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Abstract. In this paper we consider the problem of constructing ATM layouts for wireless networks in which mobile users can move along
a chain of base stations. We first show that deciding the existence of a layout with maximum hop count h, load l and channel distance d

is NP-complete for every fixed value of d greater or equal to 1. We then provide optimal layout constructions for the case d � 2. Finally,
optimal layout constructions are obtained also for any d within the class of the so-called canonic layouts, that so far have always been shown
to be the optimal ones.
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1. Introduction

The Asynchronous Transfer Mode (ATM for short) is the
most popular networking paradigm for Broadband ISDN
[18,19,24]. It transfers data in the form of small fixed-size
cells, and in order to achieve the stringent transfer rate re-
quirements, is based on two types of predetermined routes in
the network: virtual paths or VPs, constituted by a sequence
of successive edges or physical links, and virtual channels or
VCs, each given by the concatenation of a proper sequence
of VPs. Routing in virtual paths can be performed very effi-
ciently by dedicated hardware, while a cell passing from one
virtual path to another one requires more complex and slower
elaboration.

Given a network and a set of connections to be estab-
lished, to provide the performance required by B-ISDN ap-
plications it is important that routing is performed in a hard-
ware fashion in most of the nodes a cell traverses, at the same
time limiting the number of paths sharing a same physical
link [1,4,15,25,26].

A graph theoretical model related to this ATM design prob-
lem has been first proposed in [7,15]. In such a framework,
the VP layouts determined by the VPs constructed on the net-
work are evaluated mainly with respect to two different cost
measures: the hop count, that is the maximum number of
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VPs belonging to a VC, which represents the number of VP
changes of messages along their route to the destination, and
the load, given by the maximum number of virtual paths shar-
ing an edge, that determines the size of the VP routing tables
(see, e.g., [8]). For further details and technical justifications
of the model for ATM networks see for instance [1,15].

While the problem of determining VP layouts with
bounded hop count and load is NP-hard under different as-
sumptions [10,15], many optimal and near optimal construc-
tions have been given for various interconnection networks
such as chain, trees, grids and so forth [3,7,9,13,14,21,29]
(see [30] for a survey).

The integration of wireless and ATM networks is emerging
as one of the most promising approaches able to support users
mobility while maintaining the quality of service offered by
the classical ATM. This combination occurs at different lev-
els and yields different scenarios, such as End-to-End WATM
and WATM Interworking, applied respectively to create new
wireless networks with ATM virtual channels extending until
the mobile terminals and at a more external level for intercon-
necting different existing wireless subnets [16]. In both sce-
narios, the mobility facility requires the efficient solution of
several problems, such as handover (users movement), rout-
ing, location management, connection control and so forth.
A detailed discussion of these and other related issues can be
found in [2,5,6,16,23,27].

An extension of the basic ATM model of [7,15] able to
combine quality of service and mobility aspects in wireless
ATM networks has been proposed in [12]. In this model a
subset of the nodes of the network represents the base sta-
tions and users are allowed to move between them according
to an adjacency graph expressing their adjacencies in the ge-
ographic space. Such a graph, in general, can differ from
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the physical topology of the infrastructured network. For in-
stance, in nowadays cellular systems like GSM, the physical
graph G is a tree, stations correspond to its leaves and the ad-
jacency graph is an hexagonal grid (see, for instance, [22]).
Standard ATM layouts must be constructed in order to estab-
lish a different VC for each station, but their performance is
evaluated by means of a further parameter, the virtual channel
distance, that measures the time needed to reconstruct virtual
channels during handover phases, that is when mobile termi-
nals switch between adjacent stations. More precisely, the
distance between the virtual channels of two adjacent nodes
is equal to the number of VPs that must be deleted and added
to one VC in order to obtain the other one. In order to make
the rerouting phase imperceptible to users and thus to obtain
a sufficient quality of service, the maximum distance between
two virtual channels must be maintained as low as possible.
Therefore, a natural combinatorial problem arises in which
suitable trade-offs must be determined between the different
performance measures.

In [12] it has been shown that the layout construction prob-
lem is intractable, that is NP-hard. Moreover, optimal lay-
out constructions are given when the physical and adjacency
graphs are coincident and correspond to basic interconnection
networks, such as chains and rings. Such results hold under
the assumption that all the VCs induce shortest paths in the
underlying network.

In this paper we consider the determination of WATM lay-
outs for chains in the non-shortest path case in which the
lengths of the paths induced by the VPs is not constrained.
We first show that deciding the existence of a layout with
maximum hop count h, load l = 1 and distance d = 1 is
NP-complete even when the adjacency graph is a chain of
base stations with the source coinciding with one of its end-
points. Moreover, such a hardness result is extended to every
fixed value of d . We then consider the case in which the phys-
ical and adjacency graph coincide with chains and provide
optimal layout constructions for d � 2. Finally, optimal lay-
out constructions are obtained also for any d within the class
of the so-called canonic layouts, that so far have been always
shown to be the optimal ones.

The paper is organized as follows. In the next section we
introduce the model, the notation and the necessary defini-
tions. In section 3 we provide the above mentioned hardness
results for the layout construction problem. In section 4 we
provide the optimal layouts for chains when d = 2 and in
section 5 the optimal canonic ones for any d . Finally, in sec-
tion 6, we give some conclusive remarks and discuss some
open questions.

2. The WATM model

We model the network as an undirected graph G = (V ,E),
where nodes in V represent switches and edges in E are point-
to-point communication links. In G there exists a subset of
nodes U ⊆ V constituted by base stations, i.e., switches
adapted to support mobility and having the additional capa-

bility of establishing wireless connections with mobile termi-
nals. A distinguished source node s ∈ V provides high speed
services to the users moving along the network. We observe
that, according to the wireless nature of the system, during
the handover phase mobile terminals do not necessarily have
to move along the network G, but they can switch directly
from one station to another, provided that they are adjacent in
the physical space. It is thus possible to define a (connected)
adjacency graph A = (U, F ), whose edges in F represent
adjacencies between stations.

