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Abstract. In many applications of Inductive Logic Programming (ILP), learning occurs from a knowledge base
that contains a large number of examples. Storing such a knowledge base may consume a lot of memory. Often,
there is a substantial overlap of information between different examples. To reduce memory consumption, we
propose a method to represent a knowledge base more compactly. We achieve this by introducing a meta-theory
able to build new theories out of other (smaller) theories. In this way, the information associated with an example
can be built from the information associated with one or more other examples and redundant storage of shared
information is avoided. We also discuss algorithms to construct the information associated with example theories
and report on a number of experiments evaluating our method in different problem domains.
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1. Introduction

Machine learning in general is concerned with the induction of new knowledge (hypothe-
ses) from a given set of examples, stored in a knowledge base. Knowledge can be stored
and arranged in different ways, and the most obvious way is not always the most space-
efficient one. There may be redundancy because some information is repeated across several
examples (this may happen systematically, e.g., because of functional dependencies, or oc-
casionally), or because certain information can easily be derived from other information.

Having a compactrepresentation (i.e., one with less redundancy) is important for a number
of reasons. The most obvious one is that storing a compact knowledge base requires less
space, both on disk and in main memory. On the other hand, a more compact representation
may render the processing of the data less time-efficient; this is arisk that needs to be avoided.

In this article we look at the problem of compact representations from a machine learning
perspective, and more specifically that of inductive logic programming. The main contri-
butions of this work are the introduction of a formalism that allows for a more compact
representation without a significant computational penalty, and an algorithm that processes
data thus represented in the most efficient way. In certain specific cases, the new formalism
boils down to well-known techniques, but in general it is more widely applicable.

In Section 2 we provide some context and motivation for our work. The framework
that we will introduce consists of two layers. In Section 3 we describe the first layer: the



306 J.STRUYFET AL.

knowledge representation layer. Examples will be defined compactly by meta-theories. In
Sections 4 and 5 we describe the second layer, which consists of the algorithms that support
the efficient querying of examples specified by a meta-theory. In Section 6 we present some
experiments evaluating our method in different problem domains and in Section 7 we state
the conclusions.

2. Context and motivation

In Inductive Logic Programming (ILP), an example is described by a number of relations,
each relation formalizing a relevant property of the example. We here consider ILP sys-
tems that learn from interpretations (De Raedt and DzZeroski, 1994), where an example is
represented by a logic program (or theory) and its meaning is given by the interpretation
that corresponds to the program’s least Herbrand model. The logic program can be a trivial
one, consisting of a set of ground facts, like base tables in a relational database, or can, in
addition, also contain relations defined in terms of other ones, as in deductive databases, or
views in relational databases.

Figure 1 compares different methods for storing examples in a knowledge base. Many ILP
systems represent all examples by one monolithic logic program P (figure 1(a)). Typically,
the size of P is linear in the number of examples. Indeed, each example adds a number of
clauses to P. Some researchers have explored the use of a relational database management
system (RDBMS) to store P (Blockeel and De Raedt, 1996; Morik and Brockhausen,
1997; Ito and Ohwada, 2001) and also deductive database systems (Das, 1992; Arni et al.,
2003) could be used. However, storing P in a database causes a substantial slow-down in
comparison with storing P as a compiled logic program in main memory, as is done by
most ILP systems.

Storing P in main memory also has its disadvantages. When the number of examples
becomes large, the main memory may be too small to store the whole of P. But even before
the memory limits are exceeded, querying a single example can become expensive because
the relevant clauses must be accessed through indexes.

A method that solves the problem posed by large numbers of examples is shown in
figure 1(b). Each example is represented by a small logic program e; (which we call the
theory about the example). Querying a single example is more efficient because the size
of ¢; does not depend on the total number of examples. If the entire knowledge base does
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Figure 1. Different ways to represent a knowledge base in ILP.
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not fit in main memory, then examples can be loaded, queried and removed one by one.
This method is used by systems that implement the learning from interpretations setting
(Blockeel et al., 1999), which is the focus of the work presented here. A system such as
ilProlog (Blockeel et al., 2002) has special features for the efficient loading of examples, a
functionality not available in relational and deductive database systems.

In many applications there exists information that is relevant to all examples (e.g., domain
knowledge). Storing this information in each e; introduces a lot of duplicated information.
Many ILP systems therefore provide the possibility to add a background theory B to the set
of examples (figure 1(c)). Every example is then the least Herbrand model of the program
that is the union of an example specific logic program e¢; and a fixed logic program B. In
this way, the total size of the knowledge base is reduced, as duplicating the background
knowledge in each example is avoided.'

However, the combination of example specific knowledge and background knowledge
is often not completely satisfying. Consider a knowledge base where a large amount of
information is relevant to several (but not all) examples. Repeating this information in
all examples that need it would introduce a lot of duplication. On the other hand, if we
store all information relevant to more than one example in B then we lose the “locality”
of this information. The size of B increases and the process of querying examples slows
down. Also, the background theory could become too big to fit in main memory. A possible
solution is shown in (figure 1(d)) where the background theory is split in different parts. B;
is contained in examples e; and e;, but shared by them, rather than duplicated in each of
them; similarly, e, and e3 share B,. Clearly, for this solution to be feasible, we need a way
to structure the background knowledge into parts, and indicate which parts are relevant to
which examples.

Finally, figure 1(e) sketches a situation where the most concise way to obtain the logic
program describing an example e; is by performing some actions, specified by a set of rules
r;,j on the logic program of another example ¢;. This is similar to the previous situation, but
now the “relevant knowledge” includes not only background knowledge, but also another
example.

In this work, we define a language that supports the structuring of a knowledge base into
chunks of knowledge (“theories”), and the definition of such theories from other theories.
Each example then corresponds to a theory that contains only knowledge relevant to that
example, and different examples may share theories. Thus, the modularity and querying
efficiency of figure 1(b) is combined with the representational efficiency of figure 1(c)—(e).

This may come at the cost of a more expensive example construction. E.g., in figure 1(e),
example e3 can only be constructed by first constructing e; and then applying rules r; » and
r23. Therefore, in addition, we develop an example iterator that, given a set of examples,
iterates over this set in some kind of optimal order. Generally, this optimal order minimizes
the example construction cost. For instance, if examples e; and e, share many theories, say
e; ={a, b, c} and e; = {a, b, d}, then it is better to process e, immediately after e;, when
some of the theories relevant for it are already in main memory and we just have to remove
theory ¢ and add d, rather than let other examples come between them.

In the rest of this section we describe some concrete examples. Several of these will be
treated in more detail later in the text.
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Example 1. Consider a knowledge base that stores molecules, which contain several func-
tional groups. Storing each molecule independently will introduce duplication because most
functional groups will reoccur in different molecules; we would rather have the different
molecules “share” such groups.

Example 2. Many knowledge bases store information in multiple dimensions. For exam-
ple, one dimension can store structural information about drugs, another dimension can store
clinical information about patients, and an example describes a specific patient treated with
a particular drug. Representing examples independently will introduce a lot of duplication
as both the same drug and the same patient can occur in several drug-patient combinations.
Alternatively, storing all drug and patient information in the background knowledge has
the drawback of introducing a large background theory and slowing down access to this
information.

Example 3. Many learning tasks are concerned with the classification of an individual
element that is part of a larger sequence and use the local context of the element. Examples
are protein secondary structure prediction (Muggleton, King, and Sternberg, 1992), part of
speech tagging (Cussens, 1997) and user modeling (Jacobs and Blockeel, 2001). Storing
each example independently introduces duplication because the local context of consecutive
examples overlaps. Again, the overlap is avoided by including all the sequence information
in the background, which however destroys the locality of the information and is therefore
detrimental to computational efficiency.

