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SUMMARY

Extensive research has been devoted to preemptive scheduling. However, little atten-

tion has been paid to problems where a certain time penalty must be incurred if pre-

emption is allowed. In this paper, we consider the single-machine scheduling problem

of minimizing the total completion time subject to job release dates and preemption

penalties, where each time a job is started, whether initially or after being preempted,

a job-independent setup must take place. The problem is proved to be strongly NP-

hard even if the setup time is one unit. We also study a natural extension of a greedy

algorithm, which is optimal in the absence of preemption penalty. It is proved that

the algorithm has a worst-case performance bound of 25/16, even when the maximum

completion time, i.e., makespan, criterion is considered simultaneously.
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1. INTRODUCTION

Preemptive scheduling problems are those in which the processing of a job can be

temporarily interrupted, and restarted at a later time. Conventionally, in the literature

on preemptive scheduling, preempted jobs can simply be resumed from the point at

which preemption occurred at no cost. However, this situation is not always true in

practice. It is likely that in some cases, a certain delay or setup time must be incurred

before a preempted job can be resumed, i.e., a certain time penalty must be incurred.

Consider the situation in a computer system. In order to execute more urgent or short

tasks, the operating system must interrupt current tasks temporarily. Later, when the

interrupted tasks are resumed, some extra time must be expended. That might include

the time to load relevant compilers into memory, the time to get the information about

done and left work, the time to repeat some work, and so on.

Several papers have been devoted to scheduling with preemption penalties. Potts

and Van Wassenhove [1] suggested to consider preemption penalties under the lot-sizing

model. Then, Monma and Potts [2] and Chen [3] studied the preemptive parallel

machine scheduling problem with batch setup times. Zdrzalka [4], Schuurman and

Woeginger [5] and Liu and Cheng [6] studied preemptive scheduling problems with

job-dependent setup times. Julien, Magazine and Hall [7] proposed more preemption

models and applied them to two single-machine scheduling problems. In this paper, we

investigate the single-machine problem of minimizing the total completion time subject

to job release dates in the preemption-setup model, where each time a job is started,

whether initially or after having been preempted, a setup must take place.

To state our problem, we are given a set of n jobs J = {J1, J2, . . . , Jn}, where job

Jj is associated with a processing time pj and a release date rj, before which it cannot

be processed. Also, we are given a machine that can handle only one job at a time.

All jobs may be preempted. Whenever a job is to be started, whether initially or after

preemption, a job-independent setup is necessary. The setup time is s. The setup can

be performed only after the corresponding job is released and the setup is subject to

the preemption-repeat mode, i.e., a preempted setup must be totally repeated. During

the setup time the machine is unavailable for processing. Our objective is to find a

schedule that minimizes the total completion time of the n jobs.

It is well-known that if s = 0, i.e., no preemption penalty, the above problem is

solved by the shortest remaining processing time (SRPT) rule: at any time, process the

unfinished job with the shortest remaining processing time among the available jobs.

However, little is known about the case of s �= 0. In the next section, we show that

the problem is strongly NP-hard even if s = 1. Then in Section 3, we present a greedy

algorithm, which is a generalization of the SRPT rule. It is proved that the algorithm
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has a worst-case performance bound of 25/16, even when the maximum completion

time, i.e., makespan, criterion is considered simultaneously. Finally, some concluding

remarks are made in Section 4.

2. COMPUTATIONAL COMPLEXITY

In this section, we prove that the problem of scheduling subject to job release dates

and preemption penalties is strongly NP-hard. This is achieved by a reduction from

Numerical Matching with Target Sum (NMTS), which is known to be strongly NP-hard

(Garey and Johnson [8]).

NMTS: Given two sets of positive integers X = {x′
1, x

′
2, . . . , x

′
2m} and B =

{b′1, b′2, . . . , b′m} with
∑2m

i=1 x
′
i =

∑m
i=1 b

′
i, decide if there exists a partition of the in-

dex set I = {1, 2, . . . , 2m} into m disjoint 2-element subsets I1, I2, . . . , Im such that∑
k∈Ij

x′
k = b′j (j = 1, 2, . . . , m).

Let I be an instance of NMTS and

b = 2m2
m∑

i=1

b′i ,

xi = b + x′
i (i = 1, 2 . . . , 2m) ,

bi = 2b + b′i (i = 1, 2 . . . , m) ,

L = 2
m∑

i=1

bi + 1 .

We construct the following instance P of the decision version of the scheduling problem

under discussion.

For i = 1, 2 . . . , 2m, let Ji be a job with zero release date and processing time

pi = xi − 1 .

We call them X-jobs.

For i = 2m + (j − 1)L + 1, . . . , 2m + jL (1 ≤ j ≤ m), let Ji be a job with unit

processing time and release date

ri =
j∑

k=1

bk + 2(j − 1)L .

We call them U -jobs. Note that for given j, J2m+(j−1)L+1, . . . , J2m+jL have the same

release date. We specially call them Uj-jobs and denote their release date by Rj .