A layout � for G = (V ,E) with source s ∈ V is a col-
lection of simple paths in G, termed virtual paths (VPs for
short), and a mapping that defines, for each station u ∈ U ,
a unique virtual channel VC(u) connecting s to u, i.e., a sim-
ple path from s to u in the virtual topology defined by the VPs
of � . In other words, VC(u) is a collection of VPs whose
concatenation forms a path in G from s to u.

Definition 2.1 [15]. The hop count h(u) of a node u ∈ U in
a layout � is the number of VPs contained in VC(u), that
is |VC(u)|. The maximal hop count of � is Hmax(�) ≡
maxu∈U {h(u)}.

Definition 2.2 [15]. The load l(e) of an edge e ∈ E in a
layout � is the number of VPs ψ ∈ � that include e. The
maximal load Lmax(�) of � is maxe∈E{l(e)}.

As already observed, when passing from a station u ∈ U

to an adjacent one v ∈ U , the virtual channel VC(v) must
be reconstructed from VC(u) changing only a limited number
of VPs. Once fixed VC(u) and VC(v), denoted as VC(u, v)

the set of VPs in the subchannel corresponding to the longest
common prefix of VC(u) and VC(v), this requires the deletion
of all the VPs of VC(u) that occur after VC(u, v), plus the
addition of all the VPs of VC(v) after VC(u, v). The number
of removed and added VPs, denoted as D(VC(u), VC(v)), is
called the distance of VC(u) and VC(v) and naturally defines
a channel distance measure d between pairs of adjacent nodes
in A.

Definition 2.3 [12]. The channel distance of two nodes u

and v, such that, {u, v} ∈ F (i.e., adjacent in A) is d(u, v) =
D(VC(u), VC(v)) = h(u)+h(v)−2|VC(u, v)|. The maximal
distance of � is Dmax(�) ≡ max{u,v}∈F {d(u, v)}.

It is now possible to give the following definition concern-
ing layouts for WATM networks.

Definition 2.4. A layout � with Hmax(�) � h, Lmax(�)

� l and Dmax(�) � d is a 〈h, l, d〉-layout for G, s and A.

In the following we will always assume that all the VPs
of � are contained in at least one VC. In fact, if such prop-
erty does not hold, the not used VPs can be simply removed
without increasing the performance measures h, l and d .

Before concluding the section, let us remark that for prac-
tical purposes and quality of services guarantees, it makes
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sense to consider the case where d � h. In fact, while a
little communication delay proportional to the hop count in
general can be tolerated, connections gaps due to rerouting of
virtual channels must not be appreciated by mobile users. On
the other hand, when d � 2h, our model coincides with the
classical one presented in [15] for standard ATM networks,
since the difference between any two virtual channels is al-
ways at most equal to 2h.

3. Hardness and approximation results

In this section we show that constructing optimal dynamic
layouts is in general an NP-hard problem, even when l = 1,
d = 1 and the adjacency graph is a chain of stations with the
source being one of its endpoints.

Before proving our results, let us briefly outline the basic
characteristics of a layout with maximum delay d = 1.

Given any two stations u1, u2 ∈ U adjacent in A =
(U, F ), during an handover from u1 to u2 if d = 1 by de-
finition only one VP can be modified. This means that either
VC(u2) is a prefix of VC(u2) and thus VC(u2) is obtained
from VC(u1) adding a new VP from u1 to u2, or vice versa.
In any case, a VP between u1 and u2 must be contained in the
layout. As a direct consequence, the virtual topology defined
by the VPs of � coincides with the adjacency graph A. More-
over, A must be acyclic. In fact, moving from a station in one
direction along a cycle it is not possible to rebuild the virtual
channel of the station itself when it is reached twice. Finally,
if the source coincides with a base station, the maximum hop
count of � is the eccentricity of s in A, that is, the maximum
distance in A between s and the other stations.

We are now ready to prove our first hardness result.

Theorem 3.1. Given a network G = (V ,E), a source s ∈ V ,
a chain adjacency graph A = (U, F ) and a positive inte-
ger h, deciding the existence of a 〈h, 1, 1〉-layout for G with
source s is an NP-complete problem.

Proof. First of all, observe that, for any h, l, d , the prob-
lem of deciding the existence of a 〈h, l, d〉-layout is in NP, as
given G = (V ,E), s ∈ V , A = (U, F ) and a layout � , it is
possible to check in polynomial time whether Hmax(�) � h,
Lmax(�) � l and Dmax(�) � d .

We prove the claim by providing a polynomial time re-
duction from Disjoint Paths problem (DP), known to be
NP-complete [20]. An instance of this problem is consti-
tuted by a graph G = (V ,E) and a collection of node pairs
{(s1, t1), . . . , (sk, tk)}. We want to determine whether there
exist k edge-disjoint paths in G, each connecting a different
pair (s1, t1), 1 � i � k.

Without loss of generality, it is possible to assume that
all the pairs (si, ti ), 1 � i � k, are disjoint, i.e., all
nodes s1, . . . , sk, t1, . . . , tk are different. In fact, any instance
not satisfying this property can be trivially modified into an
equivalent one in which every node v occurring in k′ � k

pairs is connected in G to k′ new nodes v1, . . . , vk′ and the
k′ pairs contain in the order v1, . . . , vk′ instead of v.

Starting from an instance of DP, we construct a network
G′ = (V ′, E′), a source s ∈ V ′ and a chain adjacency graph
A = (U, F ) that admit a 〈h, 1, 1〉-layout with h = 2k − 1 if
and only if there exist the requested k edge-disjoint paths in
the instance of DP.

Let G′ = (V ′, E′) be such that, given k − 1 nodes
w1, . . . , wk−1 not contained in the initial graph G, V ′ = V ∪
{w1, . . . , wk−1} and E′ = E∪{{ti , wi}{wi, si+1} | 1 � i < k}.
Concerning A = (U, F ), let U = {s1, . . . , sk, t1, . . . , tk} and
F = {{si , ti} | 1 � i � k} ∪ {{ti , si+1} | 1 � i < k}. Finally,
the source s = s1.

