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Abstract. In Support Vector Machines (SVMs), the solution of the classification problem is characterized by
a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM
classifiers (LS-SVMs), a least squares cost function is proposed so as to obtain a linear set of equations in the
dual space. While the SVM classifier has a large margin interpretation, the LS-SVM formulation is related in
this paper to a ridge regression approach for classification with binary targets and to Fisher’s linear discriminant
analysis in the feature space. Multiclass categorization problems are represented by a set of binary classifiers
using different output coding schemes. While regularization is used to control the effective number of parameters
of the LS-SVM classifier, the sparseness property of SVMs is lost due to the choice of the 2-norm. Sparse-
ness can be imposed in a second stage by gradually pruning the support value spectrum and optimizing the
hyperparameters during the sparse approximation procedure. In this paper, twenty public domain benchmark
datasets are used to evaluate the test set performance of LS-SVM classifiers with linear, polynomial and ra-
dial basis function (RBF) kernels. Both the SVM and LS-SVM classifier with RBF kernel in combination with
standard cross-validation procedures for hyperparameter selection achieve comparable test set performances.
These SVM and LS-SVM performances are consistently very good when compared to a variety of methods de-
scribed in the literature including decision tree based algorithms, statistical algorithms and instance based learning
methods. We show on ten UCI datasets that the LS-SVM sparse approximation procedure can be successfully
applied.
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1. Introduction

Recently, Support Vector Machines (SVMs) have been introduced by Vapnik (Boser, Guyon,
& Vapnik, 1992; Vapnik, 1995) for solving classification and nonlinear function estimation



6 T. VAN GESTEL ET AL.

problems (Cristianini & Shawe-Taylor, 2000; Schölkopf et al., 1997; Schölkopf, Burges,
& Smola, 1998; Smola, Schölkopf, & Müller, 1998; Smola, 1999; Suykens & Vandewalle,
1998; Vapnik, 1995, 1998a, 1998b). Within this new approach the training problem is
reformulated and represented in such a way so as to obtain a (convex) quadratic programming
(QP) problem. The solution to this QP problem is global and unique. In SVMs, it is possible
to choose several types of kernel functions including linear, polynomial, RBFs, MLPs with
one hidden layer and splines, as long as the Mercer condition is satisfied. Furthermore,
bounds on the generalization error are available from statistical learning theory (Cristianini
& Shawe-Taylor, 2000; Smola, 1999; Vapnik, 1998a, 1998b), which are expressed in terms
of the VC (Vapnik-Chervonenkis) dimension. An upper bound on this VC dimension can
be computed by solving another QP problem. Despite the nice properties of SVMs, there
are still a number of drawbacks concerning the selection of hyperparameters and the fact
that the size of the matrix involved in the QP problem is directly proportional to the number
of training points.

A modified version of SVM classifiers, Least Squares SVMs (LS-SVMs) classifiers,
was proposed in Suykens and Vandewalle (1999b). A two-norm was taken with equal-
ity instead of inequality constraints so as to obtain a linear set of equations instead of a
QP problem in the dual space. In this paper, it is shown that these modifications of the
problem formulation implicitly correspond to a ridge regression formulation with binary
targets ±1. In this sense, the LS-SVM formulation is related to regularization networks
(Evgeniou, Pontil, & Poggio, 2001; Smola, Schölkopf, & Müller, 1998), Gaussian Pro-
cesses regression (Williams, 1998) and to the ridge regression type of SVMs for nonlinear
function estimation (Saunders, Gammerman, & Vovk, 1998; Smola, 1999), but with the
inclusion of a bias term which has implications towards algorithms. The primal-dual for-
mulations of the SVM framework and the equality constraints of the LS-SVM formulation
allow to make extensions towards recurrent neural networks (Suykens & Vandewalle, 2000)
and nonlinear optimal control (Suykens, Vandewalle, & De Moor, 2001). In this paper, the
additional insight of the linear decision line in the feature space is used to relate the im-
plicit LS-SVM regression approach to a regularized form of Fisher’s discriminant analysis
(Bishop, 1995; Duda & Hart, 1973; Fisher, 1936) in the feature space (Baudat & Anouar,
2000; Mika et al., 1999). By applying the Mercer condition, this so-called Kernel Fisher
Discriminant is obtained as the solution to a generalized eigenvalue problem (Baudat &
Anouar, 2000; Mika et al., 1999).

The QP-problem of the corresponding SVM formulation is typically solved by Inte-
rior Point (IP) methods (Cristianini & Shawe-Taylor, 2000; Smola, 1999), Sequential
Minimal Optimization (SMO) (Platt, 1998) and iteratively reweighted least squares ap-
proaches (IRWLS) (Navia-Vázquez et al., 2001), while LS-SVMs (Suykens & Vandewalle,
1999b; Suykens et al., 2002; Van Gestel et al., 2001, 2002; Viaene et al., 2001) result into
a set of linear equations. Efficient iterative methods for solving large scale linear systems
are available in numerical linear algebra (Golub & Van Loan, 1989). In Suykens et al.
(1999) a conjugate gradient based iterative method has been developed for solving the re-
lated Karush-Kuhn-Tucker system. In this paper, the algorithm is further refined in order
to combine it with hyperparameter selection. A drawback of LS-SVMs is that sparseness
is lost due the choice of a 2-norm. However, this can be circumvented in a second stage
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by a pruning procedure which is based upon removing training points guided by the sorted
support value spectrum and does not involve the computation of inverse Hessian matrices
as in classical neural network pruning methods (Suykens et al., 2002). This is important
in view of an equivalence between sparse approximation and SVMs as shown in Girosi
(1998).

A straightforward extension of LS-SVMs to multiclass problems has been proposed in
Suykens and Vandewalle (1999c), where additional outputs are taken in order to encode
multiclasses as is often done in classical neural networks methodology (Bishop, 1995).
This approach is different from standard multiclass SVM approaches. In Suykens and
Vandewalle (1999c) the multi two-spiral benchmark problem, which is known to be hard
for classical neural networks, was solved with an LS-SVM with a minimal number of bits
in the class coding and yielded an excellent generalization performance. This approach is
further extended here to different types of output codings for the classes, like one-versus-all,
error correcting and one-versus-one codes.

In this paper, we report the performance of LS-SVMs on twenty public domain bench-
mark datasets (Blake & Merz, 1998). Ten binary and ten multiclass classification problems
were considered. On each dataset linear, polynomial and RBF (Radial Basis Function)
kernels were trained and tested. The performances of the simple minimum output cod-
ing and advanced one-versus-one coding are also compared on the multiclass problems.
The LS-SVM hyperparameters were determined from a 10-fold cross-validation proce-
dure by grid search in the hyperparameter space. The LS-SVM generalization ability was
estimated on independent test sets in all of the cases and results of additional random-
izations on all datasets are reported. In the experimental setup two third of the data was
used to construct the classifier and one third was reserved for out-of-sample testing. Af-
ter optimization of the hyperparameters, a very good test set performance is achieved
by LS-SVMs on all twenty datasets. At this point comparisons on the same randomized
datasets have been made with reference classifiers including the SVM classifier, decision
tree based algorithms, statistical algorithms and instance based learning methods (Aha &
Kibler, 1991; Breiman et al., 1984; Duda & Hart, 1973; Holte, 1993; John & Langley,
1995; Lim, Loh, & Shih, 2000; Ripley, 1996; Witten & Frank, 2000). In most cases SVMs
and LS-SVMs with RBF kernel perform at least as good as SVM and LS-SVMs with
linear kernel which means that often additional insight can be obtained whether the opti-
mal decision boundary is strongly nonlinear or not. Furthermore, we successfully confirm
the LS-SVM sparse approximation procedure that has been proposed in Suykens et al.
(2002) on 10 UCI benchmark datasets with optimal hyperparameter determination during
pruning.