Example 4. The task in reinforcement learning (DZeroski et al., 2001) is to learn a rela-
tionship between the structural description of a state and the optimal action for that state. A
typical knowledge base contains a number of episodes: sequences of states in which each
state can be reached from the previous one by taking a certain action. Storing each state
independently introduces redundancy. A more efficient alternative is to store only the initial
state together with the sequence of actions. A similar situation is encountered when learning
to play games like chess or Go, where the knowledge base consists of a number of played
games (see Ramon, Francis, and Blockeel, 2000, for an example).

The above examples are quite different in nature, and for each one a different solution
can be devised; but we are interested in finding a general framework that can handle all of
them.

The framework that we introduce consists of two layers: a knowledge representation layer
and an algorithmic layer. In the following section we describe the knowledge representation
layer, which takes care of the structuring of the knowledge base into chunks that we call
theories. Examples are defined in terms of these theories, and can be constructed from them
on demand. In Sections 4 and 5 the algorithmic layer will be described, which contains
algorithms able to iterate over a set of examples, processing each one of them consecutively,
with minimal example construction cost.



COMPACT REPRESENTATION OF KNOWLEDGE BASES 309

3. The knowledge representation layer

In this section, we describe the knowledge representation layer of our framework.

First, the basic concepts of theory and meta-theory are defined and motivated with
examples. Then, in Section 3.2, we present the precise meaning of these concepts by
means of a translation to meta-programs. Some more elaborate examples are given in
Section 3.3. Finally, in Section 3.4, the notion of schema is introduced that allows the
user to concisely represent a set of similar (meta-)theories. All this is summarized again in
Section 3.5.

3.1. Theories and meta-theories

First, we motivate and introduce the notion of theory as a basic unit of knowledge. Next,
we develop meta-theories that allow the user to combine pieces of knowledge into larger
ones.

We use the following standard terminology. A term is either a variable or a constant or
of the form £(t1,...,tn) with f a functor symbol and ti (n > 1) terms. An atom is of
the form p or p(t1,...,tn) with p a predicate symbol and ti (n > 0) terms. A clause is
of the form A :- B1,...,Bn. with A and Bi atoms. A clause is called a fact and written
asA. whenn=0.

A substitution 0 is a finite set of the form {X1/t1, . ..,Xn/tn}, where the Xi are distinct
variables and each ti is a term distinct from Xi. The application of a substitution 6 to an
expression E is written as Ef.

A substitution 6 is called a unifier of two expressions E1 and E2 iff E16 = E26. A unifier
0 of E1 and E2 is called a most general unifier, or mgu for short, iff for each unifier o of E1
and E2 and for each expression E’, there exists a substitution y such that E’c =E’6y.

The purpose of our framework is to allow the user to group knowledge, expressed as
clauses, into units and to provide a means to combine units of knowledge into larger ones.
The basic unit is called theory and consists of a sequence of clauses.

Example 5. A theory representing the molecule H, O can be defined as a sequence of
facts:

begin_theory h2o

atom(hl,h). bond(hl,o01,1).
atom(h2,h). bond(h2,01,1).
atom(ol,0).

end_theory

The facts are grouped in a unit using the begin_theory and end_theory keywords; the
knowledge unit is given the name h2o.

Example 6. The following is a simple background theory bg that uses a pair of clauses to
define some properties of molecules.
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Figure 2. A benzene molecule and a naphthalene molecule.

begin_theory bg

contains_double_bond :- bond(_,_,2).

atom_count(N) :- findall(A,atom(A,_),L), length(L,N).
end_theory

Now, consider the molecules drawn in figure 2. On the left is a benzene molecule. One
could define it by a number of atom/2 and bond/3 facts as we did for the H,O molecule.
However, this way, it cannot be used as a building block in defining the naphthalene molecule
on the right that consists of two benzene rings. To facilitate the latter, the names of the c-
atoms should be parameters that can be instantiated when using the benzene theory as a
building block in a larger theory. This is done in the following example.

Example 7. In this theory, the names of the atoms are parameters (variables) that are
included in the theory name.

begin_theory benzene_ring(C1,C2,C3,C4,C5,C6)

atom(C1, c). bond(C1, C2, aromatic).

atom(C2, c). bond(C2, C3, aromatic).

atom(C3, c). bond(C3, C4, aromatic).

atom(C4, c). bond(C4, C5, aromatic).

atom(C5, c). bond(C5, C6, aromatic).

atom(C6, c). bond(C6, C1, aromatic).
end_theory

It is necessary to make a distinction between theories that are complete examples (hence
are intended to be queried by the ILP system) and other theories that are building blocks in
constructing examples. We do so by using a distinct set of keywords to delineate the former.
We use the pair begin_example and end_example to identify a theory as an example.

The above motivates the following definition of theory:

Definition 1 (Theory). A theory consists of a name and a sequence of clauses. A name is a
term. The (possible) variables in this term are called the parameters of the theory. A theory
is delineated by either the keywords begin_example and end_example or the keywords
begin_theory and end_theory.

In the remainder of this text, when we refer to theories, this normally includes the special
case of examples.



COMPACT REPRESENTATION OF KNOWLEDGE BASES 311

As will be detailed in Section 3.2, a theory defines a clause for one of the meta-predicates
example/2 and theory/2 (depending on whether the example or theory keywords are
used), which take as arguments the name of the theory and the list of clauses representing
the theory. For example, calling theory (benzene _ring(cl,c2,c3,c4,c5,c6),T) will
first unify the formal name benzene ring(C1,C2,C3,C4,C5,C6) with the actual name
benzene ring(cl,c2,c3,c4,c5,c6) and then create an instance T of the benzene _ring
clauses by applying the mgu.

We are now ready to describe how theories can be combined into larger ones. A basic
primitive is the meta-predicate add/1 to extend the current theory with the (instantiated)
clauses of another theory. The meta-predicate is used inside a meta-rule, which is defined
as follows:

Definition 2 (Meta-rule). A meta-rule is of the form:- B. with B an atom of a meta-
predicate.

A meta-rule performs an action on the current theory. It has two hidden arguments: the
current theory as defined by the preceding clauses and meta-rules, and the theory resulting
from applying the operation as defined by the meta-atom B.

Example 8. A small theory about a benzene molecule can be constructed by combining
an instance of the benzene_ring theory of Example 7 with the theory bg of Example 6:

begin_example benzene
:— add(benzene_ring(cl,c2,c3,c4,c5,c6)).
:- add(bg) .

end_example

The first meta-rule adds the instantiated facts describing a benzene ring to the empty theory,
the second meta-rule further extends that theory with the general properties of molecules
as defined by the predicates contains_double_bond/0 and atom_count/1. The resulting
theory is as follows:

atom(cl, c). bond(cl, c2, aromatic).
atom(c2, c). bond(c2, c3, aromatic).

atom(c6, c). bond(c6, cl, aromatic).
contains_double_bond :- bond(_,_,2).
atom_count(N) :- findall(A,atom(A,_),L), length(L,N).

Example 9. The example theory about the naphthalene molecule (figure 2) can be con-
structed as follows:

begin_example naphthalene
:- add(benzene_ring(cl,c2,c7,c8,c9,cl10)).
:- add(benzene_ring(c3,c4,c5,c6,c7,c2)).
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:- add(bg) .
end_example

Note that c2 and c7 occur in both benzene rings of naphthalene. This ensures that the two
rings are properly connected.

More formally, a meta-theory can be defined as follows:

Definition 3 (Meta-theory). A meta-theory is a theory where the sequence of clauses
includes one or more meta-rules.

Similarly as for theories and depending on the chosen keywords, a meta-theory defines
a meta-clause for one of the meta-predicates example/2 and theory/2 where the first
argument is the name and the second argument is the list of clauses. This list of clauses is
the target theory or expanded logic program, which is the result of executing the meta-rules
in the source theory as formulated by the user.

3.2.  Translation to meta-programs

In this section, we explain the precise meaning of a (meta-)theory. More specifically, we
show how the source of a (meta-)theory can be translated into a meta-program (Barklund,
1995; Hill and Gallagher, 1998) that, given the name of a (meta-)theory, returns the expanded
logic program as a list of clauses.

