
Mobile Networks and Applications 9, 627–631, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Hash-Based Paging and Location Update Using Bloom Filters

A paging algorithm that is best suitable for IPv6

PARS MUTAF and CLAUDE CASTELLUCCIA
INRIA Rhône-Alpes, Planète Team, 655 avenue de l’Europe, Montbonnot, 38334 Saint Ismier Cedex, France

Abstract. We develop and analyze a hash-based paging and location update technique that reduces the paging cost in cellular systems. By
applying a Bloom filter, the terminal identifier field of a paging message is coded to page a number of terminals concurrently. A small
number of terminals may wake up and send what we call “false location updates” although they are not being paged. We compare the total
number of paging and false location update messages with the cost of the standard paging procedure. Fortunately, the false location update
probabilities can be made very small, and important bandwidth gains can be expected. The larger the size of the terminal identifier, the less
probable are false location updates. Therefore, hash-based paging especially shows promise for IP paging in mobile IPv6 networks with
128-bit mobile host addresses.

Keywords: bloom filters, concurrent paging, false location update, IP paging, MIPv6

1. Introduction

In cellular systems, terminals must update the network with
their current location in order to receive packets. Idle mo-
bile terminals update the network only when they cross pag-
ing area boundaries, which cover a relatively large number
of cells. Since terminals are idle most of the time, paging re-
duces the bandwidth cost of location updates and battery drain
on mobile terminals. The cost being paid for this service is
the bandwidth cost of broadcasting a paging message in each
cell of a paging area upon call arrival. A paged terminal re-
ports its exact location by sending a location update message
and the communication begins. This procedure is illustrated
in figure 1. Upon call arrival, a terminal id is paged in its
paging area that covers the base stations BS1, BS2, . . . , BSw

by broadcasting a paging message denoted Pmes. The callee
detects its identifier (id) in the paging message and reports its
exact location (loc) using a location update message denoted
LUmes.

Figure 1. Standard paging and location update procedure.

A better paging service demands larger paging areas.
However, large paging areas create a permanently high in-
coming call rate per paging area (hence, high paging load)
since a large amount of terminals are served per paging area.
The paging load may also temporarily increase due to flash
crowds. Coping with high paging load requires reserving an
important portion of the available bandwidth in each cell for
paging messages. Otherwise, paging processes are queued
in the network and important call setup delays are incurred,
which is also undesirable. This problem has received con-
siderable attention and important research has been done for
reducing the bandwidth cost of paging messages.

In this paper, we propose a hash-based paging and loca-
tion update procedure (or, hash-based paging) using Bloom
filters [1]. A Bloom filter is a randomized data structure for
concisely representing a set, in order to support membership
queries. The space efficiency is achieved at the cost of a small
probability of false positive. We note that Bloom filters can be
used to page several terminals in a same paging area concur-
rently, without modifying the original paging message size.
Paging bandwidth consumption and the call setup delays can
be significantly reduced.

The remaining sections of this paper are organized as fol-
lows: section 2 describes hash-based paging, section 3 an-
alyzes the bandwidth gain that can be obtained, section 4
presents a discussion on IP Paging and Mobile IPv6 with large
identifier sizes, and finally section 6 presents some conclu-
sions.

2. Hash-based paging and location update

We propose using Bloom filters [1] for concurrently paging
a set A = {id1, id2, . . . , idn} of n terminals that reside in a
same paging area. The m-bit terminal identifier field ID found

628 MUTAF AND CASTELLUCCIA

(a)

(b)

Figure 2. Hash-based paging and location update using Bloom filters:
(a) concurrent paging and location update; (b) hash-coding (with k = 2).

in a paging message Pmes is coded to represent all members
of the set A. The procedure requires k independent uniform
hash functions, h1(), h2(), . . . , hk() (where, 1 � h() � m).
First, all bits of ID are set to 0, then for each element idi ∈ A,
the bits at positions h1(idi), h2(idi), . . . , hk(idi) in ID are set
to 1 (a particular bit may be set multiple times). The result-
ing vector ID can be used to page all members of A concur-
rently by broadcasting a standard paging message. Upon re-
ceipt of the broadcast paging message, a given terminal idj

can detect if it is being paged by checking the bit positions
h1(idj), h2(idj), . . . , hk(idj) in ID. If any of them is 0, then
idj is certainly not being paged. Otherwise, idj is being
paged and should respond with a location update message,
LUmes. The hash-based paging and location update proce-
dure of n = 3 terminals is illustrated in figure 2.

