Journal of Scheduling 7: 333-348, 2004.
'PQUC ©2004 Kluwer Academic Publishers. Printed in the Netherlands.

MINIMIZING MAKESPAN IN A TWO-MACHINE FLOW
SHOP WITH DELAYS AND UNIT-TIME OPERATIONS
IS NP-HARD

WENCI YU!", HAN HOOGEVEEN-?*, AND JAN KAREL LENSTRA"

LApplied Muathematics Institute, East China University of Science and Technology, Shanghai 200237, China
- Department of Computer Science, Utrecht University, P.O. Box 80089, 3508 TB Utrecht, The Netherlands
SCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

One of the first problems to be studied in scheduling theory was the problem of minimizing the makespan
in a two-machine flow shop. Johnson showed that this problem can be solved in O(n log n) time. A crucial
assumption here is that the time needed to move a job from the first to the second machine 1s negligible. If
this is not the case and if this ‘delay’ is not equal for all jobs, then the problem becomes NP-hard in the strong
sense. We show that this is even the case if all processing times are equal to one. As a consequence, we show

strong NP-hardness of a number of similar problems, including a severely restricted version of the Numerical
3-Dimensional Matching problem.

KEY WORDS: flow shop scheduling, intermediate delays, makespan, computational complexity, strong NP-hardness
1980 MATHEMATICS SUBJECT CLASSIFICATION (REVISION 1991): 90B35.

. INTRODUCTION

Until recently, one of the standard assumptions in scheduling theory was that the time needed
to move a job from one machine to another is negligible. Although this assumption 1s often
justified, there are many situations in which it must be abandoned as being unrealistic. For ex-
ample, in manufacturing there may be a transportation time from one production facility to
another, and in computer systems the output of a task on one processor may require a commu-
nication time so as to become the input to a succeeding task on another processor. We consider
the effect of introducing such delays on the computational complexity of the problem under
consideration.

We are interested in the complexity of the two-machine flow shop scheduling problem with
minimum delays. There are two machines, M, and M,, that are continuously available from time
zero onwards for processing »n independent jobs j(j = 1,...,n). Each machine can handle no

The results reported in this paper form part of the PhD thesis of Wenci Yu (1996). Professor Yu visited the combinatorial
optimization group in Eindhoven from September 1995 until June 1996, supported by EIDMA, the Euler Institute of
Discrete Mathematics and its Applications. Within eight months, he obtained deep results on flow shop scheduling with
delays, wrote a thesis, and defended it. We, his present co-authors, and Peter Brucker (Universitat Osnabruck) acted as his
SUPErvisors.

Wenci Yu pursued his research with great intensity and commitment, showing an amount of energy rarely seen in students
of half his age. He was a true scholar and a great friend. To know him and to work with him has enriched our life. We are
saddened by his unexpected death in October 2002.

*Correspondence to: Han Hoogeveen. E-mail: slam@cs.uu.nl

334 W. YU. H. HOOGEVEEN AND J. K. LENSTRA

more than one job at a time. Each job consists of two operatif)ns wiFh an intermediate delay:
after the completion of the first operation of job j, af lecizst [; time units plust elapse before the
second operation of j can start. The first (second) operation of §ach _]Ob: J has to be executed by
machine M, (M); processing the first (second) operation of job takes time py; (p2;). A schedule
o specifies a completion time C;;(¢o) for the ith operation (i = 1 2).0f eth job j(j=1,...,n)
such that the above conditions are met. The completion time C;(o) ot job j 1s then equal to G, (o).
We omit the argument o if there is no confusion possible as to the sczhedule we are referring to.
Our objective is to minimize the makespan, or schedule length, which 1s defined as max ;- __ ,C;.

1111

Following and extending the three-field notation scheme introduced by Graham et al. (1979), we
denote this problem by F 2|/;| Cnax.

Johnson (1954) presents an O(n logn) algorithm to solve the problem without delays. Johnson
(1958) and Mitten (1958) consider the case with minimum delays and show that a variant of
Johnson’s algorithm for F 2||Cnax can be used to find an optimal permutation schedule, that is,
a schedule in which both machines execute the jobs in the same order. If all delays are equal,
then there exists an optimal schedule that is a permutation schedule; this 1s, however, not the
case if there are two or more distinct delay values. Kern and Nawin (1991) study a single-machine
scheduling problem with two operations per job and intermediate minimum delays; in Section 9 we
will show that this problem is equivalent to the two-machine flow shop problem with delays. They
show that the single-machine problem is NP-hard in the ordinary sense if the solution space is not
restricted to permutation schedules. This result is strengthened to NP-hardness in the strong sense
for F2|/;| Cnax (Lenstra, 1991), for F2|/;, pi1; = p2;j | Cmax (Del’Amico and Vaessens, 1996),
and, finally, for F2|/; € {0,/}, p1; = p2; | Cmax (Yu, 1996); Yu further shows that in case of unit
processing times the latter problem is solvable in polynomial time. Dell’Amico (1996) proposes
several lower bounds, which are used in the derivation of several polynomial 2-approximation
algorithms. He further presents a tabu search algorithm that gives good results. Orman and Potts
(1997) study the problem of minimizing the idle time of a radar, which they formulate as a single-
machine scheduling problem with exact rather than minimum delays. They identify some special
cases that are polynomially solvable and show that the problem is already strongly NP-hard if the
processing times of all operations are identical.

The complexity status of the special case with unit processing time tasks has been open for both
minimum and exact delays. The complexity status of the one with minimum delays is posed as an
open question by Kern and Nawijn (1991). In this paper, we show that the problem F2|/;, p;; =
I | Cinax 18 NP-hard in the strong sense by a reduction from 3-PARTITION. As a corolla ry, we show that
the special cases of unit processing times of the single-machine problems with minimum delays
studied by Kern and Nawijn (1991) and with exact delays studied by Orman and Potts (1997)
are strongly NP-hard as well. For completeness, we mention the problem of scheduling parallel
machines subject to communication delays. Here, a delay between two precedence-constrained
Jobs occurs only if both jobs are allocated to different machines. We refer to Hoogeveen, Lenstra,
and Van de Velde (1997) for some of the main references.