As already mentioned, there are two important meta-predicates: theory/2 and exam-
ple/2. Each theory gives rise to a so-called defining clause for one of these predicates.

Definition 4 (Defining clause). Let name be the name of a theory. The defining clause of
name is the clause theory(name,List) :- Body (example(name,List) :- Body, if
the theory is an example) where Body is such that a call theory (name6 ,L) (example (name
0 ,L))binds L to the list of clauses of the expanded logic program that corresponds to name#.

In the following we focus on the theory/2 predicate; the example/2 predicate is treated
similarly.

The clauses of the expanded logic program, as returned by a call to the predicate the-
ory/2, are represented as clause (Head,Body), with clause/2 the meta-predicate used
for encoding clauses: Head is instantiated to the head of the corresponding clause and Body
is instantiated to the body. In the following we will not distinguish between a clause and its
associated clause/2-fact at the meta-level.

We now describe how a theory with name name is translated into a defining clause for
theory(name, Theory). When a theory contains no meta-rules, the translation is simple.
The theory is initialised as an empty list and each clause is translated in a call to the append/3
predicate to extend the current theory with the one element list holding the clause/2-term
corresponding to a clause of the theory. For the h20 theory, we have?:
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theory(h2o0,Theory) :- TO = [],
append(TO, [clause(atom(hl,h) ,true)],T1),
append(T1, [clause(atom(h2,h) ,true)],T2),
append (T2, [clause(atom(ol,0) ,true)],T3),
append (T3, [clause(bond (hl,01,1) ,true)],T4),
append (T4, [clause(bond(h2,01,1) ,true)],Theory).

In the previous subsection we saw that parameters in a theory are represented as variables
in the name of a theory. This is also the case in the meta-program obtained by translating a
parametric theory. The meta-program for Example 7 is:

theory(benzene_ring(C1,C2,C3,C4,C5,C6) ,Theory) :- TO = [],
append(TO0, [clause(atom(Cl,c) ,true)],T1),
append(T1, [clause(atom(C2,c) ,true)],T2),

append (T10, [clause (bond (C5,C6,aromatic) ,true)],T11),
append(T11, [clause(bond(C6,C1,aromatic) ,true)],Theory).

As can be seen from this translation, parameters in a theory are global to the whole theory.
Since parameters are also represented as variables in the meta-program, constructing an
instance of a parametric theory is simply a matter of unification.

Meta-rules in meta-theories are treated in a similar way as clauses. However, instead of
using the append/3 predicate to extend the current theory, they use the operation defined
by the meta-predicate in the body of the rule to extend it. This is achieved by calling the
meta-predicate with the current and new theory as extra parameters.

For example, the theory of Example 8 is translated into the meta-program

example (benzene,Example) :- TO = [],
add(TO,benzene_ring(cl,c2,c3,c4,c5,c6),T1),
add(T1,bg,Example) .

The add/3 meta-predicate is predefined as

add(Tin,Name,Tout) :-
(theory(Name,Theory) ; example (Name, Theory)),
append(Tin,Theory,Tout) .

Note that an mgu obtained by unification of the actual name na in a meta-call add and
the formal name nf of a theory is not only applied on the theory defined by nf, but also
on the meta-theory containing the meta-call (hence could instantiate that meta-theory if a
variable occurring in na also occurs in other parts of the same meta-theory).
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3.3.  Some more elaborate examples

Tasks as described in Example 4, where a new theory is derived from an existing one by
performing an action on a state, require a set of meta-predicates providing a full range
of meta-programming facilities: the ability to query a theory, to select clauses from a
theory, to delete clauses from a theory, efc. While one could provide a small library with
useful predicates, complex applications will require that the user extends it with application-
specific predicates. As an example, we sketch a Go application where one wants to formalize
different states of a game as the examples to be used by the ILP system. Go is an abstract two-
person complete-information deterministic board game like chess and draughts, popular in
Asia (see Kim and Soo-hyun, 1997, for an introduction).

Example 10. The initial state (possibly already including some opening moves) can be
described by a theory state(s0) that contains all relevant facts about the initial state of
the game.

Assume the next example is the state resulting from playing a black stone on the fourth
column of the third row. The following meta-theory defines it:

begin_example state(sl)

:— add(state(s0)).

:— update_state(stone(black,3,4)).
end_example

The example state(s1) is initialised with the logic program of the preceding state.
Playing the move is much more involved than adding a fact that gives the position of
the new move. One has to calculate and remove the stones that are captured as a result
of the move. The position of the new stone is passed as argument of a new user defined
meta-predicate update_state/1. The example is translated into:

example(state(sl) ,Example) :- TO = [],
add(TO,state(s0),T1),
update_state(T1,stone(black,3,4) ,Example).

where update_state/3 is a simple translation of the user-defined predicate update_
state/1: two arguments are added for the input and output state (which are represented
as lists of clauses). This predicate performs all the necessary calculations, starting with the
preceding state T1 and the position stone (black,3,4) of the new stone.

In some domains, there can be several ways to define a particular meta-theory. For
example, in a game where the moves are reversible, one can also define:

begin_example state(sl)

:- add(state(s2)).

:— undo_move (stone(white,4,15)).
end_example
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Alternative definitions for a theory name result in a number of different defining clauses
for it. It is the user’s responsibility to ensure the logical equivalence of the alternative
definitions. The user must also ensure that there exists a partial order between theories that
leads to a correct expansion of all theories (it must be possible to break circular dependencies
by using an alternative definition).

When the ILP system needs the expanded program of a theory, the system can, based on
which expanded programs are available, choose the alternative that offers the lowest cost.

3.4. Schemas

As a final extension, allowing the user to formulate more concisely a number of very similar
(meta-)theories, we introduce the concept of schema.

Reconsider the game of Go as it was formalised in the previous section. All of the
state(si) examples subsequent to the initial state are defined identically: each definition
consists of a meta-rule for adding the preceding state and a meta-rule for executing a certain
move.

Instead of defining an example state (si) for each state, it would be a lot more concise
to be able to define a schema that creates all these examples at once.

We therefore define a theory moves that contains all the successive moves of the game.
A move in the game adds a stone on a certain position.

begin_theory moves
move(s0,s1,stone(black,3,4)).
move(sl,s2,stone(white,4,15)).

end_theory

Using a meta-predicate demo (T, Q) for evaluating a query Q in the theory T, we can then
define the example states by the following schema:

for_each (S,C,M) in :- demo(moves,move(S,C,M)).
begin_example state(C)

:- add(state(8)).

:— update_state(M).
end_example

This gives rise to examples such as

begin_example state(sl)

:- add(state(s0)).

:— update_state(stone(black,3,4)).
end_example
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Note that the for_each construct generates bindings for three variables and that only
one of these is used to construct the name of the example. The other bindings are used to
instantiate the body of the schematic example.

More formally, a schema consists of

— a for_each construct:
for_each (X1,...,Xk) in :- B1,...,Bl.
with X1, ...,Xk variables and B1, . . . ,B1 (meta-)atoms,
— a (meta-)theory T; the name and the clauses/meta-rules in T may contain the variables
X1,...,Xk.

A schema, defining a set of (meta-)theories, is dealt with in a pre-processing phase.
Each instance of the variables X1, ...,Xk that is an answer of the associated query :-
B1,...,Bl. gives rise to a substitution that is applied to T (instantiating its name as well
as its clauses/meta-rules). Each of these instances is then translated. The translations of the
different instances are very similar, hence (see Section 4.1) it is advantageous to store the
code of each instance as a set of bindings and a pointer to the generic code. Pre-processing
includes the evaluation of the query in the for_each construct. If this query refers to (the
expanded programs of) other theories (using demo/2) then those expanded programs need
to be constructed. So if used unlimited, the pre-processing may have a substantial cost.