The space-efficiency of Bloom filters is achieved at the
cost of a small false positive probability. I.e. there is a small
probability that a terminal idj receives a paging message with
set ID bits at positions h1(idj), h2(idj), . . . , hk(idj) although
idj /∈ A. A false positive leads to what we call a false loca-
tion update, since the location update response of idj is use-
less (idj is not paged). The false positive (or, false location
update in our case) probability F and the optimal number of
hash functions kopt that minimizes F are well-known [3]

F = (
1 − e−kn/m

)k (1)

and minimized for

kopt = (ln 2) · m

n
(2)

in which case it becomes

F = (0.6185)m/n. (3)

Since a false location update will result in unnecessary
bandwidth and energy consumption, k should be chosen to
minimize F regarding the number of concurrently paged ter-
minals (by equation (2)). In practice, this can be easily
achieved by fixing the maximum number of hash functions
kmax and transmitting k in paging messages. The number
of hash computations will have no impact on terminal en-
ergy consumption. A terminal idj can store the results of
h1(idj), h2(idj), . . . , hkmax(idj) and use the first k results for
future paging events. On the network side, the computational
load due to hash computations will be self-tuning since the
optimal number of hash functions decreases with increasing
paging load (i.e. n).

According to equation (3), the false location update prob-
ability will still increase with the number of concurrently
paged terminals, however good performance can be expected
if the terminal identifier size is large enough.

3. Bandwidth gain

Using the standard paging procedure, the paging cost in each
cell of a paging area is one paging message per incoming call.
In hash-based paging, the paging cost in each cell is one pag-
ing message and several false location update messages per
n incoming calls. Let d the terminal density, i.e. the num-
ber of terminals per cell, then the paging cost in each cell is
1+d ·F per n incoming calls. The bandwidth gain (simplified
for equal sized paging and location update messages) is:

G = n

1 + d · F
. (4)

Figure 3 shows the bandwidth gain for different identi-
fier sizes and terminal densities. It is assumed that in macro
and micro cellular environments, the terminal densities are
d = 200 and d = 20, respectively [9]. Note that hash-based
paging will be more attractive as cell sizes get smaller, which
is justified by the current trend in support of increasingly im-
portant number of cellular users.

In practice, the number of concurrently paged terminals
should satisfy the constraint F � 0 so that false location
updates introduce a negligible energy consumption overhead.
This roughly corresponds to the interval where dG

dn
� 1 in fig-

ure 3. We are satisfied with F � 0.001, since a given terminal
will not be unnecessarily awakened more than once per 1000
paging events. By equation (3) it is easily shown that, setting

n � 0.06955m (5)

will meet our constraint. Tables 1–3 show the bandwidth gain
that can be obtained under energy constraints and for integer
k values. Important bandwidth can be saved with negligible
energy consumption overhead. Each table shows the band-
width gains for n values that introduce tolerable false loca-
tion update probabilities i.e. F � 0.001. For example, with
m = 32, setting n = 3 leads to F = 0.005947. Hence it is
not recommended in table 1. Note however that in table 3,
we recommend n = 9 setting since the false location update
probability is very close to 0.001.

HASH-BASED PAGING AND LOCATION UPDATE 629

(a)

(b)

Figure 3. Bandwidth gain: (a) macro cells; (b) micro cells.

Table 1
m = 32.

G

n kopt F d = 20 d = 200

2 11 0.000459 1.981821 1.831959

Table 2
m = 64.

G

n kopt F d = 20 d = 200

2 22 0.000000 1.999992 1.999916
3 14 0.000035 2.997879 2.978927
4 11 0.000459 3.963642 3.663917

4. IP paging and MIPv6

The proposed optimization may be applicable to different ac-
cess technologies, therefore we do not loose generality in
this paper. The potential gain of hash-based paging is con-
siderable even when identifier sizes are relatively small, e.g.,
m = 32, or m = 64. For example, table 1 promises a paging
bandwidth gain of G � 2 in each cell. While we promote

Table 3
m = 128.

G

n kopt F d = 20 d = 200

2 44 0.000000 2.000000 2.000000
3 29 0.000000 3.000000 2.999999
4 22 0.000000 3.999983 3.999832
5 17 0.000005 4.999545 4.995451
6 14 0.000035 5.995759 5.957855
7 12 0.000153 6.978653 6.792231
8 11 0.000459 7.927285 7.327835
9 9 0.001078 8.810141 7.404357

hash-based paging for small identifier sizes as well, this op-
timization is most attractive for IP paging in MIPv6 (mobile
IPv6) networks with 128-bit mobile host addresses.

IP paging [5,8,9] is an ongoing research topic which has
been proposed for MIPv4 [6] and MIPv6 [4] networks that
support multiple access technologies and IP-based micro-
mobility protocols [2,7]. MIPv4 and MIPv6 define a care-of-
address that identifies a mobile host in its current subnet and
a global identifier called home address. In IP paging, a pag-
ing message Pmes carries the IP address of the callee (home
or care-of address depending on the paging protocol design)
and processed by the IP modules of dormant hosts. If the
IP address matches, the destination host detects that it is be-
ing paged and responds. Hash-based paging can improve the
IP paging performance. For example, in P-MIP [9], MIPv4
hosts are paged using their 32-bit home addresses. The per-
formance of P-MIP can be increased by a factor of G � 2 at
little implementation cost. However, this optimization is es-
pecially attractive in the case of MIPv6 which defines 128-bit
home and care-of addresses. Table 3 indicates that a band-
width gain of G = 8.81 or G = 7.40 can be achieved at
negligible false location update overhead.