Assume first that there is a 〈2k − 1, 1, 1〉-layout � for
G′ = (V ′, E′), s and A = (U, F ). By the considerations
at the beginning of this section, for each e ∈ F , a VP in �

must exist connecting the two endpoints of e. We can assume
that for each i, 1 � i < k, the VP connecting ti to si+1 is
〈ti , wi, si+1〉, i.e., it is constituted by the new added path in
G′ that goes from ti to si+1 through the new node wi . In
fact, if this does not hold, it is possible to add to � the new
VP 〈ti , wi, si+1〉, deleting the old one and then, in order to
keep l = 1, if there is another VP stepping through wi , it is
modified in such a way that its subpath between ti and si+1
coincides with the old deleted VP.

Therefore, since l = 1 and for all i, 1 � i � k, the VP
between si and ti does not step through any of the nodes
w1, . . . , wk−1, there must exist k edge-disjoint paths in G

connecting the pairs (s1, t1), . . . , (sk, tk).
Vice versa, if there are k edge-disjoint paths in G connect-

ing the pairs (s1, t1), . . . , (sk, tk), a 〈2k−1, 1, 1〉-layout � for
G′ = (V ′, E′), s and A = (U, F ) can be constructed as fol-
lows. For each i, 1 � i � k, the VP between si and ti is given
by the corresponding path in G, edge-disjoint with all the oth-
ers. The VP between ti and si+1, 1 � i < k, is 〈ti , wi, si+1〉.
Since s = s1 and the eccentricity in A = (U, F ) of the sta-
tion s1 is 2k − 1, the layout � thus constructed gives directly
a 〈h, 1, 1〉-layout with h = 2k − 1. �

Notice that in the above construction the source s corre-
sponds to an endpoint of the chain A = (U, F ), so as already
remarked the NP-completeness holds also under this restric-
tion.

The above result can generalized to any fixed d > 0 as
follows.

Theorem 3.2. For any fixed integer d > 0, given a network
G = (V ,E), a source s ∈ V , a chain adjacency graph
A = (U, F ) and a positive integer h, deciding the existence
of a 〈h, 1, d〉-layout for G with source s is an NP-complete
problem.

Proof. Given G, a source s and an adjacency graph A =
(U, F ), it is sufficient to construct in polynomial time G′, s′
and A′ = (U ′, F ′), such that, G, s,A admit a 〈h, 1, 1〉-layout
if and only if G′, s′, A′ admit a 〈h′, 1, d〉-layout for a suitable
h′ > 0.

By theorem 3.1, it is possible to assume that A = (U, F )

is a chain of the nodes u1, . . . , uk and s = u1.
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G′ = (V ′, E′) is obtained from G = (V ,E) by adding
for each ui , 1 � i < k, d − 1 other stations ui,1, . . . , ui,d−1
connected by edges {ui, ui,1} and {ui,j , ui,j+1}, 1 � j <

d − 1, in such a way that ui, ui,1, . . . , ui,d−1 form a chain of
d nodes. s′ = u1 and the new adjacency graph A′ = (U ′, F ′)
is, such that, U ′ = U ∪ {ui,1, . . . , ui,d−1 | 1 � i � k} and
F ′ = {{ui, ui,1 | 1 � i � d − 1} ∪ {{ui,j , ui,j+1 | 1 � i < k,
1 � j < d − 1} ∪ {{ui,d−1, ui+1 | 1 � i < k}. Hence,
A = (U, F ) is a chain.

Since l = 1, in any layout � ′ for G′, s′, A′, all edges edges
{ui, ui,1} and {ui,j , ui,j+1}, 1 � i < k and 1 � j < d − 1,
must be VPs, as they are the only simple paths connecting
the respective endpoint stations. Then, during the handover
from a station ui,d−1 to ui+1, the d − 1 VPs {ui, ui,1} and
{ui,j , ui,j+1}, 1 � j < d − 1, must be deleted and then a
single VP must be added from ui (the last station in the com-
mon prefix of the virtual channels VC(ui,d−1) and VC(ui+1))
to ui+1.

Since s′ = u1 and u1 has eccentricity h′ = max{h, k −2+
d − 2} in A′ = (U ′, F ′), then G, s,A admit a 〈h, 1, 1〉-layout
if and only if G′, s′, A′ admit a 〈h′, 1, d〉-layout, hence the
theorem holds. �

Again, the NP-completeness still holds if the source s is an
endpoint of the chain adjacency graph.

Before concluding the section, let us, finally, show that for
d = 1 a stronger hardness result holds. To this aim observe
first that as remarked at the beginning of this section, the vir-
tual topology induced by any 〈h, l, 1〉-layout coincides with
the adjacency graph. Moreover, if the source coincides with a
base station, h is equal to the eccentricity in A of s, otherwise
connecting s by a VP to a node of minimum eccentricity in A

it is possible to obtain a layout with a maximum hop count
equal to its eccentricity increasing the load at most of one.
Therefore, as far as approximation results are concerned, the
interesting parameter to be approximated remains the maxi-
mum load.

The problem of minimizing the maximum load is equiv-
alent from an approximation point of view to the optimiza-
tion version of the decision problem DP in which we want to
determine k paths connecting the k source–destination pairs
(s1, t1), . . . , (sk, tk) in such a way as to minimize the maxi-
mum number of paths sharing a same edge.

In fact, any r-approximation algorithm A for the layout
problem yields directly a O(r)-approximation algorithm ADP
for DP. Informally, ADP simply consists in running A on the
instance of the layout problem obtained by adding a new
source s, connecting s to each si , 1 � i � k, and letting
A = (U, F ) be, such that, U = {s, s1, . . . , sk, t1, . . . , tk} and
F = {{s, si} | 1 � i � k} ∪ {{si, ti} | 1 � i � k}. The
k VPs connecting each si to ti , 1 � i � k, in the layout
returned by A correspond to an O(r)-approximate solution
for DP. A reverse reduction can be determined by observing
that an r-approximation algorithm ADP for DP yields directly
an O(r)-approximation algorithm A for the layout construc-
tion problem that consists in running ADP on the instance ob-
tained by associating a source–destination (s, t) to each edge

{s, t} ∈ F . The paths returned by ADP plus an eventual path
connecting s to the node with minimum eccentricity in A if
s is not a base station form the VPs of an O(r)-approximate
solution for the layout problem.