The setup time of each job is one unit. Given the threshold value

δ = m2L2 + (2m− 1)mL + (2 + L)
m∑

k=1

(m− k + 1)bk ,
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we are asked to decide if there exists a feasible schedule σ for P such that TCT (σ) ≤ δ,

where TCT (σ) denotes the total completion time of σ.

Lemma 1 If the answer to I is “Yes”, then the answer to P is “Yes”, too.

Proof. Suppose that {I1, I2, . . . , Im} is a partition of I such that

|Ij| = 2,
∑
k∈Ij

x′
k = b′j (j = 1, 2, . . . , m) .

Let Ij = {ξ(j), η(j)}, where ξ(j), η(j) ∈ {1, 2, . . . , 2m}. Then

pξ(j) + pη(j) = xξ(j) + xη(j) − 2 = bj − 2 .

We construct σ as follows:

σ = (Jξ(1)Jη(1)U1 · · ·U1Jξ(2)Jη(2)U2 · · ·U2 · · ·Jξ(m)Jη(m)Um · · ·Um) ,

where no preemption happens. Noticing the completion time of Jη(j) is equal to 2(j −
1)L +

∑j
k=1(2 + pξ(k) + pη(k)) = Rj , we have

TCT (σ) < (2 + L)
m∑

j=1

Rj +
m∑

j=1

L∑
k=1

2k

= (2 + L)


m(m− 1)L +

m∑
j=1

j∑
k=1

bk


+ mL(L + 1)

= δ .

Thus, the answer to P is “Yes”. ✷

In the following, we will show that the converse of Lemma 1 is also true. Let σ be

a feasible schedule for P with TCT (σ) ≤ δ. Since all U -jobs have a unit processing

time, it is reasonable to require that σ satisfies the following conditions:

(C1) The processing order of U -jobs abides by the earliest release date rule.

(C2) None of the U -jobs is preempted.

(C3) For each j = 1, 2, . . . , m, all Uj-jobs are processed consecutively.

Now we discuss further the form of σ. For each j = 1, 2, . . . , m, let tj = Rj +εj (εj ≥ 0)

be the start time of the first Uj-job in σ. Thus, the total completion time of all U -jobs

is given by

δ1 =
m∑

j=1

(
L(Rj + εj) +

L∑
k=1

2k

)

= L
m∑

j=1

εj + L
m∑

j=1

j∑
k=1

bk + m(m− 1)L2 + mL(L + 1)

= L
m∑

j=1

εj + δ − 2m(m− 1)L− 2
m∑

j=1

(m− j + 1)bj . (1)
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Lemma 2 For each j = 1, 2, . . . , m, there are at most 2j X-jobs completed by time tj

in schedule σ.

Proof. The conclusion is trivial for j = m. Suppose to the contrary that for some

j0 with 1 ≤ j0 ≤ m− 1, there are at least 2j0 + 1 X-jobs completed by time tj0 . Note

that the total setup and processing requirement of the 2j0 + 1 X-jobs is greater than

(2j0 + 1)b. By condition (C1), all U1-jobs, U2-jobs, . . . , Uj0−1-jobs, which have a total

setup and processing requirement of 2(j0 − 1)L, should have been finished by time tj0.

Then

tj0 = Rj0 + εj0 > (2j0 + 1)b + 2(j0 − 1)L ,

i.e.,

εj0 > (2j0 + 1)b−
j0∑

k=1

bk = b−
j0∑

k=1

b′k ≥ 2m2
m∑

k=j0+1

b′k .

Since j0 ≤ m − 1, it holds that εj0 > 2m2. Combined with (1), the inequality implies

that

TCT (σ) ≥ δ1

> 2m2L + δ − 2m(m− 1)L− 2
m∑

j=1

(m− j + 1)bj

≥ δ + 2mL− 2m
m∑

j=1

bj > δ ,

a contradiction. ✷

In fact, due to conditions (C2) and (C3), Lemma 2 implies that for each j =

1, 2, . . . , m, there are at most 2j X-jobs completed by time Rj + 2L, i.e., there are at

least 2(m − j) X-jobs completed after time Rj + 2L. Let θ be the number of X-jobs

completed after time Rm + 2L, and δ2 denote the total completion time of all X-jobs.

Then

δ2 ≥ 2
m−1∑
j=1

(Rj + 2L) + θ(Rm − Rm−1)

≥ 2m(m− 1)L + 2
m−1∑
j=1

j∑
k=1

bk + 2θL . (2)

Lemma 3 θ = 0 and εj = 0 for each j = 1, 2, . . . , m.

Proof. By (1) and (2), we have

TCT (σ) = δ1 + δ2 ≥ L
m∑

j=1

εj + δ − 2
m∑

j=1

bj + 2θL .
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Since TCT (σ) ≤ δ, it holds that

L


2θ +

m∑
j=1

εj


 ≤ 2

m∑
j=1

bj = L− 1 .

Then the desired results follow from the fact that θ and εj (j = 1, 2, . . . , m) are integers.