‘We conclude this section with another example of the use of a schema. Assume we have
several theories about drugs drug(di) and patients patient (pj) (Example 2), and each
example describes a specific patient treated with a particular drug. Instead of writing down
these examples for each drug-patient combination, a schema allows us to define all these
examples at once:

for_each (D,P) in :- theory(drug(D)), theory(patient(P)).
begin_example case(D,P)

:— add(drug(D)) .

:— add(patient(P)).
end_example

In this way, an example case(di,pj) is defined for each pair of values (di,pj) that
is an answer to the query :- theory(drug(D)), theory(patient(P)). The meta-
predicate theory/1, used here to query theory names, can be defined as theory (Name)
:— theory(Name,_).

3.5.  Summary

We have introduced a knowledge representation formalism where examples are described
by theories. A theory is defined either explicitly, by listing the clauses defining a logical
model for the example, or by means of a meta-theory that explains how to construct the
theory from other theories using meta-rules. Meta-rules make use of meta-predicates such as
the general add (merging theories), or application-specific update_state, undo_move, or
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yet other meta-predicates that can be defined by the user. Finally, schemas provide a means
of formulating concisely a set of similar meta-theories, using the for_each construct and
parameterized theory names.

Looking at our framework from the ILP point of view, its contribution is as follows.
Traditionally a distinction is made between examples and background knowledge. That
distinction imposes a relatively simple structure on the knowledge base, as is shown in
figure 1(c). Our framework allows the user to impose a more sophisticated structure on the
knowledge base, which is then exploited by the learning system, rendering the latter more
efficient.

4. A knowledge base graph

In this section and in Section 5 we discuss the algorithmic layer of our framework. Here
we introduce the notion of a knowledge base graph (KBG). The KBG is a hypergraph
that visualizes the dependencies between theories, more specifically, which theories can be
constructed from which other theories. In Section 5, we will use the KBG to define the order
in which the ILP system will process the examples.

4.1. Building a knowledge base graph

A KBG can be formalised as a directed hypergraph. In Gallo et al. (1993) the latter is defined
as:

Definition 5 (Directed hypergraph). A directed hypergraph H is a pair (N, £) where N
is a set of nodes and £ is a set of hyperedges. Each hyperedge € is a tuple (S, n) from a
source set S = {n, ..., ni} € N(k > 0) to a single target node n € N. Given a hyperedge
€ = (S, n), source(e) is defined as S and target(¢) as n.

The knowledge base graph (KBG) of a knowledge base is a directed hypergraph. The
nodes correspond to the theories stored in the knowledge base. A node is labeled with the
name of the corresponding theory. For each theory definition 7', with 7" the name of the
theory and 7¢ its defining clause (cf. Definition 4), there is a hyperedge € with target(€)
the node labeled 7" and source(e) the nodes of the theories mentioned in the body of T°.
The hyperedge is labeled with 7¢. This label is the recipe that has to be used to construct the
expanded logic program of 7. The recipe is executed by calling the predicate theory/2 (or
example/2). Executing the call in turn calls the recipes for the source nodes of the theory.
If not available, they have to be constructed, hence the KBG is a structure that can be used
to guide the construction of the examples stored in the knowledge base.

Theories without meta-rules do not refer to other theories. The corresponding hyperedges
have empty sources. We call nodes that are the target of at least one such hyperedge explicit
nodes; these can be constructed without accessing other theories. Other nodes are called
implicit nodes. Formally:
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Definition 6 (Explicit and implicit nodes). The set of explicit nodes Ng € N is defined
as{n € N | d e € &, target(e) = n, source(e) = ¥}. The set of implicit nodes N; C N is
defined as N — Ng.

Example 11. Consider again the benzene/naphthalene example. The corresponding KBG
is shown in figure 3. There are two explicit nodes benzene_ring and bg and two implicit
nodes benzene and naphthalene. The expanded logic programs of the explicit nodes
benzene_ring and bg can be constructed by executing the defining clause associated with
their incoming hyperedge. The defining clauses associated with the incoming hyperedges
of the implicit nodes benzene and naphthalene are only executable when the expanded
logic programs of their source nodes benzene_ring and bg are available.

Note that the code labeling a hyperedge encompasses calls to meta-predicates (system
defined ones such as add/1, and user defined ones such as update_state/1), but not
their definitions. The latter is a kind of meta-background-knowledge stored outside the
knowledge base graph and available when constructing theories.

As already alluded to in Section 3.4, a single schema generates different hyperedges
connecting different nodes, with code that differs only in the bindings for the variables
in the for_each construct. It is therefore advantageous to store the meta-code of such

example(naphthalene,Example) :— )
add([],benzene_ring(c1,c2,c7,c8,c9,c10),T1), case(dl,pl)
add(T1,benzene_ring(c3,c4,¢5,c6,c7,c2),T2),

add(T2,bg,Example). P
case(d2,pl)
naphthalene p

benzene

[ example(benzene, Example) :— ’

case(dl,p2)
case(d2,p2)

example(case(D,P),Example) :—
add([], drug(D),T1),
add(T1,patient(P),Example).

add([],benzene_ring(c1,c2,c3,c4,¢5,c6),T1),
add(T1,bg,Example).

add([],state(S),T1),

example(state(C),Example) :—
update_state(T1,M,Example).

\
;
‘ "\, C=s2,8=s1 M=stone(white 4.15)

"=s1,S=s0,M=stone(black,3,4) .~
R ’

s \ .
s N

state(s2) |

NN
AN

\ .

V C=s1,5=s2,M=stone(white,4,15)

\
\

[example(state(C),Example) =

C=50,5=s1,M=stone(black,34)

add([],state(S),T1),
undo_move(T1,M,Example).

Figure 3. Labelled hypergraphs for benzene and naphthalene; drug-patient combinations; and game states.
(Labels of edges defining explicit nodes are not shown.)
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hyperedges as a pair containing the bindings for these variables and a call to the schema
code, so the latter is shared by all instances of the schema defined by the for_each construct.

Example 12. The KBGs of the examples introduced in Section 3 (benzene and naphthalene,
drug-patient combinations, consecutive game states) are shown in figure 3.

4.2.  Some typical KBG structures

1. The setting from figure 1(b) (learning from interpretations without background knowl-
edge) corresponds to a KBG where all nodes are explicit (Ng = N and N; = ). All
edges have empty sources and all examples are explicit theories; there is no sharing.

2. The use of a common background theory as in figure 1(c) can be modeled by an explicit
node with the background theory and an implicit node for each example. The code
for an example consist of the facts about the example and a meta-rule for adding the
background. All implicit nodes have the same source node.

3. When learning from episodes as in figure 1(e), we have one initial state for each episode
i. Initial states s; o are represented as explicit nodes. Consecutive states s; ; (j > 0)
correspond to implicit nodes. The code in the hyperedges describes how each implicit
state is computed from its predecessor state.

4. Sometimes a state can have several successors. For example, to represent moves in a
game (sub)tree such as an alpha-beta search tree or to represent possible actions in
reinforcement learning. In all these settings, the KBG is a set of trees. If different actions
can lead to the same state, then the KBG becomes a directed acyclic graph. If an action
sequence can reach the same state several times then the KBG becomes a directed graph
(with cycles).

5. A set of trees is also obtained when examples share common substructures, as in the
molecules example (Example 1).

5. Traversing the KBG

In order to be practically useful, a compactly represented knowledge base should satisfy two
key properties. The first one is transparency: the interface for interacting with the knowledge
base should be the same as when all examples are represented explicitly. Transparency
implies that existing ILP systems can be adapted easily to use a KBG-based knowledge
base. The second property is computational efficiency: some loss of efficiency when using
the KBG may be unavoidable, but it should remain limited.

