally specifies a

resource Ri ∈ [1..m], where m is the total number of resources available. Further, Ti may

optionally specify j ≥ 0 additional (Ri, T
Win
i ) pairs, each identifying a particular alterna-
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tive resource and time window for the task; we refer to this formulation as Multi-Resource

Range Scheduling (MuRRS).

A number of researchers from the Air Force Institute of Technology (AFIT) have devel-

oped algorithms for MuRRS. Gooley [2] and Schalck [1] developed algorithms based on

mixed-integer programming (MIP) and insertion heuristics, which achieved good overall

performance: 91% – 95% of all requests scheduled. Parish [3] tackled the problem using

a genetic algorithm called Genitor, which scheduled roughly 96% of all task requests, out-

performing the MIP approaches. All three of these researchers used the AFIT benchmark

suite consisting of seven problem instances, representing actual AFSCN task request data

and visibilities for seven consecutive days from October 12 to 18, 19921. Later, Jang [4]

introduced a problem generator employing a bootstrap mechanism to produce additional

test problems that are qualitatively similar to the AFIT benchmark problems. Jang then

used this generator to analyze the maximum capacity of the AFSCN, as measured by the

aggregate number of task requests that can be satisfied in a single-day.

Although not previously studied, the SiRRS is equivalent to a well-known problem in the

machine scheduling literature, denoted 1|rj |
∑

Uj , in the three-field notation widely used

by the scheduling community [5], where:

1 denotes that tasks (jobs) are to be processed on a single machine,

rj indicates that there a release time is associated with job j, and

∑
Uj denotes the number of tasks not scheduled by their due date.

Using a more detailed notation, each task Tj , 1 ≤ j ≤ n has (1) a release date T Rel
j , (2)

a due date TDue
j , and (3) a processing duration T Dur

j . A job is on time if it is scheduled

between its release and due date; in this case, Uj = 0. Otherwise, the job is late, and

Uj = 1. The objective is to minimize the number of late jobs,
∑n

j=1 Uj. Concurrency and

preemption are not allowed.

1We thank Dr. James T. Moore, Associate Professor of Operations Research at the Department of

Operational Sciences, Graduate School of Engineering and Management, Air Force Institute of Technology

for providing us with the benchmark problems.
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1|rj |
∑

Uj scheduling problems are often formulated as decision problems, where the objec-

tive is to determine whether a solution exists with L or fewer tasks (i.e., conflicts) completing

after their due dates, without violating any other task or problem constraints. The decision

version of the 1|rj |
∑

Uj scheduling problem is NP-complete [6] [7]. This result can for-

mally be used to show that Satellite Range Scheduling is also NP-complete. Other authors

([2, 3, 8]) have suggested this is true, but have not offered a formal proof.

Theorem 1 The decision version of Satellite Range Scheduling is NP-complete.

Proof: NP-Hardness is first established. We assume the total amount of time to be

scheduled and the number of tasks to be scheduled are unbounded. (Limiting either would

produce a large, but enumerable search space.) The 1|rj |
∑

Uj scheduling problem is NP-

complete and can be reduced to a SiRRS problem with unit-capacity as follows. Both

have a duration T Dur
j . The release date for the 1|rj |

∑
Uj problem is equivalent to the lower

bound of the scheduling window: T Rel
j = TWin

j (LB). The due date is equivalent to the upper

bound of the scheduling window: T Due
j = TWin

j (UB). Both problems count the number of

unscheduled tasks,
∑

Uj . This completes the reduction.

Because the set of SiRRS with unit-capacity is a subset of Satellite Range Scheduling

problems, the general Satellite Range Scheduling problem is NP-Hard.

To show Satellite Range Scheduling is NP-complete, we must also establish it is in the

class NP . Assume there are n requests to be scheduled on m resources. Let S∗ be an

optimal solution and denote a resource by r. For every Satellite Range Scheduling instance,

there exists a permutation such that all the scheduled tasks in S∗ that are assigned to

resource r appear before tasks assigned to resource r + 1. All tasks that appear earlier

in time on resource r appear before tasks scheduled later in time on r. All scheduled

tasks appear before unscheduled tasks. Unscheduled tasks are sorted (based on identifier,

for example) to create a unique sub-permutation. Thus, every schedule corresponds to a

unique permutation. The decision problem is whether there exists a schedule S∗ that is

able to schedule a specific number of tasks. A nondeterministic Turing machine can search

to find the permutation representing S∗ in O(n) time, and the solution can be verified in

time proportional to n. Thus, Satellite Range Scheduling is in the class NP.
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Since Satellite Range Scheduling is NP-Hard and in the class NP , Satellite Range Schedul-

ing is NP-complete. 2

2.1 Variants of Range Scheduling with Differing Complexity

While the general problem of Satellite Range Scheduling is NP-complete, special subclasses

of Range Scheduling are polynomial. Burrowbridge [9] considers a simplified version of

the SiRRS problem where only low-altitude satellites are present and the objective is to

maximize the number of scheduled tasks. Due to the orbital dynamics of low-altitude

satellites, the task requests in this problem have negligible slack ; i.e., the window size is

equal to the request duration. The well-known greedy activity-selector algorithm [10] is used

to schedule the requests since it yields a solution with the maximal number of scheduled

tasks.

We next prove that Range Scheduling for low-altitude satellites continues to have polyno-

mial time complexity even if jobs may be serviced by one of several resources. In particular,

this occurs in the case of scheduling low-altitude satellite requests on one of the k anten-

nas present at a particular ground station. For our proof, the k antennas must represent

equivalent resources. We will view the problem as one of scheduling multiple, but identical

resources.

We modify the greedy activity-selector algorithm for multiple resource problems: the algo-

rithm still schedules the requests in increasing order of their due date, however it specifies

that each request is scheduled on the resource for which the idle time before its start time is

the minimum. Minimizing this idle time is critical to proving the optimality of the greedy

solution. We call this algorithm GreedyIS (where IS stands for Interval Scheduling) and

show that it is optimal for scheduling the low-altitude requests. The problem of scheduling

the low-altitude requests is equivalent to an interval scheduling problem with k identical

machines (for more on interval scheduling, see Bar-Noy et al. [11], Spieksma [12], Arkin et

al.[13]). It has been proven that for the interval scheduling problem the extension of the

greedy activity-selector algorithm is optimal; the proofs are based on the equivalence of the

interval scheduling problem to the k-colorability of an interval graph [14]. We present a
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Figure 1: The optimal and greedy schedules are identical before time tD. Note that Y

was the next task scheduled in the greedy schedule G. In this case, Y appears on some

alternative resource, RA, in the optimal schedule S∗, and X appears on resource RY . Note

that the start time of request Z is irrelevant, since the transformation is performed on

schedule S∗.

new proof, similar to the one in [10] for the one-machine case.