This paper is organized as follows. In Section 2, we review the basic LS-SVM formulation
for binary classification and relate the LS-SVM formulation to Kernel Fisher Discriminant
Analysis. The multiclass categorization problem is reformulated as a set of binary classifica-
tion problems in Section 3. The sparse approximation procedure is discussed in Section 4. A
conjugate gradient algorithm for large scale applications is discussed in Section 5. Section 6
elaborates on the selection of the hyperparameters with 10-fold cross-validation. Section 7
presents the empirical findings of LS-SVM classifiers achieved on 20 UCI benchmark
datasets in comparison with other methods.
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2. LS-SVMs for binary classification

Given a training set {(xi , yi )}N
i=1 with input data xi ∈ IRn and corresponding binary class la-

bels yi ∈ {−1, +1}, the SVM classifier, according to Vapnik’s original formulation
(Boser, Guyon, & Vapnik, 1992; Cristianini & Shawe-Taylor, 2000; Schölkopf et al.,
1997; Schölkopf, Burges, & Smola, 1998; Smola, Schölkopf, & Müller, 1998; Vapnik,
1995, 1998a, 1998b), satisfies the following conditions:

{
wT ϕ(xi ) + b ≥ +1, if yi = +1

wT ϕ(xi ) + b ≤ −1, if yi = −1
(1)

which is equivalent to

yi [w
T ϕ(xi ) + b] ≥ 1, i = 1, . . . , N . (2)

The nonlinear function ϕ(·): R
n → R

nh maps the input space to a high (and possibly infinite)
dimensional feature space. In primal weight space the classifier then takes the form

y(x) = sign[wT ϕ(x) + b], (3)

but, on the other hand, is never evaluated in this form. One defines the optimization problem:

min
w,b,ξ

J (w, ξ ) = 1

2
wT w + C

N∑
i=1

ξi (4)

subject to

{
yi [wT ϕ(xi ) + b] ≥ 1 − ξi , i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N .
(5)

The variables ξi are slack variables that are needed in order to allow misclassifications in
the set of inequalities (e.g., due to overlapping distributions). The positive real constant
C should be considered as a tuning parameter in the algorithm. For nonlinear SVMs, the
QP-problem and the classifier are never solved and evaluated in this form. Instead a dual
space formulation and representation is obtained by applying the Mercer condition (see
Cristianini & Shawe-Taylor, 2000; Schölkopf et al., 1997; Schölkopf, Burges, & Smola,
1998; Smola, 1999; Vapnik, 1995, 1998a, 1998b) for details.

Vapnik’s SVM classifier formulation was modified in Suykens and Vandewalle (1999b)
into the following LS-SVM formulation:

min
w,b,e

J (w, e) = 1

2
wT w + γ

1

2

N∑
i=1

e2
i (6)
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subject to the equality constraints

yi [wT ϕ(xi ) + b] = 1 − ei , i = 1, . . . , N . (7)

This formulation consists of equality instead of inequality constraints and takes into account
a squared error with regularization term similar to ridge regression.

The solution is obtained after constructing the Lagrangian:

L(w, b, e; α) = J (w, b, e) −
N∑

i=1

αi {yi [w
T ϕ(xi ) + b] − 1 + ei }, (8)

where αi ∈ IR are the Lagrange multipliers that can be positive or negative in the LS-
SVM formulation. From the conditions for optimality, one obtains the Karush-Kuhn-Tucker
(KKT) system:




∂L
∂w

= 0 → w =
N∑

i=1

αi yiϕ(xi )

∂L
∂b

= 0 →
N∑

i=1

αi yi = 0

∂L
∂ei

= 0 → αi = γ ei , i = 1, . . . , N

∂L
∂αi

= 0 → yi [wT ϕ(xi ) + b] − 1 + ei = 0, i = 1, . . . , N .

(9)

Note that sparseness is lost which is clear from the condition αi = γ ei . As in standard
SVMs, we never calculate w nor ϕ(xi ). Therefore, we eliminate w and e yielding (Suykens
& Vandewalle, 1999b)

[
0 yT

y � + γ −1 I

] [
b

α

]
=

[
0

1v

]
(10)

with y = [y1, . . . , yN ], 1v = [1, . . . , 1], e = [e1, . . . , eN ], α = [α1, . . . , αN ]. Mercer’s
condition is applied within the � matrix

�i j = yi y j ϕ(xi )
T ϕ(x j ) = yi y j K (xi , x j ). (11)

For the kernel function K (·, ·) one typically has the following choices:

K (x, xi ) = xT
i x, (linear kernel)

K (x, xi ) = (
1 + xT

i x
/

c
)d

, (polynomial kernel of degree d)

K (x, xi ) = exp
{−∥∥x − xi

∥∥2
2

/
σ 2

}
, (RBF kernel)

K (x, xi ) = tanh
(
κ xT

i x + θ
)
, (MLP kernel),
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where d , c, σ , κ and θ are constants. Notice that the Mercer condition holds for all c, σ ∈ IR+

and d ∈ N values in the polynomial and RBF case, but not for all possible choices of κ

and θ in the MLP case. The scale parameters c, σ and κ determine the scaling of the inputs
in the polynomial, RBF and MLP kernel function. This scaling is related to the bandwidth
of the kernel in statistics, where it is shown that the bandwidth is an important parameter
of the generalization behavior of a kernel method (Rao, 1983). The LS-SVM classifier is
then constructed as follows:

y(x) = sign

[
N∑

i=1

αi yi K (x, xi ) + b

]
. (12)

A simple and practical way to construct binary MLP classifiers is to use a regression
formulation (Bishop, 1995; Duda & Hart, 1973), where one uses the targets ±1 to encode the
first and second class, respectively. By the use of equality constraints with targets {−1, +1},
the LS-SVM formulation (6)–(7) implicitly corresponds to a regression formulation with
regularization (Bishop, 1995; Duda & Hart, 1973; Saunders, Gammerman, & Vovk, 1998;
Suykens & Vandewalle, 1999b). Indeed, by multiplying the error ei with yi ∈ {−1, +1},
the error term ED = ∑N

i=1 e2
i becomes

ED = 1

2

N∑
i=1

e2
i = 1

2

N∑
i=1

(yi ei )
2 = 1

2

N∑
i=1

(yi − (wT ϕ(xi ) + b))2. (13)

Neglecting the bias term in the LS-SVM formulation, this regression interpretation relates
the LS-SVM classifier formulation to regularization networks (Evgeniou, Pontil, & Poggio,
2001; Smola, Schölkopf, & Müller, 1998), Gaussian Processes regression (Williams, 1998)
and to the ridge regression type of SVMs for nonlinear function estimation (Saunders,
Gammerman, & Vovk, 1998; Smola, 1999). SVMs and LS-SVMs give the additional insight
of the kernel-induced feature space, while the same expressions are obtained in the dual
space as with regularization networks for function approximation and Gaussian Processes
on the first level of the evidence framework (MacKay, 1995; Van Gestel et al., 2002).