To the best of our knowledge, the best general algorithm
for DP has an approximation ratio r = O(

√|E| log |V |),
while r = O(polylog|V |) [28]. Therefore, an O(

√|E| log |V |)-
approximation algorithm exists for the maximum load min-
imization in layout with d = 1, while any algorithm with
an asymptotic better approximation ratio would improve
upon [28].

4. Optimal chain layouts for d � 2

Starting from the hardness results shown in the previous sec-
tion, we now focus on specific topologies and provide optimal
layouts for chain networks when the maximum channel dis-
tance d is at most 2. More precisely, we consider the case
in which the physical graph is a chain Cn of n nodes, that is
V = {1, 2, . . . , n}, E = {{v, v + 1} | 1 � v � n − 1} and
the adjacency graph A coincides with Cn. Moreover, without
loss of generality, we take the leftmost node of the chain as
the source, i.e., s = 1, as otherwise we can split the layout
construction problem into two equivalent independent sub-
problems for the left- and the right-hand sides of the source,
respectively.

Given fixed h,l,d and a 〈h, l, d〉-layout � for a chain Cn,
we say that � is optimal if no 〈h, l, d〉-layout exists for any
chain Cm with m > n.

By the considerations of the previous section for d = 1, the
virtual topology induced by the VPs of any 〈h, l, 1〉-layout �

coincides with the adjacency graph A and thus with Cn. As a
consequence, the largest chain admitting a 〈h, l, 1〉-layout is,
such that, n = h + 1. Therefore, in the remaining part of this
section we focus on the case d = 2.

In the following we denote by 〈u, v〉 the unique VP cor-
responding to the simple path from u to v in Cn and by
〈〈s, v1〉〈v1, v2〉 . . . 〈vk, v〉〉 or simply 〈s, v1, v2, . . . , vk, v〉 the
virtual channel VC(v) of v given by the concatenation of the
VPs 〈s, v1〉, 〈v1, v2〉, . . . , 〈vk, v〉.

The following lemma establishes that, when moving in one
direction along a chain, some VPs are “accumulated”, that is
they cannot be removed from the VCs of the successive nodes
encountered along the same direction.

Lemma 4.1. Given a 〈h, l, 2〉-layout � for a chain network
and a node v, if VC(v) = 〈s, v1, v2, . . . , vk, v〉 and in VC(v)

there exist two consecutive VPs 〈vi−1, vi〉, 〈vi , vi+1〉 with
vi−1 < v and vi < v (resp. vi−1 > v and vi > v), then
for every u � v (resp. u � v), 〈s, v1, v2, . . . , vi−1, vi〉 is a
prefix of VC(u).

Proof. Assume first that vi−1 < v and vi < v and let
u > v be the first node, such that, 〈vi, vi+1〉 /∈ VC(u). Since
d(u − 1, u) � 2, to reach u we can only add 〈vi, u〉. This
process can be iterated to every node w with w > u, hence the
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claim holds. An analogous argument applies when vi−1 > v

and vi > v. �

Another useful property of 〈h, l, 2〉-layouts is that the pre-
fixes of a VC are the VCs of their final nodes.

Lemma 4.2. There exists an optimal 〈h, l, 2〉-layout � for
a chain network, such that, for every node v with VC(v) =
〈s, v1, v2, . . . , vk−1, vk, v〉, VC(vi) = 〈s, v1, v2, . . . , vi〉 for
every i � k.

Proof. Let � be any optimal 〈h, l, 2〉-layout. We now prove
that, if for a given node v each prefix of every virtual channel
VC(u) with u < v is the virtual channel of the corresponding
final node, then � can be modified in such a way that such
a property is satisfied also by VC(v). This clearly proves the
lemma.

Trivially the property is satisfied by the virtual channel of
source s, since it is empty. Therefore, let v � 2 be any node,
such that, the property is true for all the VCs of the previous
nodes and let VC(v) = 〈s, v1, v2, . . . , vk−1, vk, v〉. Recalling
that d(v − 1, v) � 2, it is possible to distinguish among the
following cases:

1. VC(v − 1) = 〈s, v1, v2, . . . , vk, v − 1〉,
2. VC(v − 1) = 〈s, v1, v2, . . . , vk, v, v − 1〉,
3. VC(v − 1) = 〈s, v1, v2, . . . , vk〉, that is vk = v − 1,

4. VC(v − 1) = 〈s, v1, v2, . . . , vk, vk+1, v〉, and

5. VC(v − 1) = 〈s, v1, v2, . . . , vk−1〉, that is vk−1 = v − 1.

Since by the hypothesis the claim is true for VC(v − 1)

and 〈s, v1, v2, . . . , vk〉 is a prefix of VC(v − 1), VC(vi) =
〈s, v1, v2, . . . , vi〉 for each vi with 1 � i � k. Therefore,
every prefix of VC(v) is a VC.

If VC(v − 1) = 〈s, v1, v2, . . . , vk−1〉, that is vk−1 = v − 1,
we further distinguish the following two subcases.

(I) vk > v. In this case the VP 〈v, vk〉 must be
deleted in the VC of a node u with v < u � vk . If
u = vk VC(vk) = 〈s, v1, v2, . . . , vk〉, otherwise, since
d(u − 1, u) � 2, VC(u) = 〈s, v1, v2, . . . , vk, u〉 and iterating
the same argument to the VP 〈u, vk〉 we finally have that again
VC(vk) = 〈s, v1, v2, . . . , vk〉. Therefore, since for each vi

with i < k 〈s, v1, v2, . . . , vi〉 is a prefix of VC(v−1), we have
VC(vi) = 〈s, v1, v2, . . . , vi〉 for every vi with 1 � i � k.

(II) vk < v − 1. If the VP 〈vk, v − 1〉 is contained in the
VC of a node u < v − 1, then starting from the source s, in
VC(u) 〈vk, v − 1〉 is not traversed from vk to v − 1, otherwise
by hypothesis 〈vk, v − 1〉 would be contained in VC(v − 1)

and thus it could not be added to VC(v − 1) with 〈vk, v〉 to
obtain VC(v). Therefore, 〈vk, v−1〉 is traversed from v−1 to
vk and again by hypothesis the prefix of VC(u) till v−1 coin-
cides with VC(v−1) and VC(vk) = 〈s, v1, v2, . . . , vk−1, vk〉.
As in the previous subcase, since for each vi with i < k

〈s, v1, v2, . . . , vi〉 is a prefix of VC(v−1), we have VC(vi) =
〈s, v1, v2, . . . , vi〉 for every vi with 1 � i � k.