Theorem 2 The GreedyIS algorithm is optimal for scheduling the low-altitude satellite

requests for Multiple-Resource Range Scheduling with identical resources and no slack.

Proof: Let S∗ be an optimal schedule. Let G be the greedy schedule. Assume S∗ differs

from G. We show that we can replace all the non-greedy choices in S∗ with the greedy tasks

scheduled in G; during the transformation, the schedule remains feasible and the number

of scheduled requests does not change and therefore remains optimal. This transformation

also proves that G is optimal.

The transformation from S∗ to G deals with one request at a time. We examine S∗ starting

from time 0 and compare it with G. Let tD be the first point in time where G differs from

S*. Let Y be the next request picked to be scheduled in G after time tD. This means that

Y is the next job scheduled after time tD in G with the earliest finish time. Let the resource

where request Y is scheduled in G be RY . Let P (Y ) be the job preceding Y in the greedy

schedule G. When constructing the greedy schedule G, Y is chosen to have the earliest due

date and is placed on the resource that results in minimum idle time. If Y is not scheduled
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the same in S∗ and G, then either Y does not appear at all in S∗ (case 1), or it appears on

an alternative resource RA in S∗ (case 2, see Figure 1).

Case 1: The greedy choice Y is not present in S∗. Instead, some request X appears on RY .

Then Y can replace X in the optimal schedule because the due date of Y is earlier than or

at most equal to the due date of X (since S∗ and G are identical up to the point in time tD,

X did not appear in G before time tD, and we know that Y is the next greedy choice after

time tD). Also, there is no conflict in the start time, since in both schedules the requests

X and Y follow P (Y ) in S and G, respectively. The number of scheduled tasks does not

change.

Case 2: The greedy choice Y is present in S∗ on resource RA and some other request

X follows P (Y ) on resource RY in S∗. We can then swap all of the subsequent requests

scheduled after the finish time of P (Y ) on resources RA and RY in schedule S∗. Again,

there is no conflict in the start times, since in the two schedules the requests X and Y follow

P (Y ) in S and G respectfully. This places Y on the same resource on which it appears in

G. The number of scheduled tasks does not change.

The transformation continues until S∗ is transformed into G. One of the two cases always

applies. At no point does the number of scheduled tasks change. Therefore, G is also

optimal. 2

Note that the proof does not mention what other tasks may be scheduled on G. This is

because the proof only needs to convert S∗ to G one request at a time. However, it is

notable that some request Z could be encountered in schedule G at time tD on resource RA

before either Y or X are encountered in S∗, which is illustrated in Figure 1. This occurs

because Z has a start time before Y , but has a finish time after Y and therefore is not the

next request scheduled in G. However, the proof is only concerned with the next scheduled

request Y . Figure 1 also illustrates that it is always possible to swap all of the subsequent

requests scheduled after the finish time of P (Y ) in schedule S∗ and that the start time of

Z is irrelevant. Request Z is a later greedy choice in G; the transformation will deal with

Z as it moves through the greedy schedule based on the finish times.
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3 Algorithms for the Satellite Range Scheduling Problem

In this section, we document the various heuristic algorithms that we use in our analysis of

both SiRRS and MuRRS. We begin by describing a branch-and-bound algorithm designed

by Baptiste et al. (1998) for the 1|rj |
∑

Uj machine scheduling problem. Next, we briefly

discuss two greedy heuristic algorithms designed specifically for the 1|rj |
∑

Uj problem. We

introduce the methods for both solution encoding and evaluation in local search algorithms

for both formulations of the Satellite Range Scheduling, and define the core algorithms

used in our analyses: the Genitor genetic algorithm, a hill-climbing algorithm, and random

sampling. Finally, we discuss our decision to omit some algorithms that use well-known

scheduling technologies.

3.1 Branch-and-Bound Algorithm for Single-Resource Range Scheduling

Baptiste et al. [15] introduce a branch and bound algorithm to solve the 1|rj |
∑

Uj problem;

this algorithm also applies to Single Resource Range Scheduling problems. The algorithm

starts by computing a lower bound on the number of late tasks, v. Branch and bound is then

applied to the decision problem of finding a schedule with v late tasks. If no such schedule

can be found, v is incremented, and the process is repeated. When solving the decision

problem, at each node in the search tree, the branching scheme selects an unscheduled

task and attempts to schedule the task. The choice of the task to be scheduled is made

based on a heuristic that prefers small tasks with large time windows over large tasks with

tight time windows. Dominance properties and constraint propagation are applied; then

the feasibility of the new one-machine schedule is checked. If the schedule is infeasible, the

algorithm backtracks, and the task is considered late. Determining the feasibility of the

one-machine schedule at each node in the search tree is also NP-hard. However, Baptiste

et al. note that for most of the cases a simple heuristic can decide feasibility; if not, a

branch and bound algorithm is applied.

11



3.2 Constructive Heuristic Algorithms

Constructive heuristics begin with an empty schedule and iteratively add jobs to the sched-

ule using local, myopic decision rules. These heuristics can generate solutions to even large

problem instances in sub-second CPU time, but because they typically employ no back-

tracking, the resulting solutions are generally sub-optimal. Machine scheduling researchers

have introduced two such greedy constructive heuristics for 1|rj |
∑

Uj.

Dauzère-Pérès [16] introduced a greedy heuristic to compute upper bounds for a branch-

and-bound algorithm for 1|rj |
∑

Uj ; we denote this heuristic by GreedyDP. The principle

underlying GreedyDP is to schedule the jobs with little remaining slack immediately, while

simultaneously minimizing the length of the partial schedule at each step. Thus, at each

step, the job with the earliest due date is scheduled; if the completion time of the job

is after its due date, then either one of the previously scheduled jobs or this last job is

dropped from the schedule. Also, at each step, one of the jobs dropped from the schedule

can replace the last job scheduled if by doing so the length of the partial schedule is min-

imized. By compressing the partial schedule, more jobs in later stages of the schedule can

be accommodated.

Bar-Noy et al.[11] introduced a greedy heuristic, which we denote by GreedyBN, based on a

slightly different principle: schedule the job that finishes earliest at each step, independent

of the job due date. Consequently, GreedyBN can schedule small jobs with significant slack

before larger jobs with very little slack. Both GreedyDP and GreedyBN are directly applicable

only to SiRRS; simple extensions of these heuristics to MuRRS are discussed in Section 6.