✷

From Lemma 3, we deduce that all jobs are completed by time Rm + 2L in σ and

tj = Rj for each j = 1, 2, . . . , m. The former implies that σ contains no idle time and

no preemption happens in σ. Let I1 be the index set of X-jobs completed by time t1,

and for j = 2, 3, . . . , m, Ij be the index set of X-jobs processed between tj−1 + 2L and

tj . Then ∑
k∈Ij

(1 + pk) = tj − (tj−1 + 2L) = bj (j = 2, 3, . . . , m) ,

i.e., ∑
k∈Ij

x′
k + |Ij|b = 2b + b′j .

From the above relation, it is easy to show that |Ij| = 2 and
∑

k∈Ij
x′

k = b′j . Thus,

{I1, I2, . . . , Im} is a solution to instance I, i.e., the following lemma is true.

Lemma 4 If the answer to P is “Yes”, then the answer to I is “Yes”, too.

Combining Lemmas 1 and 4, we obtain the following conclusion.

Theorem 1 The single-machine scheduling problem of minimizing the total completion

time subject to job release dates and preemption penalties is strongly NP-hard even if

the setup time is one unit.

3. A GREEDY ALGORITHM

The greedy technique is among the fundamental techniques for the design of approxi-

mation algorithms. Actually, the SRPT rule is a greedy algorithm for the special case

of our problem in which s = 0. In the following, we present a greedy algorithm for the

general problem, which reduces to the SRPT rule when s = 0.

Algorithm H: Whenever a job is completed or a new job is released, schedule the

unfinished job that can be completed at the earliest time (preempting when necessary).

To evaluate the performance of algorithm H with respect to the total completion

time, we will first analyse its performance with respect to the maximum completion

time criterion. Note that minimizing the maximum completion time is solved by

scheduling all jobs in order of nondecreasing rlease dates without preemption. But
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we have two reasons to study the performance of algorithm H regarding the maximum

completion time:

(i) the result will serve as a lemma for the analysis of the total completion time

criterion;

(ii) a schedule of high quality with respect to more than one criterion is favored in

many practical applications.

3.1. The performance with respect to the maximum completion

time

Let σ denote the schedule produced by algorithm H. It is reasonable to assume that σ

contains no idle time here. Let C[0] = 0 and C[k] be the kth earliest completion time in

σ for k = 1, 2, . . . , n. Let Jk
1 , J

k
2 , . . . , J

k
λ(k) be all the job-pieces that are performed in

that order in the interval (C[k−1], C[k]) according to σ, where λ(k) denotes the number

of job-pieces in (C[k−1], C[k]). Note that a job-piece is either a whole setup plus a part

of a job or only an incomplete setup. For each job-piece Jk
i , we introduce the following

notation:

sk
i – the setup time of Jk

i ;

tki – the processing time of Jk
i ;

qk
i – the remaining processing time of the job related to Jk

i after Jk
i is finished;

rk
i – the release date of the job related to Jk

i ;

pk
i – the total processing time of the job related to Jk

i .

Obviously, each Jk
λ(k) contains a whole setup and the following lemma holds.

Lemma 5 For each k with λ(k) ≥ 2, it holds that rk
i = C[k−1] +

∑i−1
j=1(s

k
j + tkj ) and

pk
i = tki + qk

i (i = 2, 3, . . . , λ(k)).

Let l (0 ≤ l < n) be the minimum index such that λ(l+1) = λ(l+2) = · · · = λ(n) =

1. Since λ(n) = 1 always holds, l must exist. If l = 0, then C[n] =
∑n

k=1(s + pk) ≤
C∗

max, where C∗
max denotes the minimum makespan. In the following we assume that

1 ≤ l < n, which implies λ(l) ≥ 2.

Lemma 6 C[l] ≤ C∗
max .
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Proof. Since λ(l) ≥ 2, it follows from Lemma 5 that

rl
λ(l) = C[l−1] +

λ(l)−1∑
j=1

(sl
j + tlj) .

Therefore, C[l] = rl
λ(l) + sl

λ(l) + tlλ(l) ≤ C∗
max . ✷

Define

X =
∑{sk

i | λ(k) ≥ 2, 1 ≤ i ≤ λ(k) − 1} ,
Y = C[l] −X ,

Z =
n∑

k=l+1

(s + tk1) = C[n] − C[l] .

Note that X + Y + Z = C[n] and Y + Z = ns +
∑n

k=1 pk ≤ C∗
max.

Lemma 7 X ≤ Y + 2
9
Z .

Proof. See Appendix A. ✷

Theorem 2 C[n] ≤ 25
16
C∗

max .

Proof. Note that C[n] = X +Y +Z ≤ X +C∗
max. If X ≤ 9

16
C[l], then it follows from

Lemma 6 that X ≤ 9
16
C∗

max. If X > 9
16
C[l], then Y = C[l] −X < 7

16
C[l] ≤ 7

16
C∗

max. By

Lemma 7, we have

X ≤ 2

9
(Y + Z) +

7

9
Y <

2

9
C∗

max +
7

9
· 7

16
C∗

max =
9

16
C∗

max .