Given this regression interpretation, the bias term in the LS-SVM formulation allows to
explicitly relate the LS-SVM classifier to regularized Fisher’s linear discriminant analysis
in the feature space (ridge regression) (Friedman, 1989). Fisher’s linear discriminant is
defined as the linear function with maximum ratio of between-class scatter to within-class
scatter (Bishop, 1995; Duda & Hart, 1973; Fisher, 1936). By defining N+ and N− as the
number of training data of class +1 and −1, respectively, Fisher’s linear discriminant (in
the feature space) with regularization is obtained by minimizing

min
wF ,bF

1

2
wT

FwF + γF

2

N∑
i=1

(
ti − wT

Fϕ(xi ) + bF

)2
, (14)

with appropriate targets ti = −(N/N−) if yi = −1 and ti = N/N+ if yi = +1 (Fisher,
1936).
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This least squares regression problem (Bishop, 1995; Duda & Hart, 1973) yields the same
linear discriminant wF as is obtained from a generalized eigenvalue problem in Baudat
and Anouar (2000) and Mika et al. (1999), where the bias term is determined by, e.g.,
cross-validation. The regression formulation (14) with Fisher’s targets {−N/N−, +N/N+}
chooses the bias term bF based on the sample mean (Bishop, 1995; Duda & Hart, 1973),
while the targets {−1, +1} correspond to an asymptotically optimal least squares ap-
proximation of Bayes’ discriminant for two Gaussian distributions (Duda & Hart, 1973).
The difference between the LS-SVM classifier and the regularized Fisher discriminant is
that the corresponding regression interpretations use different targets being {−1, +1} and
{−N/N−, +N/N+}, respectively. It can be proven that for γF = γ , the relation between
the two classifier formulations is given 2wF = w and 2bF = b − 1

N

∑N
i=1 yi . Hence, by

solving the linear set of Eq. (10) in the dual space for the LS-SVM classifier, e.g., by a
large scale algorithm (Golub & Van Loan, 1989; Suykens et al., 1999), the regularized
Fisher discriminant is also obtained. Both choices for the targets will be compared in the
experimental setup, where the Fisher discriminant is denoted by LS-SVMF (LS-SVM with
Fisher’s discriminant targets).

3. Multiclass LS-SVMs

Multiclass categorization problems are typically solved by reformulating the multiclass
problem with M classes into a set of L binary classification problems (Allwein, Schapire, &
Singer, 2000; Bishop, 1995; Ripley, 1996; Utschik, 1998). To each class Cm , m = 1, . . . , M ,
a unique codeword cm = [y(1)

m , y(2)
m , . . . , y(L)

m ] = y(1:L)
m ∈ {−1, 0, +1}L is assigned, where

each binary classifier fl(x), l = 1, . . . , L , discriminates between the corresponding output
bit yl . The use of 0 in the codeword is explained below.

There exist different approaches to construct the set of binary classifiers. In classical
neural networks different outputs are defined to encode up to multiple classes. One uses L
outputs in Suykens and Vandewalle (1999c) to encode up to 2L classes. This output coding,
having minimal L , is referred to as minimum output coding (MOC). Other output codes
have been proposed in the literature (Bishop, 1995; Utschik, 1998). In one-versus-all (1vsA)
coding with M = L one makes binary decisions between one class and all other classes
(Bishop, 1995; MacKay, 1995). Error correcting output codes (ECOC) (Dietterich & Bakiri,
1995) are motivated by information theory and introduce redundancy (M < L) in the output
coding to handle misclassifications of the binary classifier. In one-versus-one (1vs1) output
coding (Hastie & Tibshirani, 1998), one uses M(M −1)/2 binary plug-in classifiers, where
each binary classifier discriminates between two opposing classes. The 1vs1 output coding
can also be represented by L-bit codewords cm ∈ {−1, 0, +1}L when one uses 0 for the
classes that are not considered. For example, three classes can be represented using the
codewords c1 = [−1; +1; 0], c2 = [−1; 0; +1] and c3 = [0; −1; +1]. The MOC and 1vs1
coding are illustrated for an artificial three class problem in figure 1. While MOC uses only
2 bits (L = 2) to encode 3 classes, the use of three output bits in the 1vs1 coding typically
results into simpler decision boundaries.

The L classifiers each assign an output bit y(l) = sign[ f (l)(x)] to a new input vector
x . The class label is typically assigned (Allwein, Schapire, & Singer, 2000; Dietterich &
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Figure 1. Importance of output coding on the shape of the binary decision lines illustrated on an artificial three
class problem (◦, � and �) with Gaussian distributions having equal covariance matrices. The shape of the binary
decision lines depends on the representation of the multiclass problem problem as a set of binary classification
problems. Left: minimal output coding (MOC) using 2 bits and assuming equal class distributions, the first binary
classifier discriminates between (�, �) and◦, while the second discriminates between � and (�,◦). Right: one-
versus-one output (1vs1) coding using three bits, the three binary classifiers discriminate between �, �; �,◦ and
�,◦, respectively. The use of MOC results into nonlinear decision lines, while linear decision lines are obtained
with the 1vs1 coding.

Bakiri, 1995; Sejnowski & Rosenberg, 1987) to the corresponding output code with minimal
Hamming distance 
H (y(1:L), cm), with


H
(
y(1:L), cm

) =
L∑

l=1




0 if y(l) = y(l)
m and y(l) �= 0 and y(l)

m �= 0
1

2
if y(l) = 0 or y(l)

m = 0

1 if y(l) �= y(l)
m and y(l) �= 0 and y(l)

m �= 0.

When one considers the 1vs1 output coding scheme as a voting between each pair of classes,
it is easy to see that the codeword with minimal Hamming distance corresponds to the class
with the maximal number of votes.

In this paper, we restrict ourselves to the use of minimum output coding (MOC) (Suykens
& Vandewalle, 1999c) and one versus one (1vs1) coding (Hastie & Tibshirani, 1998). Each
binary classifier f (l)(x), l = 1, . . . , L , is inferred on the training set D(l) = {(xi , y(l)

i ) | i =
1, . . . , N and y(l)

i ∈ {−1, +1}}, consisting of N (l) ≤ N training points, by solving

[
0 y(l)T

y(l) �(l) + γ (l)−1
I

] [
b(l)

α(l)

]
=

[
0
1v

]
(15)

where �i j,l = Kl(xi , x j ). The binary classifier fl(x) is then obtained as f (l)(x) =
sign[

∑N (l)

i=1 y(l)
i α

(l)
i K (l)(x, xi ) + b(l)].