3.3 Local Search Algorithms

In contrast to constructive heuristic algorithms, local search algorithms begin with one or

more complete solutions; search proceeds via successive modification to a series of complete

solution(s). All local search algorithms we consider encode solutions using a permutation π

of the n task request IDs (i.e., [1..n]); a schedule builder is used to generate solutions from a

permutation of request IDs. The schedule builder considers task requests in the order that
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they appear in π. For SiRRS, the schedule builder attempts to schedule the task request

within the specified time window. For the MuRRS, each task request is assigned to the first

available resource (from its list of alternatives) and at the earliest possible starting time. If

the request cannot be scheduled on any of the alternative resources, it is dropped from the

schedule (i.e., bumped). The evaluation of a schedule is then defined as the total number of

requests that are scheduled (for maximization) or inversely, the number of requests bumped

from the schedule (for minimizing).

3.3.1 A Next-Descent Hill-Climbing Algorithm

Perhaps the simplest local search algorithm is a hill-climber, which starts from a randomly

generated solution and iteratively moves toward the best neighboring solution. A key com-

ponent of any hill-climbing algorithm is the move operator. We have selected a domain-

independent move operator known as the shift operator. Local search algorithms based

on the shift operator have been successfully applied to a number of well-known scheduling

problems, for example the permutation flow-shop scheduling problem [17]. From a current

solution π, a neighborhood under the shift operator is defined by considering all (N − 1)2

pairs (x, y) of task request ID positions in π, subject to the restriction that y 6= x − 1.

The neighbor π
′

corresponding to the position pair (x, y) is produced by shifting the job

at position x into the position y, while leaving all other relative job orders unchanged. If

x < y, then π′ = (π(1), ..., π(x−1), π(x+1), ..., π(y), π(x), π(y +1), ..., π(n)). If x > y, then

π′ = (π(1), ..., π(y − 1), π(x), π(y), ..., π(x − 1), π(x + 1), ..., π(n)).

Given the relatively large neighborhood size, we use the shift operator in conjunction with

next-descent (as opposed to steepest-descent) hill-climbing. The neighbors of the current

solution are examined in a random order, and the first neighbor with either a lower or equal

fitness (i.e., number of bumps) is accepted. Search is initiated from a random permutation

and terminates when a pre-specified number of solution evaluations is exceeded.

In practice, neighborhood search algorithms fail to be competitive because the neighborhood

size is so large. With 500 task requests, the number of neighbors under both shift and

other well-known problem-independent move operators is approximately 5002. The best
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algorithms for this problem produce solutions using fewer than 10,000 evaluations.

3.3.2 The Genitor Genetic Algorithm

Previous studies of Range Scheduling by AFIT researchers indicate that the Genitor genetic

algorithm [18] provides superior overall performance [3].

Genetic algorithms have been successfully used to solve various scheduling problems, in-

cluding problems with similar characteristics to Satellite Range Scheduling. For example,

genetic algorithms were found to perform well for an abstraction of NASA’s Earth Observ-

ing Satellite (EOS) scheduling problem, denoted the Window Constrained Packing Problem

(WCPP) [8]. While WCPP is in many ways different from our SiRRS, both problems are

oversubscribed (more requests need to be scheduled than can be accommodated with the

available resources), both model a unit capacity resource, and the requests in both problems

define time windows based on satellite visibility. EOS scheduling has a number of compet-

ing objectives, including satisfaction of the largest possible number of task requests and the

quality of the allocated time-slots. The performance of two simple constructive algorithms

and a genetic algorithm is studied on randomly generated instances of the WCPP; the

genetic algorithm out-performed the constructive algorithms, but at the expense of larger

run-times.

As in the hill-climbing algorithm, solutions are encoded as permutations of the task request

IDs. Like all genetic algorithms, Genitor maintains a population of solutions. In each step

of the algorithm, a pair of parent solutions is selected, and a crossover operator is used to

generate a single child solution, which then replaces the worst solution in the population.

The result is a form of elitism, in which the best individual produced during the search is

always maintained in the population. Selection of parent solutions is based on the rank of

their fitness, relative to other solutions in the population. A linear bias is used such that

individuals that are above the median fitness have a rank-fitness greater than one and those

below the median fitness have a rank-fitness of less than one [19].

Typically, genetic algorithms encode solutions using bit-strings, which enable the use of

“standard” crossover operators such as one-point and two-point crossover [20]. Because

14



solutions in Genitor are encoded as permutations, a special crossover operator is required to

ensure that the recombination of two parent permutations results in a child that (1) inherits

good characteristics of both parents and (2) is still a permutation of the n task request IDs.

Following Parish [3], we use Syswerda’s (relative) order crossover operator, which preserves

the relative order of the elements in the parent solutions in the child solution. Syswerda’s

crossover operator has been successfully applied in a variety of scheduling applications [21]

[22] [23].

The version of the Genitor Genetic Algorithm used here was originally developed for a

warehouse scheduling application [24] [25], but it has also been applied to problems such as

job shop scheduling [26].

3.4 A Baseline: Random Sampling

Random sampling produces schedules by generating a random permutation of the task re-

quest IDs and evaluating the resulting permutation using the scheduler builder introduced

earlier in this section. Randomly sampling a large number of permutations provides infor-

mation about the distribution of solutions in the search space, as well as a baseline measure

of problem difficulty for heuristic algorithms.

3.5 Scheduling Algorithms Not Included

We also considered straightforward implementations of Tabu search [27] for MuRRS, but

the resulting algorithms were not competitive with Genitor. Again, the size of the local

search neighborhood using shift and other well-known problem-independent move operators

is approximately 5002. With such a large neighborhood, tabu search and other forms of

neighborhood local search are simply not practical. We also combined tabu search with

next-descent type search, but the performance was poor.

Additionally, we developed constructive search algorithms for SiRRS based on texture [28]

and slack [29] constraint-based scheduling heuristics. We found that texture-based heuristics

are effective when the total number of task requests is small (e.g., n ≤ 100) for SiRRS.
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Pemberton [30] applied an algorithm based on constraint programming combined with a

greedy constructive heuristic to a remote-sensing problem similar to Wolfe and Sorenson’s

WCPP, with the exception that the start times of task requests are fixed. We considered

similar algorithms for MuRRS, but were largely unsuccessful; straightforward extensions of

constraint-based technologies for multiple resources with alternatives did not appear to be

effective.

Heuristic-Biased Stochastic Sampling (HBSS) [31] has been used to schedule astronomy

observations for telescopes [32] and has been also applied to EOS observation scheduling

[33]. Early on, we studied HBSS and LDS [34] on this problem. Because we had difficulty

designing an adequate heuristic, we could not produce performance competitive with the

other algorithms. As future work, we will be exploring alternative heuristics with the

heuristic constructive search algorithms.