Assume then that the VP 〈vk, v − 1〉 is not contained in
VC(u) for every u < v − 1. In this case also 〈vk, v〉 is not
contained in any VC(u) with u < v − 1, because otherwise,
with no matter of the sense in which 〈vk, v〉 is traversed in
VC(u), VC(v) could not contain 〈vk, v − 1〉, as by hypotheses
〈vk, v − 1〉 does not belong to VC(u).

If 〈vk, v〉 is contained in VC(v + 1), then by lemma 4.1
VC(v) is a prefix of all the VCs VC(u) with u � v. Therefore,
the layout obtained by deleting the VPs 〈vk, v−1〉 and 〈vk, v〉,
adding 〈v−1, v〉 and modifying each VC(u) = 〈s, v1, v2, . . . ,

v − 1, vk, v, . . . , u〉 with u � v as VC(u) = 〈s, v1, v2, . . . ,

v − 1, v, . . . , u〉 does not increase the hop count of any node,
the load of any edge and the channel distance of the ad-
jacent nodes. Therefore, since in the new layout the vir-
tual channels of the nodes before v are not modified and
VC(v) = 〈s, v1, v2, . . . , v − 1, v〉 = 〈s, v1, v2, . . . , vk−1, v〉,
〈s, v1, v2, . . . , vi 〉 is a prefix of VC(v − 1) for every vi with
1 � i < k and thus VC(vi) = 〈s, v1, v2, . . . , vi〉.

If 〈vk, v〉 is not contained in VC(v +1), then by lemma 4.1
〈s, v1, v2, . . . , v −1, vk〉 is a prefix of all the VCs VC(u) with
u � v. Moreover, all the VPs starting at vk contained in
the VC of some node u > v are not contained in any VC
VC(w) with w � v − 1, as otherwise by hypothesis VC(u)

would not contain 〈vk, v − 1〉. Notice also that the other
endpoint of each such VP is greater than v, as otherwise by
the maximum channel distance it cannot be used in the VCs
of the nodes after v. It is thus possible to modify the lay-
out � as follows. The VPs 〈vk, v − 1〉 and 〈vk, v〉 are deleted,
〈v − 1, v〉 is added, the VPs 〈vk,w〉 contained in the VC of
some node u > v are substituted with 〈v,w〉 and, finally, each
VC(u) = 〈s, v1, v2, . . . , v − 1, vk,w, . . . , u〉 with u � v is
modified as VC(u) = 〈s, v1, v2, . . . , v − 1, v,w, . . . , u〉. By
the above considerations, the new layout does not increase the
hop count of any node, the load of any edge and the channel
distance of the adjacent nodes. Moreover, it does not modify
the virtual channels of the nodes before v. Therefore, again
VC(v) = 〈s, v1, v2, . . . , v − 1, v〉 = 〈s, v1, v2, . . . , vk−1, v〉,
〈s, v1, v2, . . . , vi 〉 is a prefix of VC(v − 1) for every vi with
1 � i < k and thus VC(vi) = 〈s, v1, v2, . . . , vi〉. �

Motivated by the previous lemma, even if not explicitly
stated, in the remaining part of this section, we restrict our
attention to layouts in which all the prefixes of each VC are
the VCs of the corresponding final nodes. In fact, this does
not affect the correctness of our results, since the optimality
is preserved under such assumption.

The following corollary is a direct consequence of the pre-
vious lemma.

Corollary 4.3. Every VP of a 〈h, l, 2〉-layout � for a chain
network is the final VP of exactly one of its two endpoints.

A last useful property that allows to suitably bound the
maximum size of a chain admitting a 〈h, l, 2〉-layout is estab-
lished in the following lemma.

Lemma 4.4. Given a 〈h, l, 2〉-layout � for a chain network
and any j � h, let u and v be the last nodes with hop count
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h(u) = j − 1 and h(v) = j , respectively. Then the last VPs
of all the VCs reaching the nodes from u+1 to v share a same
physical link.

Proof. Let us first prove the claim for j = 1, and thus with
u corresponding to the source s = 1.

In order to show that the lemma holds for j = 1, it is
sufficient to prove that no two edge-disjoint VPs exist in the
VCs of the nodes from u + 1 to v.

Assume by contradiction that such property does not hold
and let 〈x, y〉,〈w, z〉 be a pair of closest edge-disjoint VPs in
such VCs with x < y � w < z � v. Then y = w or
y = w − 1, otherwise any other VP used to reach a node
between y and w would be disjoint from 〈x, y〉 or 〈w, z〉 and
closest to 〈x, y〉 or 〈w, z〉, thus contradicting the hypothesis.

If y = w − 1 then 〈x, y〉 is not used to reach y. In
fact, 〈x, y〉 cannot be contained in VC(w), as by lemma 4.1
it would be contained also in VC(v) against the hypothe-
sis h(v) = 1. Thus, if 〈x, y〉 is used to reach y, since
d(y,w) � 2, when moving from y to w 〈x, y〉 must be re-
moved and the VP 〈x,w〉 must be added to reconstruct VC(w).
But then 〈x,w〉 would be a VP closer to 〈w, z〉 than 〈x, y〉,
again contradicting the hypothesis.

By corollary 4.3, 〈x, y〉 is then used to reach x. If y is
reached by a VP 〈q, y〉 with q < y, then by corollary 4.3
〈w, z〉 is used to reach z, and thus by lemma 4.1 〈q, y〉 is con-
tained in VC(v) again contradicting the hypothesis h(v) = 1.
If q > y 〈x, y〉 and 〈y, q〉 would be closer than 〈x, y〉 and
〈w, z〉: a contradiction.