Since the binary classifiers f (l)(x) are trained and designed independently, the superscript
(l) will be omitted in the next Sections in order to simplify the notation.
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4. Sparse approximation using LS-SVMs

As mentioned before, a drawback of LS-SVMs in comparison with standard QP type SVMs
is that sparseness is lost due to the choice of the 2-norm in (6), which is also clear from the
fact that αi = γ ei in (9). For standard SVMs one typically has that many αi values are exactly
equal to zero. In Suykens et al. (2002), it was shown how sparseness can be imposed to LS-
SVMs by a pruning procedure which is based upon the sorted support value spectrum. This is
important considering the equivalence between SVMs and sparse approximation, shown in
Girosi (1998). Indeed, the αi values obtained from the linear system (10) reveal the relative
importance of the training data points with respect to each other. This information is then
employed to remove less important points from the training set, where the omitted data points
correspond to zero αi values. An important difference with pruning methods in classical
neural networks (Bishop, 1995; Hassibi & Stork, 1993; Le Cun, Denker, & Solla, 1990), e.g.,
optimal brain damage and optimal brain surgeon, is that in the LS-SVM pruning procedure
no inverse of a Hessian matrix has to be computed. The LS-SVM pruning procedure can
also be related to Interior Point and IRWLS methods for SVMs (Navia-Vázquez et al.,
2001; Smola, 1999), where a linear system of the same form as (10) is solved in each
iteration step until the conditions for optimality and the resulting sparseness property of
the SVM are obtained. In each step of the IRWLS solution the whole training set is still
taken into account and the sparse SVM solution is obtained after convergence. The LS-SVM
pruning procedure removes a certain percentage of training data points in each iteration step.
The pruning of large positive and small negative αi values results into support vectors that
are located far from and near to the decision boundary. An LS-SVM pruning procedure in
which only the support values near the decision boundary with large αi does yield a poorer
generalization behavior, which can be intuitively understood since the LS-SVMs in the last
steps are trained only on a specific part of the global training set. In this sense, the sparse
LS-SVM is somewhat in between the SVM solution with support vectors near the decision
boundary and the relevance vector machine (Tipping, 2001) with support vectors far from
the decision boundary. When one assumes that the variance of the noise is not constant
or when the dataset may contain outliers, one can also use a weighted least squares cost
function (Suykens et al., 2002; Van Gestel et al., 2001, 2002). In this case sparseness is also
introduced by putting the weights in the cost function to zero for data points with large errors.

Hence, by plotting the spectrum of the sorted |αi | values of the binary LS-SVM, one can
evaluate which data points are most significant for contributing to the LS-SVM classifier
(12). Sparseness is imposed in a second stage by gradually omitting the least important data
from the training set using a pruning procedure (Suykens et al., 2002): in each pruning step
all data points of which the absolute value of the support value is smaller than a threshold are
removed. The height of the threshold is chosen such that in each step, e.g., 5% of the total
number of training points are removed. The LS-SVM is then re-estimated on the reduced
training set and the pruning procedure is repeated until a user-defined performance index
starts decreasing. The pruning procedure consists of the following steps:

1. Train LS-SVM based on N points.
2. For each output, remove a small amount of points (e.g., 5% of the set) with smallest

values in the sorted |αi | spectra.
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3. Re-train the LS-SVM based on the reduced training set (Suykens & Vandewalle, 1999b).
In order to increase a user-defined performance index and to be able to prune more, one
can refine the hyper- and kernel parameters.

4. Go to 2, unless the user-defined performance index degrades significantly. A one-tailed
paired t-test can be used, e.g., in combination with 10-fold cross-validation to report
significant decreases in the average validation performance.

For the multiclass case, this pruning procedure is applied to each binary classifier f (l)(x),
l = 1, . . . , L .

5. Implementation

In this section, an iterative implementation is discussed for solving the linear system (10).
Efficient iterative algorithms, such as Krylov subspace and Conjugate Gradient (CG) meth-
ods, exists in numerical linear algebra (Golub & Van Loan, 1989) to solve a linear sys-
tem Ax = B with positive definite matrix A = AT > 0. Considering the cost function
V (x) = 1

2 xTAx − xTB, the solution of the corresponding linear system is also found as
arg minx V (x). In the Hestenes-Stiefel conjugate gradient algorithm (Golub & Van Loan,
1989), one starts from an initial guess x0 and V (xi ) is decreased in each iteration step i as
follows:

i = 0; x = x0; r = B − Axi ; ρ0 = ‖r‖2
2

while (i < imax) ∧ (
√

ρi > ε1||B||2) ∧ (V (xi−1) − V (xi ) > ε2),
i = i + 1
if i = 1

p = r
else

βi = ρi−1/ρi−2

p = r + βi p
endif
v = Ap
αi = ρi−1/(pT v)
x = x + αi

r = r − αiv

ρi = ‖r‖2
2

V (xi ) = − 1
2 xT

i (r + B)
endwhile

For A ∈ IRN×N and B ∈ IRN , the algorithm requires one matrix-vector multiplication
v = Ap and 10N flops, while only four vectors of length N are stored: x, r, p and v. For
A = I +C ≥ 0 and rank(C) = rc, the algorithm converges in at most rc +1 steps, assuming
infinite machine precision. However, the rate of convergence may be much higher, depending
on the condition number of A. The algorithm stops when one of the three stopping criteria
is satisfied. While the first criterion stops the algorithm after maximal imax iteration steps,
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the second criterion is based on the norm of the residuals. The third criterion is based on the
evolution of the cost function V (x), which is evaluated as V (x) = 1

2 xT (Ax −B)− 1
2 xTB =

− 1
2 xT (r + B). The constants imax, ε1 and ε2 are determined by the user, e.g., according to

the required numerical accuracy. The use of iterative algorithms to solve large scale linear
systems is preferred over the use of direct methods, since direct methods would involve a
computational complexity of O(N 3) and memory requirements of O(N 2) (Golub & Van
Loan, 1989), while the computational complexity of the CG algorithm is at most O(rc N 2)
when A is stored. As the number of iterations i is typically smaller than rc, an additional
reduction in the computational requirements is obtained. When the matrix A is too large for
the memory requirements, one can recompute A in each iteration step, which costs O(N 2)
operations per step but also reduces the memory requirements to O(N ).

In order to apply the CG algorithm to (10), the system matrix A involved in the set of
linear equations should be positive definite. Therefore, according to Suykens et al. (1999)
the system (10) is transformed into

[
s 0

0 H

] [
b

α + H−1Y b

]
=

[−0 + yT H−11v

1v

]
(16)

with s = Y T H−1Y > 0 and H = H T = � + γ −1 IN > 0. The system (10) is now solved
as follows (Suykens et al., 1999):

1. Use the CG algorithm to solve η, ν from

Hη = y (17)

Hν = 1v. (18)

2. Compute s = yT η.
3. Find solution: b = ηT 1v/s and α = ν − ηb .

When no information on the solution x is available, one typically chooses x0 = 0 for
solving (17) and (18). In the next section, the initial guess will be used to speed up the
calculations when solving (10) for different choices of the hyperparameter γ . For a new
γnew value, the initial guess for η and ν can be based on the assumption that the training set
errors ei,new do not significantly differ from the errors ei,old, i = 1, . . . , N corresponding to
the previous choice γold (Smola, 1999). Hence we can write in vector notation enew 
 eold

or αnew 
 γnew/γoldαold, while the bias term is not changed bnew 
 bold. From (17) and
(18) in step 1 and from the solutions for α and b in steps 2 and 3, it can be seen that
these initial guesses for αnew and bnew are obtained by choosing ηnew,0 = γnew/γoldηold

and νnew,0 = γnew/γoldνold. Krylov subspace methods also allow to solve the linear system
simultaneously for different regularization parameters γ .

For large N , the matrix A = H = � + γ −1 IN with dimensions N × N cannot be stored
due to memory limitations, the elementsAi j have to be re-calculated in each iteration. Since
A is symmetric, this requires N (N − 1)/2 kernel function evaluations. Since A is equal in
(17) and (18), the number of kernel function evaluations is reduced by a factor 1/2 when
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simultaneously solving (17) and (18) for η and ν. Also observe that the condition number
increases when γ is increased or when less weight is put onto the regularization term. We
used at most imax = 150 iterations and put the other constants to ε1 = ε2 = 10−9, which is
giving good results on all tried datasets.