We are also considering implementing “Squeaky Wheel” Optimization (SWO) [35] for Satel-

lite Range Scheduling by following the methodology described for solving a scheduling

problem in fiber-optic cable manufacturing [35]. A greedy algorithm constructs an initial

permutation; a schedule builder is used to convert this permutation into a solution. The

solution is analyzed in order to assign blame to the elements which cause “trouble” in the

solution, and this information is used to modify the order in which the greedy algorithm

builds the new solution. At present, our objective function is inadequate to support SWO

for MuRRS; we will need to define an objective function that better quantifies the presence

of conflicts in the schedule, such that given a solution we can assign blame of a certain

magnitude to each of the conflicts.

4 Problem Difficulty and Single-Resource Range Scheduling

We begin our analysis by considering SiRRS. Our motivation is two-fold. Given the equiv-

alence of the SiRRS with the 1|rj |
∑

Uj machine scheduling problem, our first goal is to

analyze the performance of heuristic algorithms designed specifically for 1|rj |
∑

Uj ; if these

algorithms are competitive, extensions may provide good performance on the more complex

MuRRS problem. Secondly, SiRRS is much easier to analyze, giving us a starting point for
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understanding the more complex version of the problem.

In general, evaluation based on real-world benchmarks is clearly desirable. There are,

however, two related but distinct drawbacks. First, obtaining real-world data is often

difficult and/or costly. Second, by basing evaluation on a small set of real-world instances,

we run the risk of over-fitting our algorithms to these instances. On the other hand, we also

note that random problem instances can be much more difficult than real-world problems

(e.g., see Taillard [36] or Watson et al.[37]) and real-world problems may display “structure”

that is not found in random problems. We address these concerns by considering the

performance of heuristic algorithms for the SiRRS on a range of generated problems that

include realistic as well as more extreme characteristics.

4.1 The Problem Generator

We implemented a simple problem generator for the SiRRS problem. In section 6.1 we

will also present a more complex problem generator which includes more realistic classes of

service requests as well as realistic satellite pass times.

Our test problems for SiRRS are produced by a problem generator that we developed based

on the characteristics of the AFSCN application. The AFSCN schedules task requests on a

per-day basis; consequently, we restrict the lower and upper bounds of the task request time

windows TWin
i to the interval [1, 1440], or the number of minutes in a 24-hour period. In the

AFIT benchmark problems, the overwhelming majority (more than 90%) of task durations

TDur
i fall in the interval [20, 60]. We denote the slack T Slack

i associated with a request

Ti by TWin
i (UB) − TDur

i − TWin
i (LB); the slacks of task requests in the AFIT benchmark

problems generally range from 0 to 100. Finally, no communications antennas in any AFIT

benchmark problem is assigned more than 50 task requests, and typically far fewer.

Based on the above observations, we generate random instances of SiRRS problems using

the following procedure for each of the n task requests, which takes as input the maximum

slack value MAXSLACK allowed for any task request:

1. Sample the processing duration T Dur
i uniformly from the interval [20, 60].
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2. Sample the slack T Slack
i uniformly from the interval [0, MAXSLACK].

3. Sample the window start time T Win
i (LB) uniformly from

the interval [1, 1440 − T Slack
i − TDur

i ].

4. Let TWin
i (UB) = TWin

i (LB) + T Slack
i + TDur

i .

Given particular values of n and MAXSLACK, a problem set consists of 100 randomly gen-

erated instances. We consider 36 problem sets in our analysis, one for each combination

of n ∈ [30, 40, 50, 60] and MAXSLACK ∈ [0, 25, 50, 75, 100, 125, 150, 175, 200]. In the context

of the AFSCN scheduling problem, problem sets with small-to-moderate n and MAXSLACK

correspond to realistic problem instances; instances with larger values of n and MAXSLACK

are generally unrealistic, but are included to bracket performance.

4.2 Identifying Optimal Solutions: Algorithms and Expense

We can determine optimal solutions to SiRRS problems using a branch and bound al-

gorithm. Baptiste and colleagues developed two branch-and-bound algorithms for the

1|rj |
∑

Uj . The algorithm we use to compute optimal solutions to our test instances was

introduced by Baptiste et al.[15]2; a more recent extension to this algorithm is reported in

[38].

We ran the branch and bound algorithm of Baptiste et al. on each instance in each of our

problem sets, imposing a limit for each instance of 1 hour of CPU time on a 1 GHz Pentium

III running Windows XP. For all instances with 30 task requests, the algorithm computed

the optimal solution within 5 seconds; 40 requests required at most 1 minute of CPU time.

Similarly, the majority of instances with 50 and 60 task requests could be solved in less than

10 minutes of CPU time. We report the number of exceptions in Table 1. Several of the

larger problems required between 10 minutes and 1 hour of CPU for solution, while a small

number of instances were never solved (the fourth column in Table 1 specifies the number of

instances out of 100 which were never solved); the un-solved instances remain insoluble when

the CPU limit is raised to 10 hours. Baptiste et al. indicate that their algorithm is able to

2We thank Dr. Philippe Baptiste for providing executable versions of their branch-and-bound algorithm.
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compute optimal solutions for all instances with 60 or fewer task requests; we attribute this

discrepancy with our results to the significant differences between our problem generator

and the generator introduced by Baptiste et al. For their problem generator, Baptiste et al.

use a mixture of normal and uniform distributions to select the values for processing times,

release dates and slack; they also model the “load” of the machine, computed as a ratio

between the total demand for processing time and the time available between the minimum

release time and maximum deadline of all the jobs.

# of instances with # of instances with
# of Tasks MAXSLACK 10 minutes < CPU < 1 hour CPU > 1 hour

50 200 0 3

60 75 1 1
100 3 3
125 5 3
150 1 5
175 5 4
200 7 2

Table 1: The number of problem instances (out of 100) for which the Baptiste branch and

bound algorithm (1) required over 10 minutes of CPU time to compute the optimal number

of bumps and (2) failed to find an optimal solution within 1 hour of CPU time.