An ILP system queries examples to guide its search for the best hypothesis. Its overall
execution time depends on two factors: the time to load an example in memory (if it is not
yet in memory) and the time for querying the example. As discussed before, our method
minimizes the query execution time by creating an environment in which only a small
relevant part of the knowledge base is visible, and ensuring that this relevant part is in main
memory. The price paid for this is the cost of constructing this environment (we will usually
say “constructing the example”), using some defining clause, from the existing theories,
which may or may not have to be loaded from disk. To minimize this cost, it is important
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to avoid as much as possible that the same theories are loaded or constructed several times.
This section discusses methods for achieving this goal.

5.1. ILP algorithm interface

We call the interface component between the ILP algorithm and the KBG the example
iterator. The task of the example iterator is to traverse the KBG and to construct the expanded
logic programs that the ILP algorithm needs to query.

Typically, the ILP algorithm has a set Q of one or more queries that it wants to run on
a set of examples E. It provides this set E to the example iterator, which then constructs
and provides to the ILP algorithm, one by one, all the examples in E. The ILP algorithm
can then process these examples. When Q consists of multiple queries, one has the choice
of iterating over E for each single query, or iterating once over E and running all queries
on each example: this is the queries outer loop versus examples outer loop choice (Mehta,
Agrawal, and Rissanen, 1996; Blockeel etal., 1999). Obviously, the more expensive example
construction is, the more advantageous the examples outer loop version will be.

We assume without loss of generality that the order in which E is traversed is irrelevant to
the ILP algorithm, so that the example iterator is free to choose a computationally optimal
order. If the order is important, the ILP algorithm can present subsets of E, singletons
if necessary, in the order that it wishes to process them. Generally, the larger the sets E
that the ILP algorithm provides, the more efficient the examples can be traversed. So-
called full scan algorithms, which scan the whole database a limited number of times (e.g.,
WARMR (Dehaspe and Toivonen, 1999), TILDE-LDS (Blockeel et al., 1999)), therefore have
an advantage over algorithms that repeatedly query subsets of examples (e.g., PROGOL
(Muggleton, 1995), TILDE (Blockeel and De Raedt, 1998)).

5.2. A planning problem

Given a set E of example names (a subset of the nodes in the KBG) required by an ILP
algorithm, the task of the example iterator is to construct the expanded logic program for
each example node n € E so that the ILP algorithm can query it. The example iterator must
traverse the KBG in some optimal order to accomplish this with a minimal cost.

We say that a node n is active if the expanded logic program of the theory with name # is
present in the main memory, ready for querying by the ILP algorithm (and for computing
the expanded logic programs of other theories). The example iterator can activate a node n
if there exists a hyperedge € with n as target node and for which all nodes in the source set
are active. If so, the expanded logic program of n can be computed by loading the defining
clause that is the label of € and calling theory/2 (or example/2) with first argument 7.

In what follows, activation of a node (i.e., computation of its expanded logic program)
is modeled as expand(e, n). The reverse action, removing the expanded logic program of
theory n from main memory, is modeled as remove(n). While the cost of removing a node
can be ignored, expanding a node n has a certain cost: the time necessary for loading and
executing one of the defining clauses available for n, and possibly compiling the expanded
logic program (which may be beneficial if it will be queried many times).
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Figure 4. A planning problem.

The task of the example iterator is to minimize the total cost of constructing all the
examples, while observing the constraint that the set of active nodes must fit in main memory
at all times. This can be formalised as a planning problem. We describe the behavior of the
example iterator as a sequence ay, dy, . . ., a, of expand and remove actions. Using the set
NA,; to denote the set of active nodes after performing action a; (NA denotes the empty
set of initially active nodes), cost(a;) to denote the cost of action a; and mem(n) to denote
the memory occupied by the expanded logic program of theory 7, the planning problem is
as follows:

Definition 7 (Planning problem). Given a set of examples E that the ILP algorithm needs
to query, find a sequence of actions ag; such that:

1. (Objective) ), cost(a;) is minimal.
2. (Memory constraint) Yi ), a, mem(n) < the maximal memory.
3. (ILP algorithm constraint) Vn € E, 3i such that n € NA,.

Example 13. Consider the KBG shown in figure 4. Suppose that the ILP algorithm needs to
query the examples E = {e;, e,}, that each theory occupies one memory unit and that three
memory units are available. The sequence {expand(ey, ny), expand(e,, n3), expand(es, ey),
remove(ns), expand(es, e;)} is a plan that satisfies both the memory and the ILP algorithm
constraint. Whether or not this plan is optimal depends on the costs associated with the
actions. Indeed, e, can also be constructed from n, and n4 instead of e;.

The above planning problem is in general NP-hard, and so is the related problem of
determining the minimal amount of memory necessary to be able to traverse a KBG. This
is shown in Appendix A . We proceed with proposing a heuristic planning algorithm that is
fast and usually finds a good solution.

5.3. A heuristic example iterator

We need a heuristic algorithm that scales well in the number of nodes of the KBG and
results in a plan with a near to optimal cost in frequently occurring cases. To achieve this,
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we proceed in two steps. First, a so-called spanning forest is computed. Next, the spanning
forest is used to construct a plan that is a solution for the planning problem of Definition 7.

Definition 8 (Spanning forest). A hypergraph is a forest if it is an acyclic hypergraph and
if each node is the target of one hyperedge. With E a subset of the nodes of the KBG, a
spanning forest for E is a forest (N, £) with £ a subset of the edges of the KBG and N a
subset of its nodes such that E C N and that (N, £) is minimal, i.e., no (N’, &) # (N, &)
selected from KBG is a forest with E € N/, N' € N and &’ C &.

In a spanning forest, a node 7 is the target of exactly one hyperedge (S, n). We call S the
set of parents of n, denoted parents(n). If S is empty, we call n a root, otherwise n is a child
of each element of S. As a node can occur in the sources of several hyperedges, it can have
several children; the set of children of a node n is denoted children(n). A node without any
children is called a leaf. Note that the roots of a spanning forest are always explicit nodes
of the KBG.

Consider a KBG (N, £). Computing a spanning forest for a set E C N can be done in
time O(|N|). However, the spanning forest is not necessarily optimal. Given the costs of all
hyperedges, an optimal spanning forest (the sum of the costs of the hyperedges is minimal)
can be computed in time O(|€| log | N |), using an adapted version of Prim-Jarnik’s algorithm
(Goodrich and Tamassia, 2002). This requires that enumerating all edges is feasible.

5.3.1. A generic approach. Given sufficient memory for storing the active nodes, there is a
simple algorithm for computing an optimal plan that activates each node of a spanning forest
exactly once. For each node one keeps a counter in that indicates how many of its parents
have not yet been activated, and a counter out that indicates how many of its children still
need to be activated. Any node with in = 0 can be activated, and any node with out = 0
is not necessary anymore and can be removed. One thus activates nodes in the forest from
roots towards leaves.

The algorithm as described above is non-deterministic in the selection of the next node
to be activated, and removes nodes only when they are not necessary anymore. Different
selection strategies for the node to be expanded will result in different memory requirements.
A depth first strategy is optimal for simple structures (e.g., with sequences, only 2 nodes
will be active at the same time), but with more complex structures, more involved strategies
are required. When memory is limited, it may be necessary to remove nodes for which
out > ( and re-activate them later on. A node removal strategy could take into account the
memory size of candidate nodes, the cost of re-activating them, and the time point at which
they will be needed again.