Therefore, y = w − 1 cannot hold and it must be y = w.
Recalling that by corollary 4.3 every VP is used to reach

exactly one of its endpoints, i.e., it is the final VP of exactly
one of the VCs of its endpoints, it is possible to distinguish
the following cases:

• 〈x, y〉 reaches x and 〈y, z〉 reaches z.
By corollary 4.3 y is reached by another VP 〈q, y〉 with
q �= x and q �= z. If q > y, then by lemma 4.1 〈q, y〉 is
contained in all the VCs of the nodes before x, x included,
thus contradicting h(s) = 0. Similarly, if q < y, 〈q, y〉 is
contained in all the VCs of the nodes after z, z included,
thus contradicting h(v) = 1. Therefore, this case cannot
hold.

• 〈x, y〉 reaches y and 〈y, z〉 reaches z.
Since by lemma 4.2 every prefix of VC(z) corresponds to
the VC of its final node, 〈x, y〉 is contained in VC(z) and
by lemma 4.1 〈x, y〉 belongs to VC(v), thus contradicting
h(v) = 1.

• 〈x, y〉 reaches x and 〈y, z〉 reaches y.
This case is symmetric to the previous one and completely

analogous considerations show that it would contradict
h(s) = 0.

• 〈x, y〉 reaches y and 〈y, z〉 reaches y. This case is clearly
impossible, since only one of the two VPs 〈x, y〉 and by
〈y, z〉 can be the last one of VC(y).

In conclusion, neither y = w can hold and therefore no
two edge-disjoint VPs exist before v.

In order to extend the proof to every j � h, observe that
since u is the last node with hop count h(u) = j − 1 and
d = 2, all the VCs of the nodes w � u have VC(u) as prefix.
Thus an identical proof shows that all the VPs after u in the
VCs of the nodes w with u < w � v share a same physical
edge. �

It is thus possible to prove the following lemma.

Lemma 4.5. Given any 〈h, l, 2〉-layout � for a chain net-
work and j � h, the last node v with h(v) = j is, such
that, v � j l + 1.

Proof. The claim trivially holds for j = 0, since only the
source s = 1 has hop count h(s) = 0.

Assume by induction that the corollary holds for a given
j , such that, 1 � j < h and let u � j l + 1 the last node
with hop count h(u) = j and v the last node with hop count
h(v) = j + 1. Since by lemma 4.4 the last VPs of all the VCs
reaching the nodes from u+1 to v share a same physical link,
there cannot be more than l nodes from u + 1 to v, otherwise
the shared link would have load greater than l. Therefore,
v � u + l � (j + 1)l + 1. �

In conclusion, the following theorem holds.

Theorem 4.6. For every h, l � 0, a 〈h, l, 2〉-layout for a
chain network Cn is optimal if and only if n = hl + 1.

Proof. By lemma 4.5, n � hl + 1 holds for any 〈h, l, 2〉-
layout for a chain Cn. A layout attaining n = hl + 1 is de-
picted in figure 1. �

Before concluding the section, we finally observe that the
layout in figure 1 is not the only optimal one. Another exam-
ple with h = 4, l = 4 and d = 2 is shown in figure 2.

5. Optimal canonic layouts for chain networks

In this section we provide 〈h, l, d〉-layouts for chain networks
that are optimal within the class of the canonic layouts. In

Figure 1. Optimal 〈h, l, 2〉-layout for a chain network.
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Figure 2. An alternative optimal 〈4, 4, 2〉-layout.

Figure 3. The recursive definition of T (h, l, d) for h > 0 and l > 0.

fact, such layouts have been shown to be the optimal ones
under different assumptions (see, for instance, [12,15]). In-
formally speaking, a layout � is canonic if it does not contain
intersecting VPs and it induces a tree. More precisely, we
have the following definitions.

Definition 5.1. Two VPs 〈u, v〉 and 〈w, z〉 are crossing if u <

w < v < z. A layout � is crossing-free if it does not contain
any pair of crossing VPs.

Definition 5.2. A layout � is canonic if it is crossing-free
and the virtual topology induced by its VPs is a tree.

Let us say that a rooted tree is ordered if a total order
is defined on its nodes with the root being the lowest order
node. Then there is a one-to-one corresponds between lay-
outs for chains and ordered trees. Namely, each node of the
tree corresponds to a node of the chain, the root corresponds
to the source s, each edge to a VP of � and finally the to-
tal order of the nodes of the tree is given by the order of
the nodes along the chain. Clearly, not all the ordered trees
yield canonic layouts, as their induced VPs might be cross-
ing. However, the one-to-one correspondence between or-
dered trees and canonic layouts is maintained if we restrict
to ordered trees in which every subtree contains a subset of
nodes that forms an interval according to the node ordering.
In other words, each subtree corresponds to a segment of the
chain not touched by the other subtrees.

Given any ordered tree T , let the reverse tree T r be the
symmetric ordered tree obtained from T by inverting the or-
der of the nodes (hence the root becomes the highest or-
der node). We now introduce a new class of ordered trees
�(h, l, d) that allows to completely define the structure of an
optimal 〈h, l, d〉-layout.

The definition of �(h, l, d) is recursive and the solution
of the associated recurrence gives the exact number of nodes
reached by an optimal canonic 〈h, l, d〉-layout. Before intro-
ducing �(h, l, d), let us define another ordered subtree that is
exploited in its definition.

Definition 5.3. Given any h, l, d , T (h, l, d) is an ordered tree
recursively defined as follows.

• If h = 0 or l = 0 T (h, l, d) consists of a single node.

• If h > 0 and l > 0 T (h, l, d) contains at least two nodes
and the lowest order node u, that is the root, is connected
by an edge to the highest order node v.
Moreover, a chain of min{h, �d/2
} trees T (h−j, l−1, d)

with 0 � j � min{h, �d/2
}− 1 is attached to u in such a
way that the lowest order node of T (h, l − 1, d) coincides
with u and the lowest order node of each T (h−j, l−1, d)

with 1 � j � min{h, �d/2
}−1 coincides with the highest
order node of T (h − j + 1, l − 1, d).
Finally, a chain of min{h − 1, �(d − 1)/2
} reverse trees
T r(h− j, l − 1, d) with 1 � j � min{h − 1, �(d − 1)/2
}
is attached to v in such a way that the highest order node
of T r(h − 1, l, d) coincides with v and the highest order
node of each T r(h − j, l − 1, d) with 2 � j � min{h − j,

�(d − 1)/2
} coincides with the lowest order node of
T r(h − j + 1, l − 1, d).