4.3 The Performance of Heuristic Algorithms on SiRRS

We now analyze the performance of the four heuristic algorithms introduced in Sections 3.2

and 3.3 on SiRRS Problems. Algorithm performance is measured in terms of the total num-

ber of bumped tasks, which we denote |Bumps|. We can measure the absolute performance

of a heuristic algorithm by computing the difference between the best solutions found by

an algorithm and the optimal number of bumped tasks, denoted by |Bumpsopt|. In the

few instances where Baptiste et al.’s algorithm failed (as in Table 1) we substitute the best

solution found by any of our heuristic algorithms as the absolute reference point (random

sampling never found a higher-quality solution than any of the heuristic algorithms)3. In

3In the worst case, for one set of 100 problems there were 5 instances for which Baptiste’s algorithm

failed to compute the optimum. For these 5 instances, in the worst case, the difference contributing to the

mean was 0. If eliminated, newMean = oldMean ∗ (100/95) = oldMean ∗ 1.05, which only slightly changes

the value on the graph
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both cases, we denote the difference in the number of bumped tasks by ∆best.
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Figure 2: The mean difference from the optimal number of bumped tasks ∆best for random

sampling.

We first consider the performance of our baseline algorithm, random sampling. We define

a single trial as generating 8000 random permutations of the integers [1..n] (where n is the

total number of task requests); each permutation is evaluated using the scheduler builder

introduced in Section 3.3. For each of our 1|rj |
∑

Uj instances, we execute 30 trials; we then

take |Bumps| as the minimal number of bumped tasks observed in any of the 30 trials. We

report the mean ∆best for random sampling in Figure 2. As expected (due to the growth in

the size of the search space), the performance of random sampling degrades with increases

in the problem size n. However, two qualitative aspects of Figure 2 were surprising. First,

random sampling generates optimal or near-optimal solutions to test instances for which the

MAXSLACK value is consistent with the slack of task requests in AFSCN problem instances

(e.g., MAXSLACK ≤ 60). Second, even for instances with unrealistically large MAXSLACK,

random sampling generates solutions with on average less than 4 more bumped task requests

than the optimal number in the worst case.

Next, we consider the performance of the two greedy constructive heuristic algorithms for

1|rj |
∑

Uj . As noted in Section 3.2, both GreedyBN and GreedyDP are largely deterministic;

randomness is only applied to tie-break when one or more equally good alternatives are
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Figure 3: The mean difference from the optimal number of bumped tasks ∆best for the

constructive heuristics GreedyBN (left figure) and GreedyDP (right figure).

available. Consequently, we take ∆best for both algorithms as the result of a single trial on

a given problem instance; we report the resulting mean ∆best in Figure 3. First, we ob-

serve that GreedyDP consistently outperforms GreedyBN independently of n and MAXSLACK.

Second, GreedyDP bumps less than one task request on average, obtaining optimal or near-

optimal performance for all of our test instances, and with a trivial amount of computational

effort (i.e., less than 1 second of CPU time).
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Figure 4: The mean difference from the optimal number of bumped tasks ∆best for the

hill-climbing (left figure) and Genitor (right figure).

Finally, we consider the performance of hill-climbing and Genitor. For both algorithms,

we define a single trial as an execution of the algorithm with a limit of 8000 solution

evaluations. Due to the stochastic nature of these algorithms, we execute 30 independent
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trials of each algorithm on each of our test instances and define |Bumps| for each algorithm

as the minimal number of bumps observed in any of the 30 trials. The resulting means ∆best

for both algorithms are shown in Figure 4 (note: the scale on the y-axis is smaller than

in previous graphs). The results indicate that both hill climbing and Genitor significantly

outperform random sampling. Although the performance of Genitor and hill climbing is

indistinguishable for n = 30 and n = 40, the performance of Genitor scales better than

that of hill climbing for larger problem sizes. However, on these single resource problems

Genitor still under-performs the best greedy heuristic (GreedyDP), independently of n and

MAXSLACK, and the run-time of GreedyDP is notably lower.

Distribution Variance Although GreedyDP provides excellent overall performance, the

results presented in Figure 3 and 4 provide little indication of either worst-case performance

or the frequency of optimal versus sub-optimal solutions.

In Figure 5 we present counts of the number of times that a particular algorithm found

a solution at a distance of ∆best away from the best known (and often optimal) solution.

Results are presented for a problem with n = 40,maxslack = 100 and another with n =

60,maxslack = 100. The histograms show that GreedyDP is superior to GreedyBN; the

variance of GreedyBN is clearly higher. This is typical for other size problems and for

different values of maxslack. GreedyDP out-performs Genitor on average, but the frequency

of instances with large ∆best is actually larger for GreedyDP than Genitor. For low n, Genitor

exhibits less variance, while GreedyDP can occasionally generate poor-quality solutions. Hill

climbing was slightly better than Genitor on a few smaller problems (n = 30, n = 40), but

inferior on larger problems (n = 50, n = 60).

Discussion and Implications These results demonstrate that a simple greedy heuris-

tic, originally developed in the context of 1|rj |
∑

Uj out-performs, on average, Genitor, an

algorithm more computationally expensive and which was previously found to be most effi-

cient for MuRRS. The equivalence of SiRRS to 1|rj |
∑

Uj scheduling enabled us to leverage

algorithms for computing optimal solutions to problem instances. Our results demonstrate

that SiRRS problems with characteristics found in real-world AFSCN problems can often

be solved to optimality, and in general, near-optimal solutions can be found. We next look
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Figure 5: Histogram of counts of different numbers of bumps for the four algorithms. The

top figure shows n = 40,maxslack = 100; the lower figure shows n = 60,maxslack = 100.

at multi-resource problems.
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5 The Multi-Resource Range Scheduling with Alternatives:

Algorithm Analysis and the AFIT Benchmark Problems

We now turn to an analysis of heuristic algorithm performance for MuRRS, which more

accurately models the real AFSCN satellite range scheduling problem. At this stage, we have

three key questions to answer: Can the results for single resource problems be leveraged

for multi-resource problems? What is the best performing algorithm for satellite range

scheduling? Why? To address these questions, we test the same algorithms as for SiRRS

(modified as necessary to fit the demands of the new problem) on MuRRS problems. We

then hypothesize and test an explanation for the observed performance.

As discussed in Section 2, heuristics for satellite range scheduling have previously been

evaluated using only the seven problem instances in the AFIT benchmark. Although the

set includes both high and low-altitude satellite requests along with alternatives, the low-

altitude requests in these problems can be scheduled only at one ground station (by assigning

it to one of the antennas present at that ground station). The total number of requests

(low altitude and high altitude requests) to be scheduled for the seven problems are 322,

302, 300, 316, 305, 298, and 297, respectively. The number of low altitude requests for the

seven problems are: 153, 137, 146, 142, 142, 144, and 142, respectively. Since 1992, the

number of requests received during a typical day has increased substantially (to more than

500 each day), while the resources have remained more or less constant.