6. Hyperparameter selection

Different techniques exist for tuning the hyperparameters related to the regularization con-
stant and the parameter of the kernel function. Among the available tuning methods we find
minimization of the VC-dimension (Bishop, 1995; Smola, 1999; Suykens & Vandewalle,
1999a; Vapnik, 1998, 1998a), the use of cross-validation methods, bootstrapping techniques,
Bayesian inference (Bishop, 1995; Kwok, 2000; MacKay, 1995; Van Gestel et al., 2001,
2002), etc. In this section, the regularization and kernel parameters of each binary classifier
are selected using a simple 10-fold cross-validation procedure.

In the case of an RBF kernel, the hyperparameter γ , the kernel parameter σ and the test
set performance of the binary LS-SVM classifier are estimated using the following steps:

1. Set aside 2/3 of the data for the training/validation set and the remaining 1/3 for testing.
2. Starting from i = 0, perform 10-fold cross-validation on the training/validation data for

each (σ, γ ) combination from the initial candidate tuning sets �0 = {0.5, 5, 10, 15, 25,

50, 100, 250, 500} · √
n and �0 = {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000}.

3. Choose optimal (σ, γ ) from the tuning sets �i and �i by looking at the best cross-
validation performance for each (σ, γ ) combination.

4. If i = imax, go to step 5; else i := i + 1, construct a locally refined grid �i × �i around
the optimal hyperparameters (σ, γ ) and go to step 3.

5. Construct the LS-SVM classifier using the total training/validation set for the optimal
choice of the tuned hyperparameters (σ, γ ).

6. Assess the test set accuracy by means of the independent test set.

In this benchmarking study, imax was typically chosen to imax = 3 using 3 additional
refine searches. This involves a fine-tuned selection of the σ and γ parameters. It should
be remarked that the refining of the grid is not always necessary as the 10-fold (CV10)
cross-validation performance typically has a flat maximum, as can be seen from figure 2.

In combination with the iterative algorithm of Section 5, one solves the linear systems
(17) and (18) for the first grid point starting from initial value x0 = 0. For the next γ value in
the grid, the solutions η and ν were initialized accordingly. When changing σ , we initialized
ν and η with the corresponding solutions related to the previous σ value. Depending on the
distance between the points in the grid, the average reduction of the number of iteration
steps amounts to 10%–50% with respect to starting from x0 = 0 for all (σ, γ ) combinations.

For the polynomial kernel functions the hyperparameters γ and c were tuned by a similar
procedure, while the regularization parameter γ of the linear kernel was selected from a
refined set � based upon the cross-validation performance. For multiclass problems, the
cross-validation procedure is repeated for each binary classifier f (l)(x), l = 1, . . . , L .
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Figure 2. Cross-validation (CV10) classification accuracy on the ion dataset as a function of the regularization
parameter γ and kernel parameter σ for an LS-SVM with RBF kernel. The function of this dataset is rather flat
near the maximum. The CV10 accuracy is more sensitive to the kernel or bandwidth parameter σ selection (Rao,
1983) than to the choice of the regularization parameter for this dataset.

7. Benchmark results

In this section, we report on the application of LS-SVMs on 20 benchmark datasets (Blake &
Merz, 1998), of which a brief description will be included in Section 7.1. The performance
of the LS-SVM classifier is compared with a selection of reference techniques discussed
in Section 7.2. In Sections 7.3 and 7.4 the randomized test set results are discussed. The
sparse approximation procedure is illustrated in Section 7.5.

7.1. Description of the datasets

Most datasets have been obtained from the UCI benchmark repository (Blake & Merz,
1998) at http://kdd.ics.uci.edu/. The US postal service dataset was retrieved from
the Kernel Machines website at http://www.kernel-machines.org/. These datasets
have been referred to numerous times in the literature, which makes them very suitable for
benchmarking purposes. As a preprocessing step, all records containing unknown values
are removed from consideration. The following binary datasets were retrieved from Blake
and Merz (1998): the Statlog Australian credit (acr), the Bupa liver disorders (bld), the
Statlog German credit (gcr), the Statlog heart disease (hea), the Johns Hopkins university
ionosphere (ion), the Pima Indians diabetes (pid), the sonar (snr), the tic-tac-toe endgame
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Table 1. Characteristics of the binary classification UCI datasets.

acr bld gcr hea ion pid snr ttt wbc adu

NCV 460 230 666 180 234 512 138 638 455 33000

Ntest 230 115 334 90 117 256 70 320 228 12222

N 690 345 1000 270 351 768 208 958 683 45222

nnum 6 6 7 7 33 8 60 0 9 6

ncat 8 0 13 6 0 0 0 9 0 8

n 14 6 20 13 33 8 60 9 9 14

NCV stands for the number of data points used in the cross-validation based tuning procedure,
Ntest for the number of observations in the test set and N for the total dataset size. The number of
numerical and categorical attributes is denoted by nnum and ncat respectively, n is the total number
of attributes.

Table 2. Characteristics of the multiclass datasets.

bal cmc ims iri led thy usp veh wav win

NCV 416 982 1540 100 2000 4800 6000 564 2400 118

Ntest 209 491 770 50 1000 2400 3298 282 1200 60

N 625 1473 2310 150 3000 7200 9298 846 3600 178

nnum 4 2 18 4 0 6 256 18 19 13

ncat 0 7 0 0 7 15 0 0 0 0

n 4 9 18 4 7 21 256 18 19 13

M 3 3 7 3 10 3 10 4 3 3

LMOC 2 2 3 2 4 2 4 2 2 2

L1vs1 3 3 21 3 45 3 45 6 2 3

NCV stands for the number of data points used in the cross-validation based tuning procedure, Ntest

for the number of data in the test set and N for the total amount of data. The number of numerical and
categorical attributes is denoted by nnum and ncat respectively, n is the total number of attributes. The
M row denotes the number of classes for each dataset, encoded by LMOC and L1vs1 bits for MOC and
1vs1 output coding, respectively.

(ttt), the Wisconsin breast cancer (wbc) and the adult (adu) dataset. The main character-
istics of these datasets are summarized in Table 1. The following multiclass datasets were
used: the balance scale (bal), the contraceptive method choice (cmc), the image segmenta-
tion (ims), the iris (iri), the LED display (led), the thyroid disease (thy), the US postal
service (usp), the Statlog vehicle silhouette (veh), the waveform (wav) and the wine recog-
nition (win) dataset. The main characteristics of the multiclass datasets are summarized in
Table 2.

7.2. Description of the reference algorithms

The test set performance of the LS-SVM classifier was compared with the performance
of a selection of reference techniques2: the SVM classifier with linear and RBF kernel;
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the decision tree algorithm C4.5 (Quinlan, 1993), Holte’s one-rule classifier (oneR) (Holte,
1993); statistical algorithms like linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), logistic regression (logit) (Bishop, 1995; Duda & Hart, 1973; Ripley, 1996);
instance based learners (IB) (Aha & Kibler, 1991) and Naive Bayes (John & Langley, 1995).
The oneR, LDA, QDA, logit, NBk and NBn require no parameter tuning. For C4.5, we used
the default confidence level of 25% for pruning, which is the value that is commonly used
in the machine learning literature. We also experimented with other pruning levels on some
of the datasets, but found no significant performance increases. For IB we used both 1
(IB1) and 10 (IB10) nearest neighbours. We used both standard Naive Bayes with the
normal approximation (NBn) (Duda & Hart, 1973) and the kernel approximation (NBk) for
numerical attributes (John & Langley, 1995). The default classifier or majority rule (Maj.
Rule) was included as a baseline in the comparison tables. All comparisons were made on
the same randomizations. For another comparison study among 22 decision tree, 9 statistical
and 2 neural network algorithms, we refer to (Lim, Loh, & Shih, 2000).