5. Simulation analysis of paging delays

In this section we assume that paging messages are rate lim-
ited, in which case the bandwidth cost of broadcast paging
messages is controlled at the risk of paging delays. We sim-
ulate one hour of incoming sessions in a paging area and ob-
serve the paging delays with three different paging area sizes,
with and without Bloom filter optimization.

The paging rate in a paging area is limited to R = 1 pag-
ing/second. As a consequence, an incoming call rate higher
than R results in queueing delays. As we increase the pag-
ing area size, we expect larger incoming call rates (hence,
call setup delays). When hash-based paging is used, a paging
message pages all terminals found in the paging queue. I.e.
the paging queue is emptied every second by broadcasting a
single paging message. Thus, the upper bound of paging de-
lay is 1 second. The cost to pay is hash computation cost (by
the network) and false location update risk.

Figure 4 shows the observed frequencies of different pag-
ing delays (in log scale) with paging areas that cover different
number of terminals N . Incoming calls of each terminal are

630 MUTAF AND CASTELLUCCIA

Figure 4. Paging delays with standard paging.

Table 4
Hash computation cost.

N hps

3,000 50.03
4,000 59.27
5,000 66.36

driven by a Poisson process and the average incoming call
rate is set to 1 call/hour. The terminal identifier size is set to
m = 128. With a paging area size that covers N = 3,000 ter-
minals, paging delays up to 17 seconds were observed. 4 calls
suffered from 17 seconds of paging delay. A total of 160 calls
suffered from more than 10 seconds delay. With larger paging
area sizes, standard paging was unsuccessful. The number of
calls in the paging queue constantly increased, and excessive
paging delays were incurred (paging delays more than 50 sec-
onds are not shown).

The hash computation rates (hash per second, denoted hps)
with hash-based paging are shown in table 4. We have not
observed any false location update during these simulations.

Figure 5 shows the number of calls waiting in the pag-
ing sub-system for N = 3,000. Using hash-based paging, the
number of queued calls never exceeded n = 5. Thus, the false
location update risk was F � 0.000005 (according to table 3).
With N = 4,000 and N = 5,000, the number of queued calls
were mostly less than or equal to 5. Larger values were 6
and 7 (occurred twice and once) and 7 (occurred 3 times), re-
spectively. The false location update probabilities with n = 6
and n = 7 were F = 0.000035 and F = 0.000153, respec-
tively, and hence did not occur during one hour simulation.

6. Conclusion

In this paper, we have developed and analyzed a hash-based
paging and location update procedure using Bloom filters.
Multiple terminal identities are coded into a single termi-
nal identifier found in a standard paging message and paged
concurrently. Hash-based paging reduces the rate of broad-
cast paging messages and queuing delays in the network, at

(a)

(b)

Figure 5. Number of calls in paging queue: (a) standard paging; (b) hash-
based paging.

the cost of introducing some unnecessary i.e. “false” location
update messages. Despite false location updates, important
bandwidth gains can be obtained with negligible energy con-
sumption overhead. The proposed optimization is especially
attractive for IP paging in Mobile IPv6 networks with 128-
bit mobile host addresses. However, hash-based paging also
shows promise for smaller identifier sizes, e.g., 32 or 64-bit
terminal identifiers.

References

[1] B. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM 13(7) (July 1970) 422–426.

[2] A.T. Campbell et al., Design, implementation, and evaluation of cellular
IP, IEEE Personal Communications, Special issue on IP-based mobile
telecommunications networks (June/July 2000).

[3] L. Fan, P. Cao, J. Aldeida and A. Broder, Summary cache: A scal-
able wide-area web cache sharing protocol, in: Proceedings of
SIGCOMM’98 Conference, Vol. 28 (1998) pp. 254–265. Cor-
rected version available at URL: http://www.cs.wisc.edu/∼cao/papers/
summarycache.html

[4] D. Johnson, C. Perkins and J. Arkko, Mobility support in IPv6, Internet
draft, draft-ietf-mobileip-ipv6-19.txt (work in progress, October 2002).

HASH-BASED PAGING AND LOCATION UPDATE 631

[5] J. Kempf, Dormant mode host alerting (IP paging) problem statement,
RFC 3132 (June 2001).

[6] C. Perkins, IP mobility support, RFC 3344 (August 2002).
[7] R. Ramjee et al., HAWAII: A domain-based approach for supporting

mobility in wide-area wireless networks, IEEE/ACM Transactions on
Networking 6(2) (June 2002).

[8] R. Ramjee et al., IP paging service for mobile hosts, in: Proceedings of
MOBICOM’2001, Rome, Italy (July 2001).

[9] X. Zhang, J. Castellanos and A. Campbell, P-MIP: Paging extensions
for mobile IP, ACM Mobile Networks and Applications (MONET) 7(2)
(March 2002).

Pars Mutaf
E-mail: pars.mutaf@inria.fr

Claude Castelluccia
E-mail: claude.castelluccia@inria.fr