5.3.2. A depth-first algorithm. Figure 5 presents an example iterator algorithm with a
depth-first node selection strategy. The Traverse_sub_tree procedure, when called for a
given node, activates that node if it has never been activated before (ensuring that each
node in the hypergraph is activated at least once), and then selects one of its children for
activation. A node can only be activated if all its parents are active, so we select that child that
currently has the fewest inactive parents. We have to activate these parents as well, and all
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procedure Traverse_forest((N, £))
for each node n € N:
activated(n) := active(n) := visited(n) := false
protected(n) := 0
for each root node r € N:
Traverse_sub_tree((NV, £),r)

procedure Traverse_sub_tree((N, £),n)
if visited(n) = false then
visited(n) := true
if activated(n) = false then Activate_node((N, £),n)
C := children(n)
while C # §:
select ¢ € C such that
[{m|m € parents(c) and active(m) = false}| is minimal
Traverse_sub_tree((N, £), ¢)
C:=C\{c}
active(n) := false
remove(n)

procedure Activate_node((N, &), n)
Let € = (P,n) be the hyperedge in £ with target n
for each p € P:
if active(p) then protected(p) := protected(p) + 1
for each p € P:
if not active(p) then
Activate_node(p)
protected(p) := protected(p) + 1
while insufficient memory for expand(e, n)
select a node d with protected(d) =0
active(d) := false
remove(d)
expand(e,n)
activated(n) := active(n) := true
for each p € P:
protected(p) := protected(p) — 1

Figure 5. An example iterator algorithm with a fixed node selection strategy that proceeds depth first, starting
from each root node.

their currently inactive ancestors, before the child itself can be activated. The Activate_node
procedure takes care of activating a node and (through recursion) all its inactive ancestors.

Our algorithm makes use of a number of flags and counters. The flag visited indicates that
a node has already been visited by Traverse_sub_tree and need not be processed again (this
flag is necessary because, even though in a spanning forest a node is the target of a single
hyperedge, it can be reached several times through each of its parents). The flag activated
indicates that a node has been activated at least once, the active flag that it is currently active
(i-e., has not been removed since its last activation). Finally, the counter protected counts
for an active node the number of reasons why it cannot be removed. Activate_node adds one
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to the protected counters of all the parents of the node it is activating, ensuring to protect
active parents before activating inactive parents (as the latter process might otherwise cause
active parents to be removed).

When the available memory for expansion of a logic program is insufficient, unprotected
nodes are selected and removed. These nodes may have to be reactivated at some later point.
If there are insufficient unprotected nodes, the memory demand supersedes the available
memory and the algorithm fails (the test is omitted for simplicity of presentation).

5.3.3. Exploiting specific structural properties of graphs. Of special interest are graphs
where it can be guaranteed that each node is activated only once, with memory requirements
linear in the height of the graph; all duplicate work with respect to example construction is
then avoided. For graphs with a tree structure, where each example e; can be constructed
from its predecessor e;_p, this is always possible. More generally, we can consider graphs
where the nodes N can be partitioned into cheap (N¢) and expensive (Ng) nodes; a node
is cheap if the total time to activate it (including the activation of its ancestors) is bounded
by some small constant T¢. If each expensive node has at most one expensive parent, then
it is possible to traverse the graph in such a way that all expensive nodes are activated
only once. To achieve this, it suffices to take care that Traverse_sub_tree is never called for
an expensive node that has an inactive expensive parent. Figure 6 presents an alternative
version of Traverse_forest that guarantees this. This is the version that we use for our
experiments.

5.3.4. Implementation issues. In this section we discuss a number of implementation
choices that have been made in the algorithm that we use for our experiments.

Multiple passes. The Traverse_sub_tree function deactivates a node after all its children
have been processed. However, an ILP system usually performs several passes over the
examples, so a given node may be required again in a subsequent pass. Therefore, our
implementation does not deactivate such nodes and relies on the node removal strategy
called in the Activate_node function to free memory.

procedure Traverse_forest(N¢, Ng, £)

for each node n € No U Ng:
activated(n) := active(n) := visited(n) := false
protected(n) := 0

for each n € Ng with activated(n) = false
while n has parent p and p € Ng: n:=p
Traverse_sub_tree((N¢ U Ng, &), n)

for each n € N¢ with activated(n) = false
while n has parent p: n:=p
Traverse_sub_tree((N¢ U Ng, &), n)

Figure 6. An example iterator algorithm that guarantees that expensive nodes are activated only once and that
requires memory linear in the height of the graph. (The algorithm uses the procedure Traverse_sub_tree((N, £), n)
defined in figure 5.)
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Before each pass, our implementation partitions E in the set of example nodes that are
still active from a preceding pass E, and the inactive nodes E;. It first queries E, and
then uses the iterator algorithm to activate E;.

Node removal. Our implementation uses a least recently used strategy (LRU) to select nodes
for removal. It first partitions the unprotected active nodes into two sets: the nodes on the
subtree that is being iterated of which not all children have been visited S| and the other
nodes . If S, # 0, it selects a node from this set using LRU. If S, = @, it selects the
LRU node from S;.

Sharing. If a theory T adds a number of theories 7;, our implementation also shares code
between the expanded logic program of T and those of the 7}, i.e., the expanded logic
program of T is represented by a set of pointers to the expanded logic programs of the 7;.

Following these pointers during query execution may introduce overhead. If T and
T; are predicate-disjoint, then this overhead disappears: indexing on the predicate sym-
bols will bring execution immediately to the expanded logic program that defines the
predicate.

6. Experimental evaluation
6.1. Aims

Our experimental evaluation aims at gaining more insight in the performance of our frame-
work for compactly representing knowledge bases in practical application domains.

In our experiments, we compare three representations of the knowledge base: a monolithic
logic program (setting 1, figure 1(a)), the learning from interpretations setting (setting 2,
figure 1(c)), and a representation that uses our new framework (setting 3).

We compare for each setting the size of the knowledge base on disk and the main memory
usage and execution time of an ILP system (TILDE, see further).

6.2. Data sets and knowledge base structure

We consider three application domains where there is a significant difference between the
three settings.

Cancer. The human tumor cell line screen database (DTP, 2003) has a two-dimensional
structure: one dimension stores information about 60 human cancer cell lines and the
other dimension the molecular structure of 53933 chemical compounds.

In setting 1, the knowledge base consists of facts that describe the cell lines (with
key C), facts that encode the molecular structure of the compounds (with key M) and a
number of target (M,C,Glsg) facts, with Glsg the target attribute for prediction (Glsg
is the concentration of M that causes 50% growth inhibition for C).

In setting 2 there is one interpretation for each available Glsg value. It includes the facts
describing the relevant cell line and molecule. As each cell line (molecule) is included
in several interpretations, this representation will be redundant.
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The compact version includes an auxiliary theory for each cell line and molecule, and
an example theory for each Glsg value. The example theories are constructed by a schema
and meta-rules are used to add the relevant cell line and molecule theory.

HIV. The AIDS anti-viral screen database (DTP, 2002) stores the molecular structure of
41768 compounds that were measured for their capability to protect human cells from
HIV-1 infection.

In setting 1, the knowledge base consists of a number of facts that encode the molecular
structure of the compounds.

Setting 2 is the same as setting 1, except that the facts describing each compound are
grouped together in an interpretation.

Setting 3 includes an example theory for each compound. Frequently occurring struc-
tures, such as benzene rings, are stored separately as parametric theories and are included
in the molecule definitions via meta-rules.> We have defined a number of these structures
manually (Struyf et al., 2004).

Go. Go is an abstract two-person complete-information deterministic board game, popular
in Asia. The Go data set (Ramon, Francis, and Blockeel, 2000) that we use here contains a
log generated by an alpha-beta search algorithm. Starting from a number of initial states,
the search algorithm explores the game state-tree and evaluates a number of moves for
each state.

In setting 1, the states are described by a number of predicates that include a state key
attribute. The moves are encoded with facts that include the state key and the position
and value of the move.

In setting 2, each move corresponds to an interpretation that contains the move’s
position and value and also the description of the relevant state. As the same state may
be included in several move interpretations, this representation is redundant.

Setting 3 includes one example theory for each move. Using a meta-rule, each move
theory includes the relevant state theory. State theories are defined in terms of their
predecessor state and a certain move. The definition of the meta-program that computes
the states is available in Struyf et al. (2004).

6.3. Implementation

We have implemented our new formalism in the ILP system ACE 1.2.6* (Blockeel et al.,
2002). Settings 1 and 2 were already available in ACE.