The comparison is performed on an out-of-sample test set consisting of 1/3 of the data.
The first 2/3 of the randomized data was reserved for training and/or cross-validation. For
each algorithm, we report the average test set performance and sample standard deviation
on 10 randomizations in each domain (Bay, 1999; De Groot, 1986; Domingos, 1996; Lim,
Loh, & Shih, 2000). The best average test set performance was underlined and denoted in
bold face for each domain. Performances that are not significantly different at the 5% level
from the top performance with respect to a one-tailed paired t-test are tabulated in bold
face. Statistically significant underperformances at the 1% level are emphasized. Perfor-
mances significantly different at the 5% level but not a the 1% level are reported in nor-
mal script. Since the observations on the randomizations are not independent (Dietterich,
1998), we remark that this standard t-test is used only as a (common) heuristic to indi-
cate statistical difference between average accuracies on the ten randomizations. Ranks are
assigned to each algorithm starting from 1 for the best average performance and ending
with 18 and 28 for the algorithm with worst performance, for the binary and multiclass
domains, respectively. Averaging over all domains, the Average Accuracy (AA) and Av-
erage Rank (AR) are reported for each algorithm (Lim, Loh, & Shih, 2000). A Wilcoxon
signed rank test of equality of medians is used on both AA and AR to check whether the
performance of an algorithm is significantly different from the algorithm with the highest
accuracy. A Probability of a Sign Test (PST) is also reported comparing each algorithm
to the algorithm with best accuracy. The results of these significance tests on the average
domain performances are denoted in the same way as the performances on each individual
domain.

7.3. Performance of the binary LS-SVM classifier

In this subsection, we present and discuss the results obtained by applying the empirical
setup, outlined in Section 6, on the 10 UCI binary benchmark datasets described above. All
experiments were carried out on Sun Ultra5 Workstations and on Pentium II and III PCs.
For the kernel types, we used RBF kernels, linear (Lin) and polynomial (Pol) kernels (with
degree d = 2, . . . , 10). Both the performance of LS-SVM targets {−1, +1} and Regularized
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Table 3. Optimized hyperparameter values of the LS-SVMs with RBF, linear and polynomial kernels for the
binary classification datasets.

LS-SVM acr bld gcr hea ion pid snr ttt wbc adu

RBF: σ 22.75 41.25 31.25 5.69 3.30 240.00 33.00 2.93 6.97 10.0

RBF: log10(γ ) 0.09 3.01 2.43 −0.76 0.63 3.04 0.86 2.20 −0.66 1.02

Lin: log10(γ ) −2.29 0.14 −1.82 −1.51 −1.99 −0.21 −2.26 −2.68 −1.53 −0.82

Pol: d 5 3 6 2 2 3 2 4 3 3

Pol: c 5.61 15.30 5.86 1.80 7.18 42.42 3.87 3.00 5.25 5.61

Pol: log10(γ ) −1.66 1.26 −1.20 −2.51 1.38 1.29 −1.27 0.45 −0.91 0.02

Kernel Fisher Discriminant Analysis (LS-SVMF) targets {−N/N−, +N/N+} are reported.
All given n inputs are normalized to zero mean and unit variance (Bishop, 1995).

The regularization parameter γ and the kernel parameters σ and c of the binary LS-SVM
classifier with linear, RBF and polynomial kernel were selected from the 10-fold cross-
validation procedure discussed in Section 6. The optimal values for these parameters are
reported in Table 3. The flat maximum of the CV10 classification accuracy is illustrated in
figure 2 for the ion dataset. This pattern was commonly encountered among all evaluated
datasets. The corresponding training, validation and test set performances are reported in
Tables 5–7, respectively. The best validation and test set performances are underlined and
denoted in bold face. These experimental results indicate that the RBF kernel yields the best
validation and test set performance, while also polynomial kernels yield good performances.
Note that we also conducted the analyses using non-scaled polynomial kernels, i.e., with
c = 1. For this scaling parameter LS-SVMs with polynomial kernels of degrees d = 2
and d = 10 yielded on all domains average test set performances of 84.3% and 65.9%,
respectively. Comparing this performance with the average test set performance of 85.6%
and 85.5% (Table 7) obtained when using scaling, this clearly motivates the use of band-
width or kernel parameters. This is especially important for polynomial kernels with degree
d ≥ 5.

The regularization parameter C and kernel parameter σ of the SVM classifiers with
linear and RBF kernels were selected in a similar way as for the LS-SVM classifier using
the 10-fold cross-validation procedure. The optimal hyperparameters of the SVM classifiers
were reported in Table 4. The corresponding average test set performances are reported in
Table 8.

Table 4. Optimized hyperparameter values of the SVM with RBF and linear kernel for the binary classification
datasets.

SVM acr bld gcr hea ion pid snr ttt wbc adu

RBF: σ 12.43 9.0 55.0 7.15 3.30 15.50 5.09 9.00 19.5 8.00

RBF: log10(C) 2.09 1.64 3.68 −0.51 0.51 0.04 1.70 −0.41 1.86 0.70

Lin: log10(C) −2.43 1.57 1.45 1.32 1.20 −2.08 −1.05 −4.25 −2.12 −2.30
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Table 5. Training set performance of LS-SVMs on 10 binary domains.

LS-SVM acr bld gcr hea ion pid snr ttt wbc adu

NCV 460 230 666 180 234 512 138 638 455 33000

n 14 6 20 13 33 8 60 9 9 14

RBF 0.86 0.75 0.83 0.86 1.00 0.78 0.94 1.00 0.98 0.85

Lin 0.87 0.69 0.75 0.85 0.90 0.78 0.88 0.66 0.96 0.82

Pol d = 2 0.89 0.75 0.82 0.87 0.99 0.79 0.98 0.98 0.98 0.85

Pol d = 3 0.88 0.76 0.91 0.88 0.99 0.78 0.98 1.00 0.98 0.85

Pol d = 4 0.86 0.76 0.93 0.89 0.93 0.78 0.96 1.00 0.98 0.85

Pol d = 5 0.89 0.76 0.94 0.85 0.90 0.78 0.99 1.00 0.97 0.85

Pol d = 6 0.88 0.75 0.91 0.86 0.94 0.79 0.99 1.00 0.98 0.85

Pol d = 7 0.89 0.76 0.94 0.85 0.95 0.80 0.96 1.00 0.98 0.85

Pol d = 8 0.89 0.76 0.91 0.85 0.98 0.81 0.99 1.00 0.98 0.85

Pol d = 9 0.88 0.76 0.93 0.86 0.93 0.78 0.98 1.00 0.98 0.85

Pol d = 10 0.88 0.78 0.95 0.85 0.99 0.78 0.98 1.00 0.98 0.85

Table 6. Validation set performance of LS-SVMs on 10 binary domains, the best performances on each domain
are underlined and denoted in bold face.