Thus, C[n] ≤ X + C∗
max ≤ 25

16
C∗

max ✷

The example with s = 1 in Table 1 shows that the bound in Theorem 2 is tight.

Obviously, C∗
max = 16 + 16ε is obtained by scheduling jobs in increasing order of their

release dates. However, algorithm H produces schedule σ as follows:

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

J1 J2 J3 J4 J3 J5 J3 J6 J3 J7 J3 J8 J3 J9 J3 J10 J3 J2 J1

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
(J1

1 J1
2 J1

3 J1
4 J2

1 J2
2 J3

1 J3
2 J4

1 J4
2 J5

1 J5
2 J6

1 J6
2 J7

1 J7
2 J8

1 J9
1 J10

1 )

where each job-piece contains a whole setup. Thus, C[n] = 25 + 16ε. We get

C[n]/C
∗
max = (25 + 16ε)/(16 + 16ε) → 25/16 , as ε → 0 .

Table 1

i 1 2 3 4 5 6 7 8 9 10

ri 0 1 2 3 5 + ε 7 + 2ε 9 + 3ε 11 + 4ε 13 + 5ε 15 + 6ε

pi 3 + 4ε 2 + 3ε 1 + 2ε ε ε ε ε ε ε ε
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3.2. The performance with respect to the total completion time

In this subsection, we analyse the performance of algorithm H with respect to the

total completion time. We will show that by any time 25
16
t, the schedule produced by

algorithm H has finished at least as many jobs as an optimal total completion time

schedule could have finished by time t. The idea is similar to that used in Phillips, Stein

and Wein [9] for studying a parallel machine problem without preemption penalties.

Let NH(J, t) denote the number of jobs completed by time t when the set of jobs J

is scheduled according to algorithm H. We have the following lemma.

Lemma 8 Let I and J be two sets of jobs with I ⊆ J . Then for any t ≥ 0, it holds that

NH(J, t) ≥ NH(I, t).

Proof. See Appendix B. ✷

Theorem 3 With respect to the total completion time, algorithm H has a performance

bound of 25
16

.

Proof. Given an optimal total completion time schedule, we first show that NH(J, 25
16
t) ≥

Nopt(J, t) for any t ≥ 0. Consider the set of jobs Jopt(t) finished in the optimal total

completion time schedule by time t. Note that Nopt(J, t) = |Jopt(t)|. Since the per-

formance bound of algorithm H regarding the maximum completion time is 25
16

, we

have

NH(Jopt(t),
25

16
t) = |Jopt(t)| .

Since Jopt(t) ⊆ J , it follows from Lemma 8 that

NH(J,
25

16
t) ≥ NH(Jopt(t),

25

16
t) .

Then NH(J, 25
16
t) ≥ Nopt(J, t).

For k = 1, 2, . . . , n, let C[k] and Copt
[k] denote the kth earliest completion time in the

schedule produced by algorithm H and the optimal total completion time schedule,

respectively. From the result above, we obtain that C[k] ≤ 25
16
Copt

[k] for each k. This

completes the proof. ✷

4. CONCLUDING REMARKS

In this paper, we have studied the single-machine scheduling problem of minimizing

the total completion time subject to job release dates and preemption penalties, where

each time a job is started, whether initially or after being preempted, a job-independent
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setup must take place. The problem is proved to be strongly NP-hard even if the setup

time is one unit. Also, a greedy heuristic is presented and its worst-case performance

bound with respect to both the total completion time and the maximum completion

time is studied. The bound is tight regarding the maximum completion time, but we

do not know whether the bound is tight regarding the total completion time.

Scheduling with preemption penalties is a new topic in scheduling research. We

hope that more attention can be paid to it. In fact, besides the preemption-setup

model, some other preemption models have been presented in [7], such as preemption-

startup model, where the finished part of a preempted job must be repeated in some

proportion.
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APPENDIX A. PROOF OF LEMMA 7

We first prove that for any k, i, j with 1 ≤ i ≤ λ(k) − 1 and i + 1 ≤ j ≤ λ(k),

qk
i >

∑j−1
u=i s

k
u + pk

j holds. By algorithm H, the fact that Jk
i is preempted implies

s − sk
i + qk

i > s + pk
i+1, i.e., qk

i > sk
i + pk

i+1. Noticing pk
i+1 ≥ qk

i+1, we can successively

prove that

qk
i > sk

i + pk
i+1

> sk
i + sk

i+1 + pk
i+2

...

> sk
i + sk

i+1 + · · ·+ sk
j−1 + pk

j . (3)

Next we prove Lemma 7. Partition the index set {1, 2, . . . , n} into K1, K2, . . . , Km

by the following two steps:

Step 1. K1 := {1}, m := 1.

Step 2. For k := 2 to n do

If there exist indices i, u, v (1 ≤ i ≤ m, u ∈ Ki, 1 ≤ v ≤ λ(u)− 1) such that job-pieces

Jk
1 and Ju

v come from the same job, then Ki := Ki∪{k}, else Km+1 := {k}, m := m+1.