An example of T (h, l, d) is depicted in figure 3. Infor-
mally speaking, a T (h, l, d) corresponds to the sublayout of
a canonic layout � induced by all the VPs occurring under
a given VP, with the lowest order node being closer to the
source. Thus, T (h, l, d) is the subtree induced by all the VPs
whose endpoints occur from the first endpoint of the given VP
until the second endpoint.

Directly from the definition, it follows that all the nodes in
T (h, l, d) are at distance at most h from u, and thus at most
h additional hops from the node corresponding to u in � are
sufficient to reach the other nodes corresponding to T (h, l, d)

in the chain. Moreover, the load yielded by T (h, l, d) on its
segment of the chain is bounded by l. Finally, the channel
distance between two consecutive nodes belonging to the sub-
chain of T (h, l, d) is always at most equal to d . In fact, it
is given by the maximum distance in T (h, l, d) between two
nodes adjacent in the ordering. Therefore, assuming by induc-
tion that such property holds inside the subtrees T (j, l −1, d)

(and thus T r(j, l − 1, d)), in order to show that it holds also
in T (h, l, d) it is sufficient to prove that the final node of the
chain of subtrees attached to u and the final node of the other
reverse chain attached to v, that is the only not yet considered
adjacent pair of nodes, is at distance at most d . But such nodes
are at distance min{h, �d/2
}+1+min{h−1, �(d−1)/2
} �
�d/2
 + 1 + �(d − 1)/2
 = d . Therefore, also the channel
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Figure 4. �(h, l, d) in terms of trees of type T (a) and the alternative recursive definition (b).

distance within the subchain of T (h, l, d) is bounded by d .
Clearly, symmetric considerations hold for each T r(h, l, d).

We are now ready to define the final tree �(h, l, d).

Definition 5.4. The ordered tree �(h, l, d) is formed by the
chain of h trees T (j, l, d), 1 � j � h, such that, the lowest
order node of T (j, l, d) coincides the highest order node of
T (j + 1, l, d) for 1 � j < h (see figure 4).

Notice that, if h = 0 or l = 0, �(h, l, d) consists of just a
single node. Moreover, an alternative recursive definition of
�(h, l, d) is given by a T (h, l, d) attached to a �(h − 1, l, d)

tree (again see figure 4).
Let Tn(h, l, d) denote the number of nodes of T (h, l, d)

(and thus of T r(h, l, d)) minus one. Then, directly from
definition 5.3, Tn(h, l, d) = 0 if h = 0 or l = 0, other-
wise Tn(h, l, d) = 1 + ∑min{h,�d/2
}−1

j=0 Tn(h − j, l − 1, d) +∑min{h−1,�(d−1)/2
}
j=1 Tn(h − j, l − 1, d).
Moreover, by definition 5.4, denoted as �n(h, l, d) the

number of nodes in �(h, l, d), �n(h, l, d) = 1 +∑h
k=1 Tn(k, l, d).
Clearly, by the above observations, �(h, l, d) corresponds

to a canonic 〈h, l, d〉-layout for a chain network. Actually, a
stronger result holds.

Lemma 5.5. The layout induced by �(h, l, d) is optimal
within the class of the canonic 〈h, l, d〉-layouts for chain net-
works.

Proof. Let � be any canonic 〈h, l, d〉-layout for a chain Cn.
It is sufficient to show that n � �n(h, l, d).

Let VC(n) = 〈v1, . . . , vk〉 with v1 = s, vk = n and k �
h + 1 the VC of the last node of the chain in � . We prove
that vi − vi−1 � Tn(h − i + 2, l, d) for every i, such that,
2 � i � k. In fact, this implies n = vk = v1 + ∑k

i=2(vi −
vi−1) � 1 + ∑k

i=2 Tn(h − i + 2, l, d) = 1 + ∑k−2
i=0 Tn(h −

i, l, d) � 1 + ∑h−1
i=0 Tn(h − i, l, d) = 1 + ∑h

i=1 Tn(i, l, d) =
�n(h, l, d).

In order to show that vi − vi−1 � Tn(h − i + 2, l, d) for
every i, such that, 2 � i � k, it suffices to prove that, given
any VP 〈u, v〉 of a canonic 〈h, l, d〉-layout, such that, h(u) =
h − h′, h(v) = h − h′ + 1 or vice versa and there exist l − l′
VPs over it, that is of the form 〈w, z〉 with w � u and z > v

or w < u and z � v, it is v − u � Tn(h
′, l′, d). If l′ = 1,

it must be v = u + 1, otherwise the nodes between u and v

could not be reached from the source without exceeding the
maximum load l. Recalling definition 5.3, v − u = 1 =
Tn(h

′, 1, d).

Assume then that the claim is true for l′ − 1, that is, for all
the VPs of a canonic 〈h, l, d〉-layout � with l − l′ + 1 VPs
over them and let 〈u, v〉 be a VP of � with h(u) = h − h′,
h(v) = h − h′ + 1 and l − l′ VPs over it. Let w be the
last node with u � w � v (that is under 〈u, v〉) reached
by a VC stepping through u and not from v, and consider
the subchain of d1 VPs 〈w1, . . . , wd1+1〉 with w1 = u and
wd1+1 = w connecting u to w. Similarly, let 〈zd2+1, . . . , z1〉
with z1 = w + 1 and zd2+1 = v the subchain of d2 VPs
connecting v to w + 1. Since w and w + 1 are adjacent and
the maximum channel distance is d , it must be d1+d2+1 � d .
Moreover, since h(w) � h and h(w + 1) � h, d1 � h′ and
d2 � h′−1. Therefore, since such subchains and with all their
VPs occur under 〈u, v〉, by applying the inductive assumption
it follows that

v − u = (w − u) + (v − w)

=
d1+1∑
i=2

(wi − wi−1) +
(

1 +
d2+1∑
i=2

(zi − zi−1)

)

� 1 +
d1+1∑
i=2

Tn

(
h′ − i + 2, l′ − 1, d

)

+
d2+1∑
i=2

Tn

(
h′ − d2 + i − 2, l′ − 1, d

)

= 1 +
d1−1∑
i=0

Tn

(
h′ − i, l′ − 1, d

)

+
d2∑

i=1

Tn

(
h′ − i, l′ − 1, d

)

� 1 +
min{h′, d/2}−1∑

i=0

Tn

(
h′ − i, l′ − 1, d

)

+
min{h′−1, (d−1)/2}∑

i=1

Tn

(
h′ − i, l′ − 1, d

)
= Tn

(
h′, l′, d

)
.