LS-SVM acr bld gcr hea ion pid snr ttt wbc adu

NCV 460 230 666 180 234 512 138 638 455 33000

n 14 6 20 13 33 8 60 9 9 14

RBF 0.86 0.72 0.76 0.83 0.96 0.78 0.77 0.99 0.97 0.85

Lin 0.86 0.67 0.74 0.83 0.87 0.78 0.78 0.66 0.96 0.82

Pol d = 2 0.86 0.72 0.76 0.83 0.91 0.78 0.82 0.98 0.97 0.84

Pol d = 3 0.86 0.73 0.76 0.83 0.91 0.78 0.82 0.99 0.97 0.84

Pol d = 4 0.86 0.72 0.77 0.83 0.78 0.78 0.81 1.00 0.97 0.84

Pol d = 5 0.87 0.72 0.76 0.83 0.78 0.78 0.81 1.00 0.97 0.84

Pol d = 6 0.86 0.73 0.77 0.83 0.78 0.78 0.81 1.00 0.97 0.84

Pol d = 7 0.86 0.72 0.77 0.83 0.78 0.78 0.81 1.00 0.97 0.84

Pol d = 8 0.86 0.73 0.76 0.83 0.78 0.78 0.81 1.00 0.97 0.84

Pol d = 9 0.86 0.73 0.77 0.83 0.78 0.78 0.81 0.99 0.97 0.84

Pol d = 10 0.86 0.71 0.77 0.83 0.91 0.78 0.81 1.00 0.97 0.84

The optimal regularization and kernel parameters were then used to assess the test set
performance of the LS-SVM and LS-SVMF classifier on 10 randomizations: for each ran-
domization the first 2/3 of the data were used for training, while the remaining 1/3 was put
aside for testing. In the same way, the test set performances of the reference algorithms
were assessed. The same randomizations were used to tabulate the performances of the
reference algorithms. Both sample mean and sample standard deviation of the performance
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Table 7. Test set performance of LS-SVMs on 10 binary domains, the best performances on each domain are
underlined and denoted in bold face.

LS-SVM acr bld gcr hea ion pid snr ttt wbc adu

Ntest 230 115 334 90 117 256 70 320 228 12222

n 14 6 20 13 33 8 60 9 9 14

RBF 0.90 0.71 0.77 0.87 0.97 0.77 0.76 0.99 0.96 0.84

Lin 0.90 0.72 0.77 0.86 0.88 0.77 0.74 0.67 0.96 0.82

Pol d = 2 0.89 0.71 0.76 0.84 0.93 0.78 0.86 0.99 0.96 0.84

Pol d = 3 0.90 0.71 0.77 0.84 0.93 0.77 0.83 0.99 0.96 0.85

Pol d = 4 0.89 0.70 0.76 0.86 0.91 0.78 0.83 1.00 0.96 0.84

Pol d = 5 0.90 0.72 0.75 0.87 0.88 0.76 0.83 1.00 0.96 0.84

Pol d = 6 0.89 0.71 0.76 0.88 0.91 0.77 0.84 1.00 0.96 0.85

Pol d = 7 0.89 0.70 0.75 0.87 0.91 0.77 0.79 1.00 0.96 0.85

Pol d = 8 0.88 0.70 0.76 0.86 0.91 0.76 0.83 1.00 0.96 0.85

Pol d = 9 0.88 0.70 0.76 0.86 0.90 0.77 0.80 0.99 0.96 0.84

Pol d = 10 0.89 0.71 0.75 0.88 0.94 0.78 0.80 1.00 0.96 0.84

on the different domains are denoted in Table 8 using the bold, normal and emphasized
script to enhance the visual interpretation as explained above. Averaging over all domains,
the mean performance and rank and the probability of different medians with respect to the
best algorithm are tabulated in the last 3 columns of Table 8.

The LS-SVM classifier with Radial Basis Function kernel (RBF LS-SVM) achieves the
best average test set performance on 3 of the 10 benchmark domains, while its accuracy is
not significantly worse than the best algorithm in 3 other domains. LS-SVM classifiers with
polynomial and linear kernel yield the best performance on two and one datasets, respec-
tively. Also RBF SVM, IB1, NBk and C4.5 achieve the best performance on one dataset each.
Comparison of the accuracy achieved by the nonlinear polynomial and RBF kernel with
the accuracy of the linear kernel illustrates that most domains are only weakly nonlinear.
The LS-SVM formulation with binary targets {−1, +1} yields a better performance than
the LS-SVMF regression formulation related to regularized kernel Fisher’s discriminant
analysis with targets {−N/N−, +N/N+}, although not all tests report a significant differ-
ence. Noticing that the LS-SVM with linear kernel and without regularization (γ → ∞)
corresponds to the LDA classifier, we also remark that a comparison of both accuracies
indicates that the use of regularization slightly improves the generalization behaviour.

Considering the Average Accuracy (AA) and Average Ranking (AR) over all domains
(Bay, 1999; De Groot, 1986; Domingos, 1996), the RBF SVM gets the best average accuracy
and the RBF LS-SVM yields the best average rank. There is no significant difference
between the performance of both classifiers. The average performance of Pol LS-SVM
and Pol LS-SVMF is not significantly different with respect to the best algorithms. The
performances of many other advanced SVM algorithms are in line with the above results
(Bradley & Mangasarian, 1998; Mika et al., 1999; Schölkopf, Burges, & Smola, 1998). The
significance tests on the average performances of the other classifiers do not always yield
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the same results. Generally speaking, the performance of Lin LS-SVM, Lin SVM, Logit and
NBk is not significantly different at the 1% level. Also the performances of LS-SVMs with
Fisher’s discriminant targets (LS-SVMF) are not signifantly different at the 1%. Generally
speaking, the results of Table 8 allow to conclude that the SVM and LS-SVM formulations
achieve very good test set performances compared to the other reference algorithms.

7.4. Performance of the multiclass LS-SVM classifier

We report the performance of multiclass LS-SVMs on 10 multiclass categorization prob-
lems. Each multiclass problem is decomposed into a set of binary classification problems
using minimum output coding (MOC) and one-versus-one (1vs1) output coding. The same
kernel types as for the binary domain were considered: RBF kernels, linear (Lin) and poly-
nomial (Pol) kernels with degrees d = 2, . . . , 10. Both the performance of LS-SVM and
LS-SVMF classifiers are reported. The MOC and 1vs1 output coding were also applied to
SVM classifiers with linear and RBF kernels. As for the binary domains, we normalized
the inputs to zero mean and unit variance (Bishop, 1995).

The experimental setup of the previous section is used: each binary classifier of the
multiclass LS-SVM is designed on the first 2/3 of the data using 10-fold cross-validation,
while the remaining 1/3 are put aside for testing. The selected regularization and kernel
parameters3 were then fixed and 10 randomizations were conducted on each domain. The
average test set accuracies of the different LS-SVM and LS-SVMF classifiers, with RBF,
Lin and Pol kernel (d = 2, . . . , 10) and using MOC and 1vs1 output coding, are reported in
Table 9. The test set accuracies of the reference algorithms on the same randomizations are
also reported, where we remark that for the usp dataset the memory requirements for logit
were too high. Instead, we tabulated the performance of LDA instead of logit for this single
case. The same statistical tests as in Section 7.3 were used to compare the performance of
the different classifiers.