For each K ∈ {K1, K2, . . . , Km}, we define

X(K) =
∑{sk

i | k ∈ K, λ(k) ≥ 2, 1 ≤ i ≤ λ(k) − 1} ,
Y (K) =

∑{sk
λ(k) | k ∈ K, k ≤ l} ,

Z(K) =
∑{s + tk1 | k ∈ K, k ≥ l + 1} .

Obviously, it holds that X =
∑

K X(K), Y ≥ ∑
K Y (K) and Z =

∑
K Z(K). Thus, to

show that X ≤ Y + 2
9
Z, we need only to show that for each K,

X(K) ≤ Y (K) +
2

9
Z(K) . (4)

Let k(1) = min{k | k ∈ K}. If k(1) ≥ l + 1, then X(K) = 0. The conclusion

certainly holds. In the following we suppose that k(1) ≤ l. Steps 1′ ∼ 5′ choose a
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subset K∗ of K.

Step 1′. g := 1.

Step 2′. Determine the index h(g) (0 ≤ h(g) ≤ λ(k(g))− 1) such that

1) the jobs related to J
k(g)
1 , . . . , J

k(g)
h(g) are completed after C[l];

2) the jobs related to J
k(g)
h(g)+1, . . . , J

k(g)
λ(k(g)) are completed at or before C[l].

Step 3′. If h(g) = 0 or the job related to J
k(g)
h(g) does not appear in (C[k(g)], C[l]), then

goto Step 5′, else perform Step 4′.
Step 4′. Letting Ju

1 be the last job-piece before C[l] that comes from the same job as

J
k(g)
h(g) , then k(g + 1) := u, g := g + 1 and goto Step 2′.

Step 5′. K∗ := {k(1), k(2), . . . , k(g) }.
Since for each i = 1, 2, . . . , g−1, J

k(i+1)
1 and J

k(i)
h(i) come from the same job, K∗ ⊆ K

holds. It is easy to verify that

(A1) if h(1) = 0, then g = 1;

(A2) if h(1) ≥ 1, then h(g) ≥ 1 and h(2), h(3), . . . , h(g − 1) ≥ 2.

Define

X1(K) =
∑{sk

1 | k ∈ K \K∗, λ(k) ≥ 2} ,
Y1(K) =

∑{sk
λ(k) | k ∈ K \K∗, λ(k) ≥ 2} ,

X2(K) =
g∑

i=1

λ(k(i))−1∑
j=h(i)+1

s
k(i)
j +

∑{sk
i | k ∈ K \K∗, 2 ≤ i ≤ λ(k) − 1} ,

Y2(K) =
∑{sk

λ(k) | k ∈ K \K∗, k < l , λ(k) = 1} .

Obviously, it holds that X1(K) ≤ Y1(K) and

X(K) = X1(K) + X2(K) +
g∑

i=1

h(i)∑
j=1

s
k(i)
j ,

Y (K) = Y1(K) + Y2(K) +
g∑

i=1

s
k(i)
λ(k(i)) .

We now argue that the jobs related to job-pieces Jk
i (k ∈ K \ K∗, 2 ≤ i ≤ λ(k) − 1)

must have been completed by time C[l−1]. Otherwise, there exists a smallest index

k1 ∈ K \ K∗ such that for some i (2 ≤ i ≤ λ(k1) − 1), the job related to job-piece

Jk1
i is completed after C[l]. Then, the job related to job-piece Jk1

1 is also completed

after C[l], and it should not appear in (C[k1], C[l]). Since k1 ∈ K and k1 �= k(1), there

exists a smallest index k2 < k1 (k2 ∈ K) such that Jk1
1 comes from the same job as
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some Jk2
j (1 ≤ j ≤ λ(k2) − 1). If k2 �∈ K∗, then j = 1 (according to the definition

of k1). But j = 1 implies there exists a smaller index with the property of k2, a

contradiction. Then, k2 ∈ K∗. Since the job related to Jk2
j appears as Jk1

1 , the jobs

related to Jk2
j+1, . . . , J

k2

λ(k2) must have been completed before Jk1
1 . Since the job related

to Jk2
j is completed after C[l], the jobs related to Jk2

1 , . . . , Jk2
j−1 must be completed after

C[l]. Thus, k1 ∈ K∗, a contradiction, too. Now we have proved that the jobs related to

job-pieces Jk
i (k ∈ K \K∗, 2 ≤ i ≤ λ(k)− 1) must have been completed by time C[l−1],

so we have X2(K) ≤ Y2(K). To prove (4), it suffices to prove that

g∑
i=1

h(i)∑
j=1

s
k(i)
j ≤

g∑
i=1

s
k(i)
λ(k(i)) +

2

9
Z(K) = gs +

2

9
Z(K) . (5)

Since the jobs related to J
k(i)
1 , J

k(i)
2 , . . . , J

k(i)
h(i)−1 (i = 1, 2 . . . , g) do not appear in

(C[k(i)], C[l]) and the job related to J
k(g)
h(g) does not appear in (C[k(g)], C[l]), we have

Z(K) ≥
g∑

i=1

h(i)−1∑
j=1

(s + q
k(i)
j ) + s + q

k(g)
h(g) . (6)