The paper 1s organized as follows. In Section 2, we present the reduction and show that a ‘yes’
answer to a 3-PARTITION instance implies a ‘yes” answer to our instance of the decision variant
of F21lj, pij = 1| Cax- The proof of the converse statement is much more difficult and requires
many steps. In Section 3 we sketch the steps in the proof; this will be worked out in Sections 4—
7. In Sgcfi0n§ 4-6 we derive several properties that a schedule that leads to a ‘yes’ answer to
our decision instance of F2|/;, p;; = 1| Cpax must satisfy; we use these properties in Section 7
in which we prove that ‘yes’ to our decision instance implies ‘yes’ to the 3-PARTITION instance.

IMIZING MARKESPAN IN A TWO-MACHINE FLOW SHOP 335

'hﬁ% n %mmm y
ual to

A S acor ollary to our strong NP-hardness proot for F21/,
spectal case of NUMERICAL 3-DIMENSIONAL M
120 o n) s %U"mmﬁ& NP-har

<
;o
§ -

y NP-hardness of the hlem f p*" _— | Cﬁm A throu gh a reduction from the
hich s k be NP-con 1N Hw strong sense (Garey and Job

3-PARTITION

Given a multiset of 3m QSMW
b < X < 2btor j=1,....3m and X
n disjoint subsets X|. ..., X, such tha ey N = 45‘? ‘?

Consider any instance of 3-PARTITION. Since an equivalent problem is obtained by multi
each x,;(j = 1.....3m) and b by a factor m, we may assume without loss of generality th
x; and b are b} m. Given any such instance of 3-PARTITION, we construct the
ms&anm of the decision mam m F2 N s iM = 1| Cquux. Which we denote bv I’ H contamns Ehrm

| hich onl h respect to their delay value /,, as the processing times are all

cach job its delay value only. Instance 7 consists of the

hat all

. 3m are partition jobs, or P-jobs: the delay value of job j is equal to v, for

4mb are zero delay jobs, or Z-jobs: their delay value 1s equal to zero.
. bs 4mb =+ 493#’7 + 2.....,mu, Whum u = 4(m +)b, are large delay jobs, or L-jobs:
duw value 1s equal m 1 + 8

The threshold value on the makespan is v = n + 4mb + 2, where n = 4m(m + 1)b 1s the number
of jobs.

Lemma 1. If the answer to the 3-PARTITION instance is ‘yes', then there exists a fea sible schedule
for instance T of the problem F211;, p;; = 1| Cax with ;m@i;wmm no more than y.

Proof. Suppose that { X}, X,,} is a partition of X that leads to 'ves’ to 3-PARTITION. Let the
three elements in X; be Xy, Xyi). and Xeg). fori = 1, ..., m. We construct for instance 7 a schedule

with makespan equal to v in the following way (see Figure 1). The schedule consists of m blocks

L 5 (2) | | KA '

Figure 1. Block B, in a schedule tor a "yes -instance

336 W YU.H. HOOGEVEEN AND J. K. LENSTRA

Z-jobs, and the P-jobs £(i), n(i), and ¢(i). The jobs in B; are executed in the followin g order on
M first all L-jobs, then job £(i) followed by x¢(;y — 1 Z-jobs, job n(i) followed by x,;) — | Z-jobs,
and job ¢ (i) followed by x;(,) — I Z-jobs. On M, the relative order of the L-jobs and the Z-jobs
s the same as on M. The order of the jobs in B; on M is then: first x;;) — 1 Z-jobs followed by
Job &(1), then x;;) — 1 Z-jobs followed by job n(i), after that x;;, — 1 Z-jobs followed by job ¢ (i),
and finally the 4mb L-jobs. The blocks B, (i = 1, ..., m)are patched together in any order without
any unnecessary idle time. It is easily verified that the resulting schedule is feasible with makespan
equal to y.

Lo prove the converse statement of Lemma 1, we need to introduce some new concepts. This
1s done in the Sections 4-6. We start, however, with providing an overview of the proof of the
converse statement.

3. ASKETCH OF THE NP-HARDNESS PROOF

The proof that the existence of a schedule with makespan no more than y implies that the answer
to 3-PARTITION is ‘yes’ consists of the following steps. Let o denote a schedule with Chax < y =
n+4mb+ 2. In Section 4 we prove that in o the time that elapses between the completion of the first
peration and the start of the second operation of job J; must be equal to [i,for j=1,...,n. In
Section 5 we show that this implies that in o at each time ¢ (t =4mb+2,4mb+3, ..., n+4mb+1)
exactly one job oecome available for processing on M, (Corollary 6), where J; becomes
available at time ¢ if by then the minimum delay after the completion of its first operation on M,
has elapsed. From here, we show in Section 6 that ¢ must possess the special structure defined in
Lemma 9: there are m groups consisting of L-jobs only, which are separated by (m — 1) groups
containing 45 P-jobs and Z-jobs together with m L-jobs, and after the last pure L-subset there 1s
one subset containing only P-jobs and Z-jobs. After having established this result, we disregard
the Z-jobs and group the L-jobs and P-jobs in so-called job chains (Definition 11), where the
different chains are formed by linking the job with arrival time ¢ on M, with the job that starts at
time 7 on M;, and so on. We then show that 4mb -+ 1 Job chains exist in o, of which there are only
m that contain P-jobs (the so-called mixed job chains, see Lemma 19). These m mixed job chains
all contain exactly 3 different P-jobs, and the total delay of these 3 P-jobs amounts to 4b: hence,
partitioning the 3m integers of 3-PARTITION according to the partitioning of the P-jobs in the m
mixed job chains yields a ‘yes’ to 3-PARTITION.