For each application, we run the first order decision tree induction system TILDE (Blockeel
and De Raedt, 1998), which is included in ACE, for different sample sizes of the knowledge
base. We measure the execution time and memory usage of TILDE in the examples outer
loop setting (Section 5.1). Struyf et al. (2004) presents the same measurements for the more
expensive queries outer loop setting.

Settings 2 and 3 use a fixed size block of main memory (the cache) for storing examples
(interpretations/expanded logic programs). In each experiment, we set the cache size to
100 MB.

The experiments on the Cancer data were run on an Intel P4, 2 Ghz, 512 MB, the other
experiments on an Intel P4, 1.8 Ghz, 512 MB.
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Table 1. Size comparison (size on disk, in source format. N is the number of examples).

N N ) S3 S1/83 $2/83
Cancer 293176 44 MB 2710 MB 36 MB 1.2x 75%x
HIV 41768 40 MB 30 MB 12 MB 3.5x 2.5%x
Go 150000 207 MB 723 MB 13 MB 16x 55x

6.4. Results

6.4.1. Size of the knowledge base. Table 1 shows the knowledge base size S; for each
setting 7, and the reduction factors S;/S3 and S,/S5.

The Cancer and Go data sets have two dimensions: cell lines and compounds, and states
and moves. Such data sets can be represented compactly in setting 1 and 3. In setting 2,
only a redundant representation is possible, which explains the huge S,/Ss.

In the Go data set, most states are defined implicitly via a meta-theory in setting 3.
Because the meta-theories are small compared to the explicit representation of the states,
we obtain high reduction factors S;/S3 and S,/S3.

For HIV, the reduction S,/ S3 relatively small. Apparently, the parametric structures cover
only a small part of each molecule. S, /S3 is a bit larger because each fact in setting 1 includes
an extra identifier.

6.4.2. Execution time and memory usage. Figures 7-9 show the execution time and
memory usage of TILDE on each application. Each set of bars corresponds to a set of
experiments for a different sample size N.
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The total memory usage for setting 1 is linear in N. Above a given value of N, the logic
program representing the examples does not fit in memory anymore and setting 1 is no
longer feasible (the system starts swapping).® Settings 2 and 3 on the other hand can use an
efficient caching mechanism (because of the modular representation) and scale well with
N.

The execution time increases with N in all settings as more data must be processed. The
difference in execution time between the settings is influenced by: (1) the trade-off between
loading all data from disk and loading and constructing data with meta-programs, (2) the
cache effect of having to load data several times if not all data fits in main memory, and (3)
the extra indexing overhead in setting 1.

For Cancer, setting 3 is the most efficient setting. It is about a factor two faster than
setting 2 because less data must be loaded and because the data must be loaded repeatedly
in setting 2 if the cache is full. It is more efficient than setting 1 because query execution
is faster (less indexing overhead). For HIV, setting 2 is the most efficient setting. Less data
must be loaded in setting 3, but expanding the parametric structures takes more time than
the gain obtained during loading. For Go, setting 3 is significantly faster than setting 2 for
5000 < N < 50000 because of the cache effect. For N = 150000 and N = 2000, setting
2 is a more efficient as constructing examples is more expensive than loading them.

6.4.3. Summary. Our main findings are as follows. Setting 3 consistently yields the most
compact representation of the data set. It is sometimes faster than the other settings, some-
times slower; this depends on how the repeated loading and construction of examples in
setting 3, compares to the loading of larger examples in setting 2 and the more complex
query evaluation in setting 1. For large data sets that do not fit in main memory, setting 1
becomes unusable.

In short, the experiments confirm that setting 3 combines the good scaling properties of
setting 2 with a space efficiency better than that of setting 1, and time efficiency comparable
to that of the other settings. This has yielded a performance improvement in two out of three
data sets. For the HIV data set, setting 3 results in a small storage gain at the expense of
a significant increase in processing time. Hence setting 2 is to be preferred here. Note that
setting 2 can also be modeled with our approach.

7. Conclusions

The knowledge base from which an ILP system learns is usually treated as monolithic (a
single logic program that is loaded into main memory), or structured into descriptions of
examples (containing “local” information, relevant for this single example) and background
knowledge (containing “global” information). The second approach has the advantage that
querying a single example is more efficient, and that the whole knowledge base need not
be loaded all at once in main memory (Blockeel et al., 1999), but this happens at the
expense of duplicating information that is relevant for more than one example. Typical
applications where this may be problematic, are the learning from episodes setting where
consecutive states of a world have to be stored and applications that contain data about
several dimensions.
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In this article we have introduced a framework for reconciling the two goals of hav-
ing information locally available and avoiding duplication of information. The framework
makes it possible to structure the knowledge base in a more refined manner than by just
distinguishing between knowledge relevant for one example, and background knowledge
(relevant for all examples).

Our framework consists of two layers. The first layer is the knowledge representa-
tion layer. Using this layer, the user can define the knowledge base as a set of named
(meta-)theories. The definition of a (meta-)theory can contain meta-rules and parameters.
The meta-rules can be used to define how the examples can be constructed from other
auxiliary theories.

The second layer is an algorithmic layer that supports efficient construction of the ex-
amples. If the meta-rules in a given meta-theory refer to a set of other (meta-)theories, then
these (meta-)theories must be available before the new meta-theory can be constructed. This
type of preconditions is expressed in our framework by the knowledge base graph (KBG).

Most ILP systems can be adapted easily to work with our framework. In order to accom-
plish this we have introduced an interface between the ILP system and the knowledge base:
the example iterator. The example iterator has to construct the examples in an optimal order
(based on the preconditions in the KBG). Finding this order corresponds in general to an
NP-hard planning problem. We propose a heuristic algorithm that scales well in the number
of nodes of the KBG and results in a plan with a near to optimal cost for KBG structures
that occur often in practice.

We have evaluated our method on three example knowledge bases with quite different
properties: the Cancer knowledge base has a two-dimensional structure, the HIV data set
contains labeled molecular structures, and the Go data set contains states, moves and their
evaluations for the board game Go. For each application we compared 3 representations
of the knowledge base: one monolithic program, a theory for each example and a com-
mon background theory and our new framework. The experiments on the Go and Cancer
knowledge bases show that our framework significantly reduces the storage requirements
of the knowledge base. For the HIV application a smaller reduction was obtained. We also
measured the execution time and main memory usage of the ILP algorithm TILDE for each
representation. Because our framework supports on-demand loading of examples, it does
not require much main memory. The obtained execution times vary: in some cases, our
framework is faster, in other cases it is slower. The reason for these differences is that in our
framework examples have to be constructed at runtime and in some cases the construction
cost is high.

The reduction in size for the HIV application was smaller than for the other two appli-
cations. One possible way to improve on this is to try to find better patterns. Finding such
patterns (with a high frequency, a long description and few parameters) is not trivial. Maybe
this could be automated using a frequent pattern discovery (Dehaspe and Toivonen, 1999)
or clustering approach.

Our method is formulated in the learning from interpretations setting, where examples are
represented as logic programs (sets of clauses). Much work in ILP concerns the learning
from entailment setting, where an example is represented as a clause with as head the
instance of the predicate to be learned and as body the example specific facts. In addition,
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there is a background theory shared by all examples. It is feasible to develop techniques
similar to those we described for this setting. The background theory can be split in several
theories and these theories can include meta-rules. The only extra thing that is required is
a notation for linking theories to example clauses.

Expanding theories can be compared to saturation, which is used in some ILP systems.
The representation as (meta-)theories is in principle sufficient to deduce all necessary infor-
mation. However, ILP systems are typically not able to work with this information directly
(and doing so would introduce much overhead). Saturation (Rouveirol, 1994) solves a spe-
cial instance of this problem: some ILP algorithms cannot handle separate background
knowledge. Therefore, they use saturation to expand the examples with the information that
is implicit in the background knowledge. In our approach too, we have to expand examples
in order to let the ILP system use them efficiently. While saturation can be seen as a special
case, our approach is more general: saturation is essentially a process of specializing a logic
program, expanding examples in our framework may involve other operations (deletions,
updates, computations, etc.). Examples also need not be ground in our framework: they can
include implicitly defined predicates. One can also be very specific about the operations that
are performed, so that only what is necessary is computed, which contrasts with saturating
a clause with all background knowledge.