Now we prove that

g∑
i=1

h(i)−1∑
j=1

q
k(i)
j >

g∑
i=1

h(i)−1∑
j=1

(
js

k(i)
j + s

k(i)
j

i−1∑
u=1

(h(u) − 1)

)
+

g∑
u=1

(h(u) − 1)p
k(g)
h(g) (7)

by induction on g. When g = 1, it follows from (3) that

h(1)−1∑
j=1

q
k(1)
j >

h(1)−1∑
j=1


h(1)−1∑

u=j

sk(1)
u + p

k(1)
h(1)


 =

h(1)−1∑
j=1

js
k(1)
j + (h(1) − 1)p

k(1)
h(1) .

Next we consider the case of g > 1. By the induction hypothesis, it holds that

g∑
i=1

h(i)−1∑
j=1

q
k(i)
j >

g−1∑
i=1

h(i)−1∑
j=1

(
js

k(i)
j + s

k(i)
j

i−1∑
u=1

(h(u) − 1)

)
+

g−1∑
u=1

(h(u)−1)p
k(g−1)
h(g−1)+

h(g)−1∑
j=1

q
k(g)
j .

Additionally, noticing p
k(g−1)
h(g−1) ≥ q

k(g)
1 , we obtain from (3) that

g−1∑
u=1

(h(u) − 1)p
k(g−1)
h(g−1) +

h(g)−1∑
j=1

q
k(g)
j >

g−1∑
u=1

(h(u)− 1)


h(g)−1∑

j=1

s
k(g)
j + p

k(g)
h(g)




+
h(g)−1∑

j=1


h(g)−1∑

u=j

sk(g)
u + p

k(g)
h(g)




=
h(g)−1∑

j=1


jsk(g)

j + s
k(g)
j

g−1∑
u=1

(h(u) − 1)


+

g∑
u=1

(h(u) − 1)p
k(g)
h(g) .
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Thus, (7) is also true for g > 1.

Note that p
k(g)
h(g) ≥ q

k(g)
h(g) > s

k(g)
h(g). Combining (6) and (7), we have

Z(K) >
g∑

i=1

h(i)−1∑
j=1

(
s + js

k(i)
j + s

k(i)
j

i−1∑
u=1

(h(u) − 1)

)
+

g∑
u=1

(h(u) − 1)s
k(g)
h(g) + s + s

k(g)
h(g)

=
g−1∑
i=1

h(i)−1∑
j=1

(
s + js

k(i)
j + s

k(i)
j

i−1∑
u=1

(h(u)− 1)

)

+
h(g)∑
j=1


s + js

k(g)
j + s

k(g)
j

g−1∑
u=1

(h(u)− 1)


 .

Thus, to show (5), it suffices to show that for i = 1, 2, . . . , g,

H(i)∑
j=1

s
k(i)
j ≤ µis +

2

9

H(i)∑
j=1

(
s + js

k(i)
j + s

k(i)
j

i−1∑
u=1

H(u)

)
, (8)

where

H(i) = h(i) − 1 (i = 1, 2, . . . , g − 1) ,

H(g) = h(g) ,
g∑

i=1

µi ≤ 1 .

When g = 1, it is simple to show that (8) is true by setting µ1 = 1. Now consider

the case of g ≥ 2. Due to (A2), for i ≥ 5, (8) is trivially true even if µi = 0. By setting

µi according to Table 2, we can prove (8) for i = 1, 2, 3, 4. ✷

Table 2

H(1) ≥ 3 µ1 = 1 µ2 = 0 µ3 = 0 µ4 = 0

H(1) = 2 µ1 = 8/9 µ2 = 1/9 µ3 = 0 µ4 = 0

H(1) = 1, H(2) ≥ 2 µ1 = 5/9 µ2 = 4/9 µ3 = 0 µ4 = 0

H(1) = 1, H(2) = 1 µ1 = 5/9 µ2 = 1/3 µ3 = 1/9 µ4 = 0

H(1) = 0, H(2) ≥ 3 µ1 = 0 µ2 = 1 µ3 = 0 µ4 = 0

H(1) = 0, H(2) = 2 µ1 = 0 µ2 = 8/9 µ3 = 1/9 µ4 = 0

H(1) = 0, H(2) = 1, H(3) ≥ 2 µ1 = 0 µ2 = 5/9 µ3 = 4/9 µ4 = 0

H(1) = 0, H(2) = 1, H(3) = 1 µ1 = 0 µ2 = 5/9 µ3 = 1/3 µ4 = 1/9

APPENDIX B. PROOF OF LEMMA 8

First, we give a lemma. Its proof is trivial.

14



Lemma 9 Let Q and Q′ be two multi-sets of numbers with Q � Q′, which means

that |Q| = |Q′| and for each i, the ith smallest element of Q is not greater than

the ith smallest element of Q′. Let p and p′ be two numbers with p ≤ p′. Then

Q ∪ {p} � Q′ ∪ {p′}.
Next we prove Lemma 8. Let J = {J1, J2, . . . , Jm}. We construct a job set J ′ =

{J ′
1, J

′
2, . . . , J

′
m} as follows:

i) if Ji ∈ I, then J ′
i = Ji ;

ii) if Ji ∈ J \ I, then J ′
i is such that r′i = ri and p′i = ∞.