4. THE CONCEPT OF TIGHT SCHEDULES

To prove the validity of our reduction, we first discuss a lower bound on the optimum solution
value of the F21/,. p;; = 1| Cpux problem. As a conseéquence, we come to the concept of a tight
schedule. This lower bound is a special case of the lower bound derived by Dell’Amico and Vaessens
(1996).

he lower bound is derived as follows. Consider any schedule o; let o) and o> denote the order
in which the jobs are executed on M; and M-, respectively. As we do not incur unnecessary idle
time in a schedule, the sequences o, and o> completely determine the schedule o. Therefore, we
denote from now on a schedule o as S(oy. 0~): we denote its makespan by C (o}, 05). For any job
Kk, we denote its position in o; and o5 by o, ' (k) and a5 ' (k), respectively.

MINIMIZING MAKESPAN IN A TWO-MACHINE FLOW SHOP 337

Lemma 2. For any schedule S(o, 01), we have that

Cloyp, o) =>n+ 1+ [le/n} -

J=1

Proof. Consider any job k. Since it has n — o, ' (k) successors in o5 and all processing times are
equal to one, we have that

Clor.o) =0 (K + L+ (n+1—-057k), fork=1,... n (1)
If we add up these inequalities for k = 1, ..., n, then we find that

H

nCo1,02) = D> (o7 R+ L+ (n+1—057'(0)]
k=1

H 1 Iy n
=> o' =D o' R +nn+ D+ hk=nn+ 1)+ L
k=1 k=1 k=1 k=1

since o and o3 are both permutations that map the » jobs to the positions 1, ..., n. As the delay
values are all integral, the makespan must be integral, and the desired result follows 1mmedlately
by dividing both sides of the above inquality by » and rounding up the right-hand side.

Given an instance of F2|/;, p;; = 1| Chax, We can compute the above lower bound for each
subset of jobs; the maximum over all outcomes then yields a valid lower bound on the makespan
of the entire instance. The lower bound found through this procedure was suspected to be tight
until Coster (1993) pointed out that, for the instance with six jobs and delay values (0, 0, 0, 4, 4,
4), the lower bound 1s 9, but the minimum makespan is 10.

Definition 3. A schedule S(oy, 02) for F2|1;, pij = 1| Gqax 1s called a tight schedule and o is
called a tight sequence, 1f all inequalities in (1) are equalities, that 1s, if

(k)-—-O' (k)wC(O’l,O'*))m(n—l-l—l-l,q) fork=1,...,n. (2)

Observation 4. Consider any instance of F2|1;, pi;j = 1 | Cnax. Define [as the average delay. The
following statements concerning tight schedules all follow immediately from Lemma 2.

(1) Schedule S(oy, 02) is a tight schedule if and only if >, _, lx is a multiple of n and C (0}, 02) =
n—+1+4+1.
(11) Schedule S(oy, 07) is a tight schedule if and only if o, (k) — Oy “Wky=1[-1, fork =1,
(111) Any tight schedule is an optimal schedule.
(iv) The instance of F2|1;, p;j = 1| Cnax has a tight schedule or a tight sequence if and only if the
average delay is an mteger and C*,. =n+ 1+ [, where C?,, stands for the optimal value of
the problem.

Now consider the instance Z of F2|/;, p;; = 1| Chax. We have that > e Uk = n(4mb+ 1), which
1s a multiple of n. Moreover, y = mu+4mb+2 =n+1+4mb+1 = n+ 1+ /. Hence, part (1) of
Observation 4 implies that any schedule S (o, 03) with C (o0, 02) < y must be a tight schedule.

338 W. YU. H. HOOGEVEEN AND J. K. LENSTRA

5. THE ONE-TO-ONE PROPERTY OF TIGHT SEQUENCES

As we have observed above, any schedule with makespan no more than y 1s a tight schedule.
We need a further characterization of tight schedules, before we are able to prove the converse
of Lemma 1. We derive these characterizations in this and the following two sections. The first
characterization is derived by looking at the times at which the jobs become available for processing
on M. Given these arrival times, we can construct a ‘best possible’ schedule by scheduling the
jobs on M, in order of their arrival times, where ties are settled arbitrarily; hence, a schedule is
completely specified by the job sequence that denotes the order in which the jobs are executed by
M, . In the following lemma, we show that a job sequence is a tight sequence 1f and only 1if the
corresponding arrival times of jobs on A, make up an interval without overlaps and gaps. For
short, we call this characterization the one-to-one property of tight sequences.

Lemma 5. Consider any instance of the problem F2|l;, pij = 1| Cnax. A schedule o with job
sequence oy on My and oy on M, is a tight sequence if and only if

J{o7' 0+ 4} ={+1,....]+n).
k=]

Proof. First, we prove the ‘only if” part. Without loss of generality, we may assume that on M,

the jobs arrive in the order o,. As o 1s a tight schedule, we have, according to the second part of
Observation 4, that

o ')+l =T+07'(k) fork=1,...,n (3)

Since {crz“’(l), o c:r{l(n)} = {1, ..., n}, the set of the right-hand side values of (3) 1s equal to the
set {{ + 1,...,/+ n}, from which we get the desired result.

Conversely, if the set of arrival timesis equalto {{+ 1, ...,/ + n}, then the sequence 0| gives rise

to a schedule with makespan [/ + n + 1. Moreover, adding up the elements in the left and right set
yields that

n

> (o7 k) + k) = Z(Z‘ + k).

k=1

from which we derive that > ;_, lx = nl, which implies that > ;_, [x is a multiple of ». Hence
applying the first part of Observation 4 shows that o, 1s a tight sequence.

As the instance 7 needs a tight schedule for a ‘yes’, we can use Lemma 5 to obtain the following
corollary.