Further research could try to improve the efficiency of constructing examples. Typical
Prolog implementations do not offer primitives for efficiently manipulating compiled logic
programs and repeated compilation introduces a large overhead. In this context, it could
be interesting to look at incremental compilation of programs and at combining compiled
programs at runtime. Another direction of research could look at knowledge bases that are
lazily sampled from an implicit (infinite) example space.

Appendix A. Proof of NP-hardness of the planning problem

The planning problem of Definition 7 is in general NP-hard. This can be seen by considering
a special instance that is equivalent with the Traveling Salesman Problem (TSP). Suppose
that the KBG has one explicit node, a number of implicit nodes and for every node n;
and every implicit node n, there is a hyperedge ({n}, ny). All nodes are examples for the
ILP algorithm. If at most two active nodes fit in memory, the optimal plan corresponds to
finding the shortest path through the KBG where the distances are given by the costs of the
(hyper)edges.

Also, the time needed to determine (or “closely” approximate) the minimal amount of
memory needed to traverse the KBG can not be bound by a polynomial in the number of
nodes, in particular if there are many different alternative definitions for each theory (there
exists a polynomial algorithm in the number of edges, but edges may be defined implicitly
by a schema). This negative property can be seen as follows (figure 10). Consider the KBG
(N, &)andlet N = N;UN,U{o} with N the set of explicit nodes and o the only node needed
by the ILP algorithm. Moreover, let £ = £ UE&, where &) is aset of edges (S, d) withd € N,
andS C Nyand & = {(S, 0)|S C NaAVn € Ny, 3e € & : n € source(e)Atarget(e) € S}.
In other words, o can be constructed from any subset of N, that itself requires activation of
all nodes in N;. Assume that only nodes in N, take a substantial amount of memory when
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Figure 10. A set covering problem.

activated. Then, the task to minimize the amount of needed memory reduces to finding a
minimal (weighted by memory usage) subset of N, that covers N;. This “set covering”
problem is known to be NP-complete (Paschos, 1997).
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Notes

1. We are discussing the problem in the context of learning from interpretations, but essentially the same options
exist in the learning from entailment setting. In the latter, examples are clauses. The head of such a clause
is an example literal of the predicate to be learned, the body contains facts relevant to this one example, and
the background contains knowledge that may be relevant to any examples. The main difference is that in
learning from entailment, the “locally relevant” information can only consist of facts, whereas in learning from
interpretations it may consist of clauses. We return to this issue in Section 7.

2. We prefer clarity of presentation above efficiency; e.g., to avoid the overhead of append, one could use difference
lists. Even better, one could specialise the code to a fact of the form theory(h2o,[clause(. .. ),. .. clause(...)]).
Such optimisations are performed by our implementation.

3. A similar representation is possible for the compounds in the Cancer knowledge base. We choose not to do this
as it would make interpretation of the results more complex.

4. http://www.cs.kuleuven.ac.be/~dtai/ACE/.

5. Setting 1 can be used with large N if the examples are stored in a RDBMS. However, Blockeel et al. (1999)
shows that this introduces much overhead and that it is better to use a modular example representation.

References

Arni, F,, Ong, K. Tsur, S. Wang, H., & Zaniolo, C. (2003). The deductive database system LDL++. Theory and
Practice of Logic Programming, 3:1, 61-94.

Barklund, J. (1995). Metaprogramming in logic. Encyclopedia of Computer Science and Technology, 33, 205-227.

Blockeel, H., & De Raedt, L. (1996). Relational knowledge discovery in databases. In Proceedings of the Sixth
International Workshop on Inductive Logic Programming, Vol. 1314 of Lecture Notes in Artificial Intelligence
(pp. 199-212) Springer-Verlag.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision trees. Artificial Intelligence
101:1-2, 285-297.



COMPACT REPRESENTATION OF KNOWLEDGE BASES 333

Blockeel, H., De Raedt, L., Jacobs, N., & Demoen, B., (1999). Scaling up inductive logic programming by learning
from interpretations. Data Mining and Knowledge Discovery 3:1, 59-93.

Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., & Vandecasteele, H. (2002). Improving the
efficiency of inductive logic programming through the use of query packs. Journal of Artificial Intelligence
Research 16, 135-166.

Cussens, J. (1997). Part-of-speech tagging using Progol. In Proceedings of the Seventh International Workshop
on Inductive Logic Programming (pp. 93—108). Springer-Verlag.

Das, S. K. (1992). Deductive databases and logic programming. Addison-Wesley.

De Raedt, L., & DZeroski, S. (1994). First order jk-clausal theories are PAC-learnable. Artificial Intelligence, 70,
375-392.

Dehaspe, L., & Toivonen, H. (1999). Discovery of frequent Datalog patterns. Data Mining and Knowledge Dis-
covery 3:1, 7-36.

DTP, The Developmental Therapeutics Program. U.S. Departement of Health and Human Services NIH, National
Cancer Institute NCI. http:/dtp.nci.nih.gov.

DzZeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning 43,
7-52.

Gallo, G., Longo, G., Pallottino, S., & Nguyen, S. (1993). Directed hypergraphs and applications. Discrete Applied
Mathematics 42, 177-201.

Goodrich, M. T., & Tamassia, R. (2002). Algorithm design. Wiley.

Hill, P. M., & Gallagher, J. (1998). Meta-programming in logic progamming. Handbook of Logic in Artificial
Intelligence and Logic Programming, 5, 421-498.

Ito, M., & Ohwada, H. (2001). Efficient database access for implementing a scalable ILP engine. In Work-In-
Progress Report of the Eleventh International Conference on Inductive Logic Programming.

Jacobs, N., & Blockeel, H. (2001). From shell logs to shell scripts. In Proceedings of ILP2001—Eleventh Inter-
national Workshop on Inductive Logic Programming, Vol. 2157 of Lecture Notes in Artificial Intelligence (pp.
80-90).

Kim, J., & Soo-hyun, J. (1997). Learn to play Go—A master’s guide to the ultimate game. Good Move Press.

Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable classifier for data mining. In Proceedings of
the Fifth International Conference on Extending Database Technology, Vol. 1057 of Lecture Notes in Computer
Science. Springer-Verlag.

Morik, K., & Brockhausen, P. (1997). A multistrategy approach to relational discovery in databases. Machine
Learning, 27:3, 287-312.

Muggleton, S., (1995). Inverse entailment and Progol. New Generation Computing, Special issue on Inductive
Logic Programming 13:3/4, 245-286.

Muggleton, S., King, R., & Sternberg, M. (1992). Protein secondary structure prediction using logic-based machine
learning. Protein Engineering 7, 647-657.

Paschos, V. (1997). A survey of approximately optimal solutions to some covering and packing problems. ACM
Computing Surveys 29:2, 171-209.

Ramon, J., Francis, T., & Blockeel, H. (2000). Learning a Tsume-Go heuristic with Tilde. In Proceedings of
CG2000, the Second International Conference on Computers and Games, Vol. 2063 of Lecture Notes in Com-
puter Science (pp. 151-169). Springer-Verlag.

Rouveirol, C. (1994). Flattening and saturation: two representation changes for generalization. Machine Learning,
14, 219-232.

Struyf, J., Ramon, J. Verbaeten, S. Bruynooghe, M., & Blockeel, H. (2004). Compact representation of knowledge
bases in inductive logic programming. Technical Report CW 377, Department of Computer Science, Katholieke
Universiteit Leuven.

Received March 20, 2003
Revised January 19, 2004
Accepted June 14, 2004

Final manuscript June 17, 2004