Clearly NH(J ′, t) = NH(I, t) for any t ≥ 0, since the jobs in J ′ \ I never finish, and

they never run if a job with a finite processing time can run instead. Then it suffices

to show that for any t ≥ 0,

NH(J, t) ≥ NH(J ′, t) . (9)

Let σ be the schedule produced by algorithm H for J , and qi(t) be the remaining

processing time of Ji at time t in σ. Note that if Ji is finished at time t, then qi(t) = 0.

Let si(t) be defined as follows. If Ji is running at time t in σ, then si(t) is equal to

the remaining quantity of the current setup; if Ji is finished, then si(t) = 0; if Ji is

unfinished and not running, then si(t) = s. Let s[i](t) + q[i](t) be the ith smallest

element of multi-set

Q(t) = {si(t) + qi(t) | 1 ≤ i ≤ m, ri ≤ t} .

Also, we make the analogous definitions σ′, q′i(t), s
′
i(t) and Q′(t) for J ′. We are going

to show that for any t ≥ 0,

Q(t) � Q′(t) , (10)

i.e.,

s[i](t) + q[i](t) ≤ s′[i](t) + q′[i](t) for each i .

Note that (10) implies (9), because if (10) holds, then Q(t) must contain at least as

many zeroes as Q′(t), and hence at least as many jobs have been completed by time t

in σ as in σ′.
Let t0 = 0 and t1 < t2 < · · · < tm be all the completion times in σ. We claim that

for each k (0 ≤ k ≤ m), (10) is true over [0, tk] by induction on k. At time t0, (10) is

trivially true. As the induction hypothesis, (10) is assumed to be true for t ∈ [0, tk−1],

where k ≥ 1. Then

Q(tk−1) � Q′(tk−1) , (11)

and

q[i](tk−1) ≤ q′[i](tk−1) , ∀ i ≥ k (12)
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where (12) follows from (11) and the fact that s[i](tk−1) = s (i ≥ k). In the following,

we consider the case of tk−1 ≤ t ≤ tk.

Note that s[k](t)+q[k](t) remains the smallest positive element of Q(t) over [tk−1, tk)

(though it may correspond to different jobs at different time). To prove (10) for tk−1 ≤
t ≤ tk, we need only to show that

s[k](t) + q[k](t) ≤ s′[k](t) + q′[k](t) ,

and

Q0(t) � Q′
0(t) ,

where Q0(t) = {q[i](t) | i ≥ k+1, r[i] ≤ t} and Q′
0(t) = {q′[i](t) | i ≥ k+1, r′[i] ≤ t}. This

will be doned by induction on t.

By (11) and (12), the conclusion is true at time tk−1. From τ−1 to τ (τ > tk−1), we

have to perform two steps. First, we complete one unit of setup or processing for J[k]

and J ′
[l], where J ′

[l] is such that s′[l](τ − 1) + q′[l](τ − 1) is the smallest positive element

of Q′(τ − 1). Note that l ≤ k must hold. Second, we release each pair of jobs Jx(τ) and

J ′
x(τ) with rx(τ) = r′x(τ) = τ .

Let τ− be referred to as the left limit of τ . After the first step, we obtain Q(τ−)

and Q′(τ−), where

s[k](τ
−) + q[k](τ

−) = s[k](τ − 1) + q[k](τ − 1) − 1 ,

s′[l](τ
−) + q′[l](τ

−) = s′[l](τ − 1) + q′[l](τ − 1) − 1 ,

and the other elements are equal to the corresponding elements in Q(τ−1) and Q′(τ−1).

Since l ≤ k, s[k](τ
−) + q[k](τ

−) ≤ s′[k](τ
−) + q′[k](τ

−) and Q0(τ
−) � Q′

0(τ
−) follow from

the induction hypothesis on τ−1. Moreover, it is evident that if q[k](τ−1) ≤ q′[k](τ−1),

then q[k](τ
−) ≤ q′[k](τ

−).

Now consider the second step. Let s′[j](τ
−)+q′[j](τ

−) be the smallest positive element

of Q′(τ−). Obviously, j ≤ k holds. We make a case by case analysis. Note that py(τ)

and p′y(τ) respectively denote the elements to be added to Q0(τ
−) and Q′

0(τ
−) after

Jx(τ) and J ′
x(τ) are released.

Case 1. s + px(τ) ≥ s[k](τ
−) + q[k](τ

−) and s + p′x(τ) ≥ s′[k](τ
−) + q′[k](τ

−).

Now we have that py(τ) = px(τ) and p′y(τ) = p′x(τ). Obviously, it holds that

s[k](τ) + q[k](τ) = s[k](τ
−) + q[k](τ

−) ≤ s′[k](τ
−) + q′[k](τ

−) = s′[k](τ) + q′[k](τ) .