Corollary 6. The answer to the decision variant of F2|1l;, p;; = 1| Cpax is ‘yves’ for the instance
1L if and only if

U{cr (k)—l—lk}--- {dmb + 2,4mb + 3, ..., n +4mb + 1}.

MINIMIZING MAKESPAN IN A TWO-MACHINE FLOW SHOP 339

6. THE SEPARATION STRUCTURE OF A TIGHT SEQUENCE FOR Z

There are many NP-hardness proofs in scheduling theory that are based on a reduction from 3-
PARTITION. The common structure of a successful (‘yes’) schedule is then that there are m subsets
of the partition jobs, which are separated by the separation jobs. As indicated by Figure 1, 1n
our case the L-jobs are the separation jobs, whereas the P-jobs and Z-jobs play the role of the
partition jobs. We will show in Lemma 9 that such a structure can also be detected in any tight
schedule for Z, but that the partition and separation jobs may get tangled up a bit. But before we

are able to state and prove Lemma 9, we need a preliminary lemma and a definition to facilitate
notation.

Definition 7. Leto = (o(1),0(2),...,0(n)) be any sequence of jobs, and let r, s be two indices
such that 1 <r <5 <n. We use o[r, s] and [r, s] as a short notation for the job subsequence (o (1),
o (r+1),...,0(s)) and the set {r,» 4+ 1 ..., s}, respectively. The set [r, s] is also called a position
interval or interval for short. Furthermore, we denote by L, P, and Zthe sets containing all L-jobs,
P-jobs, and Z-jobs, respectively.

Lemma & (L-)ob propagation). Let o be any tight sequence for I that contains a job subse-
quence olr,s|C L, with2b—1<s—r <u=4(m+ 1)b=n/m. Then the following propagation rules
nold:

(1) Forward propagation of L-jobs: if s +(u+2—2b) <n, theno[r +(u+1), s+u+2—2b)C L.
(1) Backward propagation of L-jobs: ifr —(u+2—2b) > 1, theno[r —(u+2—2b), s—(u+1)]C L.

Proof. The proof is based on Corollary 6. For any job k(k =1, ..., n), let a; denote its arrival
time on M,; we have ay = o ~'(k) + /. Since o[r, s] consists of L-jobs only, which all have delay
value equal to u + 1, the arrival times of the jobs in o[r, s] form the set [r +u + 1,5 + u + 1].

We only prove part (i); the proof of part (ii) follows along the same lines. Suppose that part (i) is
not true, that is, M, processes a P-job or Z-job on some position j such that j € [r + (v + 1), s +
(v + 2 — 2b)]. Since the delay of any P-job or Z-job is less than 2b, we have for the arrival time
ax(j) Of Job o (j) that

I‘+ZJ"|'-lfda(j)“—Ej+la(‘,')55+u+2“2b+2bm1“—"S+u+l.

Because of the assumption s —r < u, we have that s <r +u + 1, which implies that the intervals
[r,s]and [r + (u + 1), s + (v + 2 — 2b)] are disjoint. Hence, we have that there are two jobs that
arrive on M, at time a,(;): Job j and one of the L-jobs in o[r, s] (since a,(;) belongs to the set
[r +u+ 1,5 +u + 1], which is the set of arrival times of the jobs in o[r, s]). This implies, however,
that o does not satisfy the one-to-one property, which contradicts the assumption that o is a tight
sequence.

We give an intuitive explanation of Lemma 8. According to rule (i), any L-job subsequence
propagates forward in any tight sequence o for 7 in the following way: it moves forward at a
distance v = n/m at first, and each time it is decreased by 1 and by 2b — 2 at the left and right part,
respectively. The intuition behind rule (i1) is similar.

W Y1, H HOOGEVEEN AND J K LENSTRA

Ty

Let o be any tight sequence for I . Then o must have the

ot

jr : AT ¥ Fri o ﬁ I }ﬂ

i o= 1.....m) consists of exactly 4mb — m + 1 jobs, which are all

ﬂ.& N ﬁ b
(11) each job subsequence B(i = 1,. .., m~— 1) consists of 4b + m jobs, whereas By, consists of 4b

im

Jobs:

== 1. .. m — Dy all contain exactly m L-jobs, whereas B, contains

no L-jobs.

he positions that must be occupied by L-jobs in any tight sequence
) 6 states that the earliest time that a job arrives on M- 1s 4mb + 2. As the delay value

P.job or Z-job is at most equal to 2h — 1, no P-job or Z-job can occupy a position j in o
vith j < 4mb + 2 — 2b. Hence, the job subsequence o[l, 4m + 2 — 2b] must consist of L-jobs only.
If we apply the forward propagation rule of L-jobs from Lemma 8 to o{l, 4m + 2 — 2b], then we

find that the job subsequences ofr,. r/1(i = 1....,m) consist of L-jobs only, where we define

ro=l+—-I0u+1) and ris=dmb+2-2b+((- 1INu+2-2b), fori=1,...,m.

4

Now we look at the back of the schedule. If a P-job or Z-job 1s completed last on A4, then
it will arrive on M, at time n + 2b — | = mu + 2b — | at the latest. Hence, the arrival times
mu +2b, ..., mu+4mb + | must be covered by L-jobs, which must be processed on M, from time
(m— Du+2b—1,....(m— Du -+ 4mb. This implies that the job subsequence o[(m — 1)u + 26 —
L. (m — Du + 4mb] 1s built solely of L-jobs. If we apply the backward propagation rule of L-jobs
stated in Lemma 8, then we see that the job subsequences o [s;, s;] consist of L-jobs only, where we
define

s;=m—Du+2b—(m—ilu+2-2b) and
ssi=m-1Nwu+dmb—-m—-iu+1), tori=1,...,m.