In our experimental setup, we replicated the conditions and the reported results from

Parish’s study [3]. We ran Genitor on each of the seven problems in the benchmark, using

the same parameters: population size 200, selective pressure 1.5, order-based crossover, and

8000 evaluations for each run. (An increase in the number of evaluations to 50k and of

the population size to 400 did not improve the best solutions found for each problem.) We

also ran random sampling and hill-climbing on each AFIT problem, with a limit of 8000

evaluations per run. For each algorithm, we performed a total of 30 independent runs on

each problem.

Currently, no complete algorithm is available for computing optimal solutions for MuRRS.

Consequently, all comparisons of heuristic algorithms for MuRRS are necessarily relative;
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Genitor Hill Climbing Random Sampling GreedyDP MIP
Day Min Mean Stdev Min Mean Stdev Min Mean Stdev

1 8 8.6 0.49 15 18.16 2.54 21 22.7 0.87 21 10

2 4 4 0 6 10.96 2.04 11 13.83 1.08 22 6

3 3 3.03 0.18 11 15.4 2.73 16 17.76 0.77 25 7

4 2 2.06 0.25 12 17.43 2.76 16 20.20 1.29 23 7

5 4 4.1 0.3 12 16.16 1.78 15 17.86 1.16 18 6

6 6 6.03 0.18 15 18.16 2.05 19 20.73 0.94 28 7

7 6 6 0 10 14.1 2.53 16 16.96 0.66 22 6

Table 2: Performance of Genitor, hill climbing, and random sampling on the AFIT bench-

mark problems, in terms of the best and mean number of bumped requests. All statistics

are taken over 30 independent runs. The results of running the greedy heuristic GreedyDP

are also included. The last column reports the performance of Schalck’s Mixed-Integer

Programming algorithm [1].

even if one algorithm consistently outperforms another, there is no assurance that the algo-

rithm is generating optimal, or even near-optimal, solutions. To baseline the performance

of the search algorithms, we also implemented a greedy constructive heuristic based on the

GreedyDP as follows. For each of the resources, we use GreedyDP to schedule the requests

that specify that resource as an alternative and are not scheduled yet; the result is an initial

schedule. This means that each request will be successively considered for scheduling using

GreedyDP on each of its alternative resources, until it is scheduled or until all alternative

resources have been scheduled. Then we consider the unscheduled requests and attempt to

insert them in the schedule. The unscheduled requests are considered in an arbitrary order;

the request is scheduled at the earliest time on the first alternative resource available and

bumped if none of the alternative resources are available.

The results are summarized in Table 2. Included in the table are the results obtained by

Schalck using Mixed Integer Programming [1]. As previously reported, Genitor yields the

best overall performance. GreedyDP results in the worst performance (it is often outper-

formed by random sampling).
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5.1 Explaining the Performance on the Benchmarks

To exploit the differences in scheduling slack and the number of alternatives between low

and high-altitude requests, we designed a simple greedy heuristic (which we call the “split

heuristic”) that first schedules all the low-altitude requests in the order given by the per-

mutation, followed by the high-altitude requests. We now show that: (1) for more than

90% of the best known schedules found by Genitor, the split heuristic does not increase the

number of conflicts in the schedule, and (2) the split heuristic typically produces good (and

often best-known) schedules.

We hypothesized that Genitor may be learning to schedule most of the low-altitude requests

before the high-altitude requests with which they interact, leading to the strong overall

performance. While in the final permutations some high altitude requests do appear before

low altitude requests, our hypothesis implies that most of these high altitude requests do

not interact with the low altitude requests appearing after them. If true, the evaluation

of high-quality schedules should, on average, remain unchanged when the split heuristic

is applied. To test this hypothesis, we ran 1000 trials of Genitor on each AFIT problem.

We then used only those solutions that matched the best known solution. The resulting

permutations found by Genitor are then interpreted in two ways. First, each permutation is

decoded in the usual way: task are scheduled as they are encountered in the permutation,

without regard to low and high-altitude requests. Second, it is decoded with all of the

low-altitude requests scheduled first, followed by the high-altitude requests; both the low

and high-altitude requests are still scheduled based on the order in which they appear in

the permutation.

Thus, each permutation generates two schedules, the first decoded normally, the second

decoded with low-altitude requests scheduled first. We then calculated how often the two

schedules were identical, how often they were different but with the same evaluation and

how often they were different with different evaluations.

The results are summarized in Table 3. The second column (labeled “Total Number of Best

Known Found”) records the number of schedules (out of 1000) with an evaluation equal to

the best solution found by Genitor in any run. The number of times the schedules were
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Day Total Number of Same Evaluation Same Evaluation Worse
Best Known Found Same Conflicts Different Conflicts Evaluation

1 420 38 373 9

2 1000 726 106 168

3 996 825 115 56

4 937 733 50 154

5 862 800 12 50

6 967 843 56 68

7 1000 588 408 4

TOTAL 6182 4553 1120 509

Table 3: The effect of applying the split heuristic when evaluating best known schedules

produced by Genitor.

identical (“Same Evaluation, Same Conflicts”) is given in the third column. The number of

times the two schedules are different, but have the same evaluation (number of bumps) is

given in column “Same Evaluation, Different Conflicts”. Finally, when the evaluations are

different (the last column), the schedules produced by scheduling low-altitude requests first

always result in worse performance.

By separating the requests from the permutations produced by Genitor into low and high-

altitude requests, the evaluation of more than 80% of the schedules remains unchanged. The

numbers in the last column of the table also warn that when using the split heuristic only

a subspace of the permutations is considered (the permutations that are separated into low

and high-altitude requests). This subspace does not contain all the best-known solutions,

and, in fact, for different instances of the problem, this subspace could be suboptimal.

But more than 90% of the time (i.e., in (4553 + 1120)/6182 cases), the same evaluation

results when the same permutation is either, A) directly mapped to a schedule (first come,

first served, based on the order of the permutation) to obtain a solution, or, B) all of the

low-altitude requests from the permutation are filled first and then all of the high-altitude

requests are scheduled. This suggests that Genitor is indeed scheduling low-altitude requests

with high priority when appropriate.

Our second hypothesis is that using the split heuristic results in solutions with a small

number of conflicts for the AFIT benchmarks. Figure 6 presents a summary of the re-

sults obtained when using Genitor, hill climbing, and Random Sampling without the split
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Figure 6: Algorithm performance for the seven AFIT benchmark problems.

heuristic (30 experiments, 8000 evaluations per experiment), as well as the split versions

denoted by Genitor-S, Hill Climbing-S and Random Sampling-S. The split versions of the

three algorithms were run in 30 experiments with 100 evaluations per experiment. The min-

imum number of bumps in 30 experiments is recorded for each problem as the percentage

of requests scheduled. The left half of Figure 6 presents the average percentage of requests

scheduled for the seven AFIT problems by each algorithm. The corresponding average

CPU times (in seconds) appear in the right half of the figure. For all the problems, even

the simplest algorithm, Random Sampling-S, finds the best known solutions, as illustrated

in Table 4.