The use of QDA yields the best average test set accuracy on two domains, while LS-SVMs
with 1vs1 coding using a RBF and Lin kernel and LS-SVMF with Lin kernel each yield the
best performance on one domain. SVMs with RBF kernel with MOC and 1vs1 coding yield
the best performance on one domain each. Also C4.5, logit and IB1 each achieve one time
the best performance. The use of 1vs1 coding generally results into a better classification
accuracy. Averaging over all 10 multiclass domains, the LS-SVM classifier with RBF kernel
and 1vs1 output coding achieves the best average accuracy (AA) and average ranking, while
its performance is only on three domains significantly worse at 1% than the best algorithm.
This performance is not significantly different from the SVM with RBF kernel and 1vs1
output coding. Summarizing the different significant tests, RBF LS-SVM (MOC), Pol LS-
SVM (MOC), Lin LS-SVM (1vs1), Lin LS-SVMF (1vs1), Pol LS-SVM (1vs1), RBF SVM
(MOC), RBF SVM (1vs1), Lin SVM (1vs1), LDA, QDA, Logit, C4.5, IB1 and IB10 perform
not significantly different at the 5% level. While NBk performed well on the binary domains,
its average accuracy on the multiclass domains is never comparable at the 5% level for all
three tests. The overall results of Table 9 illustrate that the SVM and LS-SVM classifier
with RBF kernel using 1vs1 output coding consistently yield very good test set accuracies
on the multiclass domains.
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7.5. LS-SVM sparse approximation procedure

The sparseness property of SVMs is lost in LS-SVMs by the use of a 2-norm. While the
generalization capacity is still controlled by the regularization term, the use of a smaller
number of support vectors may be interesting to reduce the computational cost of evaluating
the classifier for new inputs x . We illustrate the sparse approximation procedure (Suykens &
Vandewalle, 1999b; 1999c; Suykens et al., 2002) of Section 4 on 10 datasets for LS-SVMs
with RBF kernel.

The amount of pruning was estimated by means of 10-fold cross-validation. In each
pruning step, 5% of the support values of each training set were pruned and the classification
accuracy was assessed on the corresponding validation set. The hyperparameters were re-
estimated on a small local grid when the cross-validation performance decreased. This local
optimization of the hyperparameters is carried out in order to prune more support values at
the expense of an increased computational cost. Then, the next pruning step was performed.
This pruning procedure was stopped when the cross-validation performance decreased
significantly using a paired one-tailed t-test compared with the initial performance (when
no pruning was applied) or with the previous performance. Both 1% and 5% Significance
Levels were used and are denoted by SL1% and SL5%, respectively. Given the number of
Pruning Steps #PSSL5% and #PSSL1% and the optimal hyperparameters for each step from
the cross-validation procedure, the pruning is now performed in the same way on the whole
cross-validation set starting from NCV support values down to NSL5% and NSL1% support
values and the accuracies of the LS-SVM, LS-SVMSL5% and LS-SVMSL1% on the test set
are reported. An example of the evolution of the cross-validation and test set performance
for the wbc dataset as a function of the number of pruning steps is depicted in figure 3. For
multiclass domains, 1vs1 coding was used and the sparse approximation procedure was
applied to each binary classifier.

This pruning procedure was applied on the first 5 binary and first 5 multiclass prob-
lems studied above, using LS-SVMs with RBF kernels and with 1vs1 output coding for
the multiclass problems. The resulting randomized test set accuracies of the LS-SVMSL5%

and LS-SVMSL1% are tabulated in Table 10, corresponding to pruning till SL5% and SL1%
significance levels, respectively. The results of applying no pruning at all (LS-SVM) are
repeated on the first row. A one-tailed paired t-test is used to highlight statistical differ-
ences from the best algorithm on each domain in the same way as in Tables 8 and 9.
In most cases, the SL5% and SL1% stop criterion yield no significant difference in the
number of pruning steps and the resulting number of support values, while the perfor-
mance generally decreases not significantly. Experimentally we observe that the perfor-
mance on a validation set stays constant or increases slightly when pruning. After a cer-
tain time, the performance starts decreasing rather fast as the pruning continues. This ex-
plains the small difference in the number of pruned training examples when using the
5% and 1% stopping criterion. Averaging over all datasets, we find that the sparse ap-
proximation procedure does not yield significantly different results at the 1% level. From
a comparison with Tables 8 and 9, we conclude that this procedure allows a firm re-
duction of the number of training examples, while still a good test set performance is
obtained.
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Figure 3. Illustration of the sparse approximation procedure with RBF LS-SVMs on the wbc dataset: evolution of
the test set accuracy (full line) and cross-validation accuracy (dashed line) as a function of the number of pruning
steps. The sample deviation on the cross-validation accuracy is also shown (dash-dotted line). In each step, 5%
of the support values are pruned until the performance on the validation set starts to decrease significantly at the
5% and 1% level, respectively, marked by the vertical lines after #PSSL5% = 42 and #PSSL1% = 52 pruning steps.
Starting from NCV = 455 training examples, this number is reduced to NSL5% = 77 and NSL1% = 58 training
examples corresponding to pruning percentages of PPTESL5% = 83% and PPTESL1% = 97%, respectively.

8. Conclusions

Support Vector Machines for binary classification is an important new emerging methodol-
ogy in the area of machine learning and neural networks. The kernel based representation of
SVMs allows to formulate the classifier problem as a convex optimization problem, usually
a quadratic programming problem. Moreover the model complexity (e.g., number of hidden
units in the case of RBF kernel) follows as a solution to the QP problem where the number of
hidden units is equal to the number of non-zero support vector vectors. In LS-SVMs a least
squares cost function is used and the solution of the binary LS-SVM follows from solving a
linear Karush-Kuhn-Tucker system instead of a QP problem. Keeping in mind interior point
methods for solving the QP problem, an iterative procedure is needed there, where at each
iteration step a linear system has to be solved which has the same complexity as of one single
LS-SVM. This binary LS-SVM formulation is related to a simple regression approach to
classification using binary targets. In this sense, it is also related to regularization networks
and Gaussian Processes regression. The use of the bias term in the formulation and the
primal-dual formulation also allow to relate the LS-SVM classifier to Fisher’s discriminant
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analysis in the feature space, also known as Kernel Fisher Discriminant Analysis. Multi-
class categorization problems are reformulated as a set of binary classification problems
using, e.g., minimum output coding and one-versus-one output coding. We have shown on
twenty UCI binary and multiclass benchmark datasets that the SVM and LS-SVM formu-
lation in combination with standard cross-validation methods for hyperparameter selection
are performing consistently very well on all tried datasets in comparison with many other
methods. We have also verified that the lack of sparseness of LS-SVMs can be circum-
vented by applying sparse approximation in a second stage by pruning less important data
from the sorted support value spectrum. In all experiments LS-SVMs with RBF kernel
and cross-validation tuning of the two hyperparameters are performing well and at least as
good as LS-SVMs with linear kernel which, in combination with the sparse approximation
procedure, also offers the possibility for knowledge discovery in the datasets.
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Notes

1. The square root
√

n of the number of inputs n is considered in the grid � (Step 2) since ‖x − xi ‖2
2 in the RBF

kernel is proportional to n.
2. The matlab SVM toolbox (Cawley, 2000) with SMO solver (Platt, 1998) was used to train and evaluate the

Vapnik SVM classifier. The C4.5, IB1, IB10, Naive Bayes and oneR algorithms were implemented using the
Weka workbench (Witten & Frank, 2000), while the Discriminant Analysis Toolbox (M. Kiefte) for Matlab
was applied for LDA, QDA and logit.

3. The corresponding optimal values for the hyperparameters are not reported, because of the large number of
binary classifiers for some datasets.
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