[t1s easily verihed that foreach i (i = 1, ..., m) we have that r; <5/ <r/ <s;. This implies that the
intervals ofr,, s;] (i = 1. ..., m)are pure L-job intervals. We define o; = olr;, s;].fori = 1,..., m.
As s; —r; = 4mb — m, we have proven part (1).

We further define 8, = ols; + LLripy = 1JGU = 1,....m—=1)and B,, = o[s,, + 1, n]. Because of
the definttions of r; and s, (/ = 1.....m), the cardinality constraints of part (i1) are satisfied.
What 1s left to prove 1s that each job subsequence B, (i = 1, ..., m) has the right composition.
Again, we look at the set of arrival times at M; we denote thisset by 4 = [4mb + 2, mu+4mb+ 1].
As the job subsequences o, (i = 1,...,m) consist of L-jobs, we know that the subsets [r; + u +
s +u+ 1100 = 1,...,m) of 4are occupied by the L-jobs from the subsequences «;. We will

areful examination of the remaining subsets.

We first consider the subset [4mb + 2, r) + u] of 4. Asr) = 1 and each L-job has delay value
u + 1, these 45 arrival times must be occupied by P-jobs and Z-jobs, which must belong to 8.
The other m jobs in 8; must be L-jobs, because these remaining jobs must arrive at M> after time
sy + u + 1 (the set of arrival times [ry +u + 1, 5y + u + 1] is taken by the L-jobs from «;). Next, we
look at the subset [sy + u + 2.r> + u]. Each L-job that arrives in this interval must be executed in

MINIMIZING MAKESPAN IN A TWO-MACHINE FLOW SHOP 341

the int;rval ‘[sl + 1, ro — 1], which is exactly B8,. As there are exactly m L-jobs in B, exactly m of
thé arrival times in [s; +u + 2, r5 + u] are occupied by L-jobs and the remaining 45 are filled with
P-jobs and Z-jobs. Hence, 4b of the jobs in B, are P-jobs and Z-jobs, and by the same argument

as before, we know that the remaining m jobs in B, are L-jobs. We can repeat this proof for jo
subsequences B3, ..., Bu.

Definition 10. Let o be any tight sequence for Z. The job subsequences «; and B;(i = 1, ..., m)
are called separation subsequences and grouping subsequences, respectively.

7. JOB CHAINS IN A TIGHT SEQUENCE

We need one more concept before we are able to show that the existence of a schedule with

makespan no more than y for instance 7 implies that the answer to 3-PARTITION 1s ‘yes’. It 1s called
the concept of job chains in a tight sequence.

Definition 11. Let o = (o(1), ..., o(n)) be any tight sequence for Z. A job subsequence 7w =
(m(1),...,m(q))1s called a job chain 1f 1t satisfies the following four conditions:

(1) there are no Z-jobs in x;

(1) the position of each job (i + 1) on M, is equal to the arrival time of job 7 (i) on M>, that
1S,

o '@+ 1) =07 (@) + Iy tori=1,...,q9—1;

(i11) the initial position b(;r) of n, which is defined as the position of the first job 1n =, 1s no
more than 4mb + 1 , that 1s,

b(r) = o~ (1)) < 4mb + 1;

(iv) the terminal arrival time e(7r) of w on M, which is defined as the arrival time of the last
job in 7r on M, 1s at least equal to mu + 1, that 1s,

e(r) = o ' ((q)) + gy = mu + 1.

Given ajob chain r, the jobs 7 (1) and 7 (¢) are called the initial and terminal job of 7. Moreover,
(i + 1) is called the chain successor of job 7 (i), and job 7 (7) is called the chain predecessor of
jobrw(i+1),fori=1,...,9 — L.

Lemma 12 (Finding the chain successor). Let o be any tight sequence for ZL; let job j be any L-job
or P-job with arrival time no more than n. Let job k be the job that is completed on My exactly at the
arrival time of job j on Ms. Then job k is an L-job or a P-job.

Proof. Suppose to the contrary that job k is a Z-job. Then [/, = 0, which implies that job &
arrives on M at the time at which it is completed on M, which time is equal to the arrival time
of job j on M,. But then there are two different jobs (Jobs j and & are of different type and
hence different) that arrive at the same time, which contradicts the one-to-one property of tight
sequences.

342 W. YU, H. HOOGEVEEN AND J. K. LENSTRA

Lemma 13 (Finding the chain predecessor). Let o be any tight sequence for I; let j be any L-job
or P-job that occupies a position o ~'(j) > 4mb + 2. Let k be the job that arrives on M at time
o ~'(j). Then job k is an L-job or a P-job.

Proof. The proof is similar to the proof of Lemma 12.

Lemma 14. Let o be any tight sequence for 1 .Each L-job and each P-job is contained in a unique
job chain.

Proof. Given any L-job or P-job, we construct the corresponding chain by applying the steps
of finding the chain predecessor and finding the chain successor in Lemmas 12 and 13. It is
readlly proven that the resulting job subsequence satisfies all properties stated in Definition 11; its
uniqueness follows immediately from the one-to-one property of tight sequences.

Corollary 15. Let o be any tight sequence for I. The following observations hold true:

(1) Foranyk=1,...,4mb + 1, there exists a unique job chain m; with initial position b(rty) = k
Consequently, there are exactly 4mb + 1 job chains.
(1) Foranyt =mu+1,..., mu+4mb-+ 1, there exists a unique job chain r with terminal arrival

time e(r) = t.

Proof. Part (i) follows immediately from Lemma 14, as Corrollary 6 implies that the job sub-
sequence o[1, 4mb + 1] cannot contain Z-jobs. Corrollary 6 further implies that the arrival times
mu—+1,..., mu+4mb + 1 cannot be due to Z-jobs, which in combination with Lemma 14 shows

part (11).

Definition 16. The unique job chain my, with initial position b(rr;) = k, is called the kth job
chain. A job chain is called an L-job chain, if it consists of L-jobs only; it is called a mixed job chain
if 1t contains both L-jobs and P-jobs.