Case 2. s + px(τ) ≥ s[k](τ
−) + q[k](τ

−) and there exists u (j ≤ u ≤ k) such that

s′[u−1](τ
−) + q′[u−1](τ

−) ≤ s + p′x(τ) < s′[u](τ
−) + q′[u](τ

−).
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In this case, it holds that p′x(τ) < q′[u](τ
−) and p′x(τ) < q′[k](τ

−). Then,

py(τ) = px(τ) ,

p′y(τ) = max{q′[k](τ
−) , q′[u](τ

−)} ,
s′[k](τ) = s ,

q′[k](τ) =


 max{min{q′[k](τ

−) , q′[u](τ
−)} , q′[k−1](τ

−)} , u < k ,

p′x(τ) , u = k .

Thus,

s[k](τ) + q[k](τ) = s[k](τ
−) + q[k](τ

−) ≤ s + px(τ) ≤ s + p′x(τ) ≤ s′[k](τ) + q′[k](τ) .

Case 3. s + px(τ) < s[k](τ
−) + q[k](τ

−) and s + p′x(τ) ≥ s′[k](τ
−) + q′[k](τ

−).

Now p′x(τ) = ∞ must hold. We have that py(τ) = q[k](τ
−), p′y(τ) = p′x(τ), and it holds

that

s[k](τ) + q[k](τ) = s + px(τ)

< s[k](τ
−) + q[k](τ

−) ≤ s′[k](τ
−) + q′[k](τ

−) = s′[k](τ) + q′[k](τ) .

Furthermore, q[k](τ) = px(τ) < q′[k](τ) holds.

Case 4. s + px(τ) < s[k](τ
−) + q[k](τ

−) and there exists u (j ≤ u ≤ k) such that

s′[u−1](τ
−) + q′[u−1](τ

−) ≤ s + p′x(τ) < s′[u](τ
−) + q′[u](τ

−).

In this case, p′x(τ) < q′[u](τ
−) and p′x(τ) < q′[k](τ

−) hold, too. We have

py(τ) = q[k](τ
−) ,

p′y(τ) = max{q′[k](τ
−) , q′[u](τ

−)} ,
s[k](τ) = s′[k](τ) = s ,

q[k](τ) = px(τ) ,

q′[k](τ) =


 max{min{q′[k](τ

−) , q′[u](τ
−)} , q′[k−1](τ

−)} , u < k ,

p′x(τ) , u = k .

Obviously, q[k](τ) ≤ p′x(τ) ≤ q′[k](τ) holds, and hence s[k](τ) + q[k](τ) ≤ s′[k](τ) + q′[k](τ)

holds.

Note that in any Case, we have

Q0(τ) = Q0(τ
−) ∪ {py(τ)} and Q′

0(τ) = Q′
0(τ

−) ∪ {p′y(τ)} .

Since py(τ) ≤ p′y(τ) holds in Cases 1 ∼ 3 and in Case 4 if q[k](τ
−) ≤ q′[k](τ

−), Q0(τ) �
Q′

0(τ) follows from Q0(τ
−) � Q′

0(τ
−) and Lemma 9 for these cases. In the following,

we analyse Case 4 with q[k](τ
−) > q′[k](τ

−).
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By (12), it holds that q[k](tk−1) ≤ q′[k](tk−1). We can determine the latest time

τ∗ such that q[k](τ
−
∗ ) ≤ q′[k](τ

−
∗ ) and q[k](t) > q′[k](t) (∀ t ∈ [τ∗, τ)). Then Case 2 must

appear at time τ∗, and neither Case 3 nor Case 4 can appear at time τ∗+1, τ∗+2, . . . , τ−
1. Suppose that Case 2 appears at time τ∗ = τ1 < τ2 < · · · < τv and Case 1 appears

at other times in {τ∗, τ∗ + 1, . . . , τ − 1}. Let τv+1 = τ . According to Case 1, the jobs

corresponding to index [k] do not change from τi−1 to τ−
i for each i = 2, 3, . . . , v + 1.

Since s[k](τ
−
i ) + q[k](τ

−
i ) ≤ s′[k](τ

−
i ) + q′[k](τ

−
i ) and q[k](τ

−
i ) > q′[k](τ

−
i ) for i ≥ 2, we have

that s′[k](τ
−
i ) > 0, which implies that q′[k](τ

−
i ) = q′[k](τi−1). Then, according to Case 2

or 4, we get that for i = v + 1, v, . . . , 2,

p′y(τi)
≥ q′[k](τ

−
i ) = q′[k](τi−1) ≥ p′x(τi−1) ≥ px(τi−1) = py(τi−1) .

Note that τ1 = τ∗ and τv+1 = τ . We have

p′y(τ1) ≥ q′[k](τ
−
1 ) ≥ q[k](τ

−
1 ) ≥ q[k](τ

−) = py(τv+1) .

Then Q0(τ) � Q′
0(τ) follows from Q0(τ

−
1 ) � Q′

0(τ
−
1 ), where Lemma 9 is applied. ✷
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