We can prove that the low-altitude requests are scheduled optimally. Since the split heuris-

tic divides the low and high-altitude requests, the low-altitude requests (with no slack and

no alternative windows for scheduling) correspond to multiple instances of SiRRS prob-

lems with no slack and no time windows; therefore, the low-altitude requests are optimally

solved by the GreedyIS algorithm (the GreedyIS algorithm is defined in Section 2.1). We

implemented GreedyIS and used it to schedule the low-altitude requests. In every case, the

best-known solutions found by Genitor have sub-solutions over the subset of low-altitude

requests that are identical in evaluation to those found by GreedyIS, and therefore optimal.

This also suggests that another way to solve these problems is to use GreedyIS to schedule the

low-altitude requests, and then use Genitor to schedule the remaining high-altitude requests.
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Best Random Sampling-S
Day Known Min Mean Stdev

1 8 8 8.2 0.41

2 4 4 4 0

3 3 3 3.3 0.46

4 2 2 2.43 0.51

5 4 4 4.66 0.48

6 6 6 6.5 0.51

7 6 6 6 0

Table 4: Results of running random sampling in 30 experiments, by generating 100 ran-

dom permutations per experiment. A problem-specific heuristic is used in the evaluation

function, where the low-altitude requests are evaluated first.

However, the 1992 AFIT benchmark problems are relatively easy, and this approach may

not be best for other more difficult MuRRS problems.

5.1.1 When does the “split heuristic” fail?

We can build a simple problem instance for which the optimal solution cannot be found

using the split heuristic. Consider the problem represented in Figure 7. There are two

ground stations and two resources (two antennas) at each ground station.

Two high-altitude requests, R3 and R4, have durations three and seven, respectively. R3

can be scheduled between start time 4 and end time 13; R4 can be scheduled between 0

and 9. Both R3 and R4 can be scheduled at either of the two ground stations. The rest

of the requests are low-altitude requests. R1 and R2 request the first ground station, while

R5, R6, R7, and R8 request the second ground station. This problem fits the description of

the Satellite Range Scheduling problems in the AFIT benchmark: the low-altitude requests

can be scheduled only at a specific ground station, with a fixed start and end time, while

the high-altitude requests have alternative resources and a time window specified.

If low-altitude requests are scheduled first, then R1 and R2 are scheduled on Ground Station

1 on the two resources, and the two high-altitude requests are bumped. Likewise, on

Ground Station 2, the low-altitude requests are scheduled on the two resources, and the
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Figure 7: Example of a problem for which the split heuristic can not result in an optimal

solution. Each ground station has two antennas; the only high-altitude requests are R3 and

R4.

high-altitude requests are bumped. By scheduling low-altitude requests first, the two high-

altitude requests are bumped. However, it is possible to schedule both of the high-altitude

requests such that only one request (R1, R2 or R8) gets bumped. A possible solution

schedules R3 and R4 on one resource at Ground Station 1 and bumps either R1 or R2;

R5, R6, R7, and R8 can all be scheduled on Ground Station 2. For this example, a global

optimum is not possible when all of the low-altitude requests are scheduled before the

high-altitude requests.

6 Generalizing the AFIT Problems

Does the algorithm performance obtained for the AFIT benchmark transfer to contemporary

problems with larger numbers of tasks? Do the results obtained by Parish showing that

Genitor outperforms other algorithms also hold on other, larger problems? To explore

these questions, we built a problem generator that produces problems by modeling features

encountered in the real-world problems. Then we compared the results of running Genitor,

hill climbing, and random sampling on problems produced by the problem generator to

the results reported for the AFIT problems. We show that: (1) the performance of the

split heuristic on the seven AFIT problems does not transfer to the problems produced

by our generator but that (2) Genitor still consistently results in the smallest number of

unscheduled requests.
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6.1 New Problem Generator

We have designed a new, more realistic problem generator for MuRRS, which preserves

some of the features of both SiRRS problems as well as the AFIT benchmark problems,

while introducing new characteristics of the contemporary application.

The SiRRS problem generator described in section 4 requires parameters to control the re-

quest duration and the size of the time window. In the new generator, we use these param-

eters to model different types of requests encountered in the real-world satellite scheduling

problem, such as downloading data from a satellite, transmitting information or commands

from a ground station to a satellite, and checking the health and status of a satellite. We

classify the requests into four possible types:

• State of health (HS): short (5-15 minutes), flexible, common

• Maneuver (Mu), for example changing the orbit of a satellite: longer (20-60 minutes),

inflexible, rare

• Payload download (PD), for example downloading data from the satellite: long (10-30

minutes), more flexible, common

• Payload commanding (PC): variable length (5-60 minutes), flexible, common

Our taxonomy is based on the fact that requests of a certain type share characteristics of

duration, flexibility (the size of the time window versus the duration of the request) and

frequency 4. For each request type, we define the upper and lower bound on its duration

TDur
i and the maximum slack MAXSLACK (to determine the window size). The actual

requests are generated using these parameters as described in section 4.

As a second feature, the new generator introduces models of customer behavior. We define

three customer types (see Table 5), based on the fact that, for example, some customers

will mostly generate health and status requests or payload command requests. For each

customer, the number of requests to be generated is determined as a fraction of the total

4For now, we do not model periodic requests and therefore do not use the frequency information.

31



Customer Predictability Fract. of Reqs. for Each
Type Request Type

HS PD PC Mu

Operations and Maintenance 0.9 0.85 0.0 0.1 0.05

Image Intelligence 0.3 0.0 0.5 0.5 0.0

Signal Intelligence 0.7 0.05 0.1 0.85 0.0

Table 5: Customer types.

number of requests. We define customer patterns by specifying a time window midpoint,

a resource, and the type of request. Customer patterns model the previous behavior of a

customer (which could have been collected from past schedules). A database of customer

patterns is used to produce the requests. For each customer type, the fraction of the requests

generated for each request type and the Predictability are defined. The Predictability for

each customer represents the fraction of requests that will be generated for this customer

using customer patterns from the database. The rest of the requests corresponding to each

customer will be randomly generated. The duration and window size for each request are

determined using the parameters associated with the request type.