Lemma I7(L-JobChains). Leto beany tight sequence for I . Then foreachk = 1, . .., 4mb — m+
L job chain 1y, with initial position b(r;) = k, is an L-job chain.

Proof. Lemma 9 states that o[l, 4mb — m + 1] = o, which consists of L-jobs only. This implies
that the initial job of each job chain m(k =1, ...,4mb — m+ 1) is an L-job. Using Lemma 12 we
find that the second job in 7y is a job from s, and hence 1t 1s an L-job as well. Continuing in thlS
fashion we find that each job chain my(k = 1, ..., 4mb — m + 1) consists of L-jobs only.

Corollary 18. Let o be any tight sequence for I. Then the job chains miy(k = 1, ..., 4mb — m + 1)
possess the following properties:

(1) eachhn' (k)1 consists of m jObS which are all L-jobs;
(11) ka Ty = UT 1 &
i) g™ ™" N e(mi)} = [mu +m + 1, mu + 4mb + 1].

MINIMIZING MAKESPAN IN A TWO-MACHINE FLOW SHOP 343

Lemma 19 (Mixed Job Chains). Let o be any tight sequence for I. Then for each k = 4mb —
m+2,...,4mb + 1 job chain rty., with initial position b(rty) = k, is a mixed chain with the following
properties:

(1) the terminal arrival time of 7t (k = 4mb —m+2, ..., 4mb + 1) is equal to e(my) = mu + k —
(4mb — m + 1);

(11) job chain ik = 4mb — m + 2, ..., 4mb + 1) consists of (m — 1) L-jobs and three P-jobs,
where the sum of the delay values of the P-jobs is equal to 4b.

Proof. Consider any jobchainm; = (7x(1), ..., mx(q)) withk € [dmb—m+2, 4mb+1]. It tollows
immediately from the Corollaries 15 and 18 that the only terminal arrival times that are left for mx
are the times mu + 1, ..., mu + m (recall that by definition of a job chain e(rx) > mu + 1). Now
consider the number of L-jobs in 7rx. Recall that Lemma 17 implies that alljobsine; (i =1, ..., m)
are contained in the L-job chains. As b(mx) = k € [dmb — m + 2,4mb + 1], we have that job
(1) € By. Moreover, since e(mrx) > mu + 1 and «,, is forbidden territory for ng, job i (q) € Bn.
This implies that 7r; has to ‘jump’ over the job subsequences «», ..., «,,, which requires an L-job
per jump. Hence, ; contains at least (m1 — 1) L-jobs; as e(mrx) — b(mrr) < mu, there must be exactly
(ﬂ’l — 1) L-jObS n 7.

This implies that the terminal arrival time of mrx 1s equal to

e(mp)=k+(m—1)u+1)+ Z X;j. (4)

jem.NP

Moreover, we know that e(;ry) € [mu + 1, mu + m]. Since we have assumed in our choice of the
instance of 3-PARTITION that all x;’s are divisible by m, we know that e(nx) = k — 1 (mod m).
Hence, through this relation we can determine the terminal arrival time e(mry) from among the m
candidates in [mu + 1, mu + m], and we find that e(;ry) = mu + k — (4mb — m+ 1).

If we substitute this result in (4), then we find that

Z xj=mu+k—@mb—-—m+1)—(k+(m—1)u+1)) =4b.

jemNP

It follows immediately from the assumptions made in the definition of 3-PARTITION that 7 must
contain exactly three P-jobs.

Corollary 20. If there exists a feasible schedule for the instance 1 of the problem F2|!l;, p;; =
] | Cax With makespan no more than y, then the answer to the 3-PARTITION instance Iis

4 ?

yes’.

Theorem 21. The problem F2 |1, p;j = 1| Gnax is strongly NP-hard.

Proof- The combination of Lemma 1 and Corollary 20 shows that the answer to 3-PARTITION 18
‘yves’ if and only if for instance Z there exists a schedule with makespan no more than y. All that s
left to show is that the decision variant of the problem F2|/;, p;; = 1| Cnax belongs to NP, whic
1S a tr 1via 11 ty

344 W. YU, H. HOOGEVEEN AND J. K. LENSTRA

3. EXACT DELAYS AND NUMERICAL 3-DIMENSIONAL MATCHING

Theorem 21 can be applied to show strong NP-hardness of a number of other problems. The first
problem has exact delays instead of minimum delays; in case of exact delays, the second operation
of job j must start exactly /; time units after the completion time of the first operation of job
j. The computational complexity of this problem follows immediately from Theorem 21, and we
therefore state the following corollary without proof.

Corollary 22. The two-machine flow shop problem of scheduling unit processing time jobs with
exact delays is strongly NP-hard.

The next problem is a severely restricted variant of NUMERICAL 3-DIMENSIONAL MATCHING; we
will show that it is NP-complete in the strong sense, too. The general problem is defined as follows
(see Garey and Johnson, 1979):

NUMERICAL 3-DIMENSIONAL MATCHING. Given three multisets of integers
U= 1{uy,...,u,}, V={v,...,v,}, and W={w,,...,w,}

and an integer e such that

n
D (wj+v;+w;)=ne
j=1

do there exist two permutations A and i of {1, ..., n} such that
' Ui+ +wyy=e, torj=1,...,n?
We consider the restricted version of this problem in which two of the three integer sets are index
sets {1, ..., n}; we denote this problem as RN3DM. This problem is stated as follows:
RN3DM. Given a multiset U = {u,, ..., u,} of integers and an integer ¢ such that Z‘_’}:l u; +

n(n + 1) = ne, do there exist two permutations A and u such that

ui+A(j)y+u(j)=e, for j=1,...,n?
Theorem 23. The problem1 RN3DM is strongly N P-complete.

Proof. In the previous sections, we have shown that given any instance of 3-PARTITION it is
possible to construct an instance of the decision variant of F?2 | [i, pij = 1] Cqax that is answered
atfirmatively i1f and only if the answer to the instance of 3-PARTITION is ‘Yes’. Let Z be the instance
of F2|1;, pi; = 1| Chax and y be the threshold. We will now show how to construct an instance of
RN3DM that 1s answered affirmatively if and only if Z admits a feasible schedule with makespan
no more than y. This reduction from 3-Partition to RN3DM proves Theorem 23: RN3DM is a
member of the class NP, as it is a special case of NUMERICAL 3-DIMENSIONAL MATCHING.

Given the instance 7 and threshold y defined in Section 2, define the following instance of
RN3DM. Choose V' ={1,...,n}and W= {1, ..., n}, where n = 4m(m—+ 1)b, which is the number

of jobs in Z. Choose u; equal to the delay value /;, for j = {1, ..., n}, and choose e = y = n +
4mb + 2.

MINIMIZING MAKESPAN IN A TWO-MACH

First, suppose that there 1s a schedule o for 7 with makespan no more than v; let o be

sequence on M, corresponding to o. Corollary 6 states that

={dmb+2,n+4mb

where o*{“’ (/) denotes the position of job j in 0. Hence, by choost
we find that the answer to the constructed instance of RN3DM is-

Conversely, suppose that the answer to the instance of RN3DM
that oy = A~! is a tight sequence.

-, and p appropriately.

|-

el &

7z
&
-

>s”. Then 1t 1s readily shown

{ DELAYS

The first problem in this section that we will show to be :

ngly NP-

minimizing the makespan on a single machine where each job
intermediate delays between the execution of these operations; it was studied by ke
(1991). This problem is strongly related to the two-machine flow shop problem with delays. Since we
work with minimum delays, there exists an optimal schedule in which all first operations precede
all of the second operations. If the delay values are large enough, that is, if all first operations
have been completed at the time that the second operations can become available for processing,
then the two problems are equivalent. Since the outcome of the decision variant of the problem
F2|1;, pij = 1| Cnax does not change if we increase all delay values and y with the same positive
constant, we obtain the following result, which we state without prootf.

Theorem 24. The problem of minimizing the makespan on a single machine with two unit time
operations per job with arbitrary intermediate delays is strongly N P-hard.

Next, we prove that the strong NP-hardness of F2|/;, pi; = 1| Ghax €an be usea
NP-hardness of the two-machine op
is denoted by O2|/;, p;j = 1 | Gnax- The open shop environment differs from the flow shop en-
vironment in just one pomt the order 1n whmh the operations thm a job are to be executed is
no longer fixed but is to be decided upon by the scheduler and may differ per job; the ouatmm
of the same job still cannot overlap in their execution. Our NP-hardness result improves upon a
result by Dell’Amico and Vaessens (1996), who show that the problem O2|/;, py; = P2; | Ciax 18
strongly NP-hard.

Before we state our reduction, we need a preliminary result, which defines a relation be
the kind of instance of the open shop problem O2 |/, pi; = 1| Cnax Ehai we are going to mmtmm
and the corresponding instance of the flow shop problem F2[/;, p;; = 1| Ciax.

to show strong
>n shop problem with delays and unit processing ﬁmes., which

Lemma 25. Consider an instance J of O2\1;, pi; = 1| Cnax with the following properties:

(1) the number of jobs n is even;
(ii) the average delay [= (n/2 — 1), or equivalently, Z':ml = (n/2— 1)n; .
(iil) there exists a schedule wt for the instance J of O2 11, pij = 1| Cuax with Guax() = n.

346 W. YU, H. HOOGEVEEN AND J. K. LENSTRA

Let K be the same instance as [J, but then for the flow shop problem F?2 | i, pij = 1| Chax. Then
there exists a schedule for KC with makespan equal to 3n/2.

Proof. Given a schedule 7 for 7 with makespan », partition the jobset N = {1, 2, ..., n} into
subsets N; and N, as follows:

Ny = {j| Oy; precedes O, 1n 7 };
NQ_' — {_} | Og_j precedes 01_1- n 7‘[}.

Define n; = | V| and ny = | M|; we have that n; +n, = n. We start by showing that n; = n, = n/2.
Let K, denote the instance of the flow shop problem that we create by removing all jobs in M
from the instance K. If we remove all jobs in M, from x, then we obtain a feasible schedule for

K with makespan at most equal to n. Hence, the lower bound of Lemma 1 for X; can be at most
equal to n, that 1s,

Z [i/my+1+n <n, or equivalently, nin > Z [i+ny + n%.
JE€N JEN,

Similarly, we derive that

Z [i/na+14+ny<n, or equivalently, non > Z [j + n>y+ nf_;‘.
JEN j€ N>

Adding up these relations and notmg that &y U M, = N, we find that
n® = nin+ nan > ZIJ- +ny +ny+ny+ny =n*/2 4+ n? +ns,
j=1

where the last equality sign comes from Property (ii). Hence, we have that n?3 + n5 < n?/2, which
together with ny 4+ n, = n implies that n; = ny, = n/2.

Through a simple interchange argument, we can show that there exists an optimal schedule
in which all jobs in N;(N,) precede the jobs in N>(N;) on Mj(M>). As = has makespan n and
ny = ny = n, © must have the form depicted in Figure 2. In this figure, the subsequences of the
operations executed by M, are denoted by o) and o2, depending on whether they belong to N, or
N>; similarly, the subsequences of the Ms-operations of the jobs in N, and N> are denoted by 1,
and 1, respectively.

Given this schedule 7, we can easily determine a feasible schedule n’ for the flow shop problem
with makespan no more than 3n/2, as indicated in Figure 3.