The AFIT problems separate the requests into low-altitude and high-altitude. The low-

altitude requests tend to be shorter and have a duration equal to the corresponding visibility

window. The high-altitude requests are more flexible, with the size of the visibility window

larger than the requested duration. The AFIT problems assume that all the low-altitude

requests have to be scheduled at the same ground station. In our new generator, we specify

more than one ground station as possible alternatives for both low and high-altitude requests

due to the higher contention for resources now. Also, the time windows specified for alter-

native ground stations are generated based on an offset in time. The offsets represent the

time needed for a satellite in its orbit to become visible from one ground station to another.

We use two databases (low-altitude and high-altitude) of offsets, which were compiled5 from

data collected on the Web (http://earthobservatory.nasa.gov/MissionControl/overpass.html)

about the visibilities of various satellites from the locations of the nine ground stations. For

security reasons, requests do not specify actual satellites in an accessible form; we chose

5Thanks to Ester Gubbrud, a senior undergraduate who spent part of the summer of 2001 working with

Adele Howe, for helping us compile the databases.
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For each customer
For each request type

Determine the number of requests NR to be generated
Using the predictability for this customer, p, the number

of requests generated using customer patterns is NR ∗ p
For each of the requests generated using customer patterns

Choose without replacement a pattern
Generate the request using the chosen pattern

For each of the random requests (no patterns used)
Generate the request using the request parameters

Figure 8: Pseudocode for the new generator.

some satellites to be representative for the kinds of the requests encountered in the Satellite

Range Scheduling problem. We preserve the request duration for all the alternatives. The

visibility window size is equal to the request duration for all the low-altitude requests, and

it can vary for the high-altitude requests.

The process of generating the requests in the new generator is described in Figure 8. With a

0.5 probability, we determine for each request if it is a low-altitude or high-altitude request.

6.2 Algorithm Performance

We have previously observed that GreedyDP did not work well on the multi-resource prob-

lems contained in the AFIT benchmark. For completeness, we first compare GreedyDP to

random sampling. As shown in Table 6, GreedyDP is again inferior to random sampling on

the problems of sizes 300, 350, 400, and 450 and only slightly better than random sampling

for problems of size 500 produced by the new problem generator.

We next repeat the experiments described for the AFIT problems (section 5) by running

Genitor, hill climbing, and random sampling for problems produced by the new generator.

To compare our results to the ones reported for the AFIT problems, but also to generate

realistic problems, we ran the experiments for problem sizes 300, 350, 400, 450, and 500.

For each size, we generated 30 problem instances. For each algorithm, we performed 30
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Random Sampling GreedyDP
Size Mean Variance Mean Variance
300 0.167 0.213 1.867 2.051
350 1.067 1.099 3.167 2.695
400 2.833 3.523 4.667 3.126
450 5.967 6.240 6.567 7.633
500 11.767 7.840 11.167 7.937

Table 6: The difference between the minimum number of bumps reported by the Random

Sampling algorithm and GreedyDP and the minimum number of bumps found by any of

the six algorithms (with or without the split heuristic) is averaged over the 30 instances for

each problem size.

Genitor Hill Climbing Random Sampling
Size Mean Variance Mean Variance Mean Variance

300 0.000 0.000 0.000 0.000 0.167 0.213

350 0.000 0.000 0.333 0.368 1.067 1.099

400 0.000 0.000 1.233 1.702 2.833 3.523

450 0.000 0.000 3.667 3.678 5.967 6.240

500 0.000 0.000 8.300 3.941 11.767 7.840

Genitor-S Hill Climbing-S Random Sampling-S
Size Mean Variance Mean Variance Mean Variance

300 0.767 0.737 0.767 0.737 0.867 0.671

350 0.667 0.851 0.967 1.551 1.367 2.033

400 1.100 1.128 2.167 2.626 2.933 3.168

450 1.467 1.223 3.967 4.309 5.200 6.717

500 2.200 2.097 8.700 8.907 10.667 10.161

Table 7: The difference between the minimum number of bumps reported by an algorithm

and the minimum number of bumps found by any of the six algorithms (with or without

the split heuristic) is averaged over the 30 instances for each problem size.

runs with 8000 evaluations per run for each problem. Increasing the number of evaluations

to 50k and of the population size to 400 did not improve the best solutions found for each

problem. We recorded the number of unscheduled requests for each run.

Figure 9 shows that Genitor on average outperforms Genitor-S and both versions of hill

climbing and random sampling, as well as the greedy constructive heuristic. In fact, as
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Figure 9: Average percent of requests scheduled by the no-split and split versions of each

of the algorithms.

Table 7 shows, Genitor (without the split heuristic) always outperforms all the other al-

gorithms. In Table 7, we first subtract the minimum number of bumped requests for each

problem from the minimum number of bumped requests reported by each of the algorithms

for that problem in 30 runs. Then we average these differences over the 30 instances gener-

ated for each size; we also compute the variance. From both Figure 9 and Table 7, it is clear

that the split heuristic always results in an average decrease in performance. The GreedyDP

results in the worst performance except for problem size 500 where it slightly outperforms

the no-split version of random sampling.

7 Conclusions

The Satellite Range Scheduling Problem is an important real world problem that impacts

the use of expensive and limited resources. We structured our study as a progression. We

start with a simple version of the problem, where only one resource is present. We follow by

looking at a version of the problem studied at AFIT. Finally, for planning and experimental

control purposes, we build a new problem generator that generalizes features found in the

initial two versions of the problem studied and introduces new realistic features.
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Although optimal algorithms have been developed for the SiRRS problem, we have not

been able to modify them for MuRRS. Additionally, the simple heuristics that proved so

effective in the SiRRS do not scale well to MuRRS, especially for the larger, newly generated

problems discussed in Section 6.

We were able to show that Parish’s earlier results with Genitor on AFIT’s 1992 benchmarks

scale-up to the more realistic contemporary problems. We also showed that Genitor per-

formed so well on the AFIT problems because it effectively learned to split the problems

into low and high-altitude requests, scheduling them separately. In fact, the seven problems

in the AFIT benchmark are trivial to solve when a simple heuristic based on this separation

is used.

However, when applied to more realistic problems, the split heuristic results in poor-quality

solutions. Consequently, Genitor must be learning a different strategy for solving the con-

temporary problems. In future work, we plan on analyzing Genitor’s superior performance

on the new problems and identifying what makes it work well. Additionally, we have recently

obtained several days of recent actual data and are in the process of reverse engineering

their characteristics to better tune our new generator. We are working on defining new ob-

jective functions, to provide the human schedulers with information about minimal changes

in request specification such that more requests can be satisfied. We are also planning on

implementing other algorithms such as HBSS and “Squeaky Wheel” Optimization to test

their efficiency for Satellite Range Scheduling.
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