We establish strong NP-hardness of O2|/;, p;; = 1 | Cpax by a reduction that is strongly related
to the reduction used to prove strong NP-hardness of F2|/; j» Pij = 1| Chax- The reduction is again

Figure 2. Schedule

MINIMIZING MAKESPAN IN A TWO-MACHINE FLOW SHOP 347

0 n/2 n 3n/2 I —

Figure 3. Schedule x'

from 3-PARTITION, but we need an even number of triples. We take care of this by adding, if m 1s

oczld, the triple of integers 26 — 2, b+ 1, b + 1) to X. It is readily proven that the addition of this
triple does not change the outcome of 3-PARTITION. If necessary, we multiply all x;-values and &
by m.

Given an instance of 3-PARTITION with an even number of triples, we construct the instance Z”

of the problem O2|/;, p;; = 1| Gnax by copying the instance 7 that we defined in Section 2, but
with one difference: all delay values are increased by

A=n/2—{@Amb+2)=2mm+ 1)b— (4mb + 2).

The threshold is equal to the number of jobs n. We are asked to decide whether there exists a
feasible schedule for the instance Z' of O2|/;, p;; = 1| Cnax With makespan no more than ».

Lemma 26. If the answer to the 3-PARTITION instance is ‘yes’, then there exists a schedule for the
instance I’ of the problem O2|1;, pij = 1| Crnax With Cpax =< n.

Proof. Suppose that { X, ..., X;,} is a partition of X that leads to ‘yes’ to 3-PARTITION. From
X1, ..., Xyn2 we construct the blocks By, ..., By, 1n the same way as described in the proof of
Lemma 1 and depicted in Figure 1, albeit that the execution of the operations on M 1s shifted A
units to the right, because of the increased delays. Note that in such a block the first operation on
M, starts n/2 time units after the start time of the first operation on M;. From X241, ..., Xm We
construct the blocks By,/2+1, - .., By In the same way, but with the roles of M; and M5 reversed,
that is, the operations are first processed by A, and then by M.

The blocks can be patched together to form a schedule as shown in Figure 2: the blocks
B, ..., B, form the sequences oy and 7, whereas the blocks B, /241, - .-, By constitute the
sequences 7o and os.

Lemma 27. If the instance T' admits a schedule for the problem O2] i, pij = 1| Crax with
makespan no more than n, then the answer to the 3-PARTITION instance is " yes'.

Proof. We prove this result by using the flow shop problem as an intermediate. We copy the
instance Z defined in Section 2 and increase all delay values by A; note that this is exactly instance
7'. Then we ask ourselves the question: does there exist a schedule for the instance Z' of the problem
F2] lj, Pij = 1 | Chax with Chax < 3}’1/2‘7

We have assumed that for the instance Z’ of the open shop problem there exists a schedule =
with Crax(77) < n. As in T’ the total processing time of the jobs on M, 1s equal to n, we must have
that Caux(7t) = n. A simple check shows that all properties of Lemma 25 are fulfilled, and hence
applying Lemma 25 implies that for the instance Z of the flow shop problem there exists a schedule

348 W. YU, H. HOOGEVEEN AND J. K. LENSTRA

n’ for it with makespan no more than 3n/2. This answers the question that we asked ourselves
above.

Recall that the instances Z and Z’ are identical except for the delay values, which all are A bigger
in 7' than in Z. If we decrease all delay values by A, then the schedule ¢ that we obtain from =’
by starting all jobs on M, A time units earlier i1s a feasible schedule for the instance Z for the flow
shop problem with Chux(o) < 3n/2 — A = n+4mb + 2, which value we recognize as the threshold
defined in Section 2. Hence, Corollary 20 implies that the answer to 3-PARTITION 1s ‘yes’.

Theorem 28. The problem O2|1;, p;j = 1| Gyax is strongly NP-hard

ACKNOWLEDGEMENTS

This research was conducted when the first author visited the Technische Universiteit Eindhoven.

The visit was made possible by a grant from EIDMA, the Euler Institute of Discrete Mathematics
and 1ts Applications.

REFERENCES

Coster, M. J., Private communication, 1993.

Dell’Amico, M., “Shop problems with two machines and time lags,” Operations Research, 44, 777-787 (1996).

Dell’Amico, M. and R. J. M. Vaessens, “Flow and open shop scheduling on two machines with transportation times and
machine-independent processing times is NP-hard,” Materiali di discussione 141, Dipartimento di Economia Politica,
Universita di Modena, 1996.

Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San
Francisco, 1979.

Graham, R. L., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic
sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287-326 (1979).

Hoogeveen, J. A., J. K. Lenstra, and S. L. van de Velde, “Sequencing and scheduling,” in M. Dell’Amico, F. Maffioli, and
S. Martello (eds.), Annotated Bibliographies in Combinatorial Optimization. Wiley, Chichester, 1997, Ch. 12.

Johnson, S. M., “Optimal two- and three-stage production schedules with setup times included,” Naval Research Logistics
Quarterly, 1, 61-68 (1954).

Johnson, S. M., “Discussion: Sequencing »n jobs on two machines with arbitrary time-lags.” Management Science. S,
299-303 (1958).

Kern, W. and W. M. Nawijn, “Scheduling multi-operation jobs with time lags on a single machine,” in U. Faigle and C.
Hoede (eds.), Proceedings 2nd Twente Workshop on Graphs and Combinatorial Optimization, Enschede, 1991

Lenstra, J. K. Private communication, 1991.

Mitten, L. G., “Sequencing n jobs on two machines with arbitrary time-lags,” Management Science, 5, 293--298 (1958).

Orman, A. J. and C. N. Potts, “On the complexity of coupled-task scheduling,” Discrete Applied Mathematics, 72, 141-154
(1997).

Yu, W., The Two-Machine Flow Shop Problem with Delays and the One-Machine Total Turdiness Problem. PhD Thesis.
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, 1996

JOSH-5394368