A completely symmetric proof shows that v−u � Tn(h
′, l′, d)

for every VP 〈u, v〉 of � with h(u) = h−h′+1, h(v) = h−h′
and l − l′ VPs over it. �

Starting from lemma 5.5, in order to determine the largest
chain admitting a canonic 〈h, l, d〉-layout, it is sufficient to
estimate the number of nodes contained in the tree �(h, l, d),
that is, �n(h, l, d).
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Before solving the recurrence on Tn(h, l, d) and conse-
quently estimate �n(h, l, d), we recall that given n + 1 pos-
itive integers m, k1, . . . , kn, such that, m = k1 + · · · + kn,
the multinomial coefficient

(
m

k1,...,kn

)
is defined as m!/(k1! ·

k2! · · · kn!) (see, for instance, [17]).

Lemma 5.6. For every h > 0, l > 0 and d > 1, if d is even

Tn(h, l, d)

=
l∑

i=1

h−1∑
j=0

∑
0�kd/2−1�kd/2−2�···�k2�k1�i

k1+k2+···+kd/2−1=j

2k1

×
(

i

i − k1, k1 − k2, . . . , kd/2−2 − kd/2−1, kd/2−1

)
,

while if d is odd

Tn(h, l, d)

=
l∑

i=1

h−1∑
j=0

∑
0�k(d−1)/2�k(d−1)/2−1�···�k2�k1�i

k1+k2+···+k(d−1)/2=j

2k1−k(d−1)/2

×
(

i

i − k1, k1 − k2, . . . , k(d−1)/2−1 − k(d−1)/2, k(d−1)/2

)
.

Proof. Let M be the matrix defined as follows:

Mi,j =




1 if i = 0 and j = 0,

0 if i = 0 and j > 0,
j∑

t=max{0,j−�d/2
+1}
Mi−1,t

+
j∑

t=max{1,j−�(d−1)/2
}
Mi−1,t otherwise.

Note that a generic element Mi,j represents the number
of subtrees T (h − j, l − i, d) and T r(h − j, l − i, d) that
occur in T (h, l, d) or analogously in the expansion of the re-
cursive definition of T (h, l, d) until obtaining only trees of
load l − i. Moreover, by the recurrence of Tn, it results that∑l

i=1
∑h−1

j=0 Mi,j is exactly the number of nodes in T (h, l, d)

minus one, that is the value Tn(h, l, d).
In order to determine the sum of the first h columns and

the l rows without the first of M , we observe that each row i

of M corresponds to the coefficients of the ith power of the
polynomial ((x�d/2
−1+x�d/2
−2+· · ·+x+1)+(x�(d−1)/2
+
x�(d−1)/2
−1 + · · · + x))i . More precisely, a generic element
Mi,j is equal to the coefficient of xj in the expansion of the
polynomial ((x�d/2
−1+x�d/2
−2+· · ·+x+1)+(x�(d−1)/2
+
x�(d−1)/2
−1 + · · · + x))i .

If d is even, by applying d/2 − 1 times the well-known
equality (a+b)i = ∑i

k=0

(
i
k

)
akbi−k to (2xd/2−1+2xd/2−2+

· · ·+2x2 +2x +1)i with a = 2xd/2−1 +2xd/2−2 +· · ·+2x2

+ 2x and b = 1 and iterating the same argument, we obtain

(
2xd/2−1 + 2xd/2−2 + · · · + 2x2 + 2x + 1

)i
=

i∑
k1=0

(
i

k1

)(
2xd/2−1 + 2xd/2−2 + · · · + 2x2 + 2x

)k1

=
i∑

k1=0

2k1

(
i

k1

)(
xd/2−2 + xd/2−3 + · · · + x + 1

)k1xk1

=
i∑

k1=0

2k1

(
i

k1

) k1∑
k2=0

(
k1

k2

)
(xd/2−3 + xd/2−4 + · · ·

+ x + 1)k2xk1+k2 = · · ·

=
i∑

k1=0

2k1

(
i

k1

) k1∑
k2=0

(
k1

k2

)
· · ·

×
kd/2−2∑

kd/2−1=0

(
kd/2−2

kd/2−1

)
xk1+k2+···+kd/2−1

=
i∑

k1=0

k1∑
k2=0

· · ·
kd/2−2∑

kd/2−1=0

2k1

(
i

k1

)(
k1

k2

)
· · ·

×
(

kd/2−2

kd/2−1

)
xk1+k2+···+kd/2−1,

that can be rewritten as∑
0�kd/2−1�kd/2−2�···�k2�k1�i

2k1

×
(

i

k1

)(
k1

k2

)
· · ·

(
kd/2−2

kd/2−1

)
xk1+k2+···+kd/2−1

=
i(d/2−1)∑

j=0

∑
0�kd/2−1�kd/2−2�···�k2�k1�i

k1+k2+···+kd/2−1=j

2k1

×
(

i

k1

)(
k1

k2

)
· · ·

(
kd/2−2

kd/2−1

)
xj .

Therefore, recalling the definition of multinomial coefficient
and that Mi,j is the coefficient of xj in (2xd/2−1 + 2xd/2−2 +
· · · + 2x2 + 2x + 1)i , it follows that

Mi,j =
∑

0�kd/2−1�kd/2−2�···�k2�k1�i

k1+k2+···+kd/2−1=j

2k1

×
(

i

i − k1, k1 − k2, . . . , kd/2−2 − kd/2−1, kd/2−1

)
.

For the case of odd d we obtain(
x(d−1)/2 + 2x(d−1)/2−1 + · · · + 2x2 + 2x + 1

)i
=

i∑
k1=0

(
i

k1

)(
x(d−1)/2 + 2x(d−1)/2−1 + · · · + 2x2 + 2x

)k1

=
i∑

k1=0

(
i

k1

)(
x(d−1)/2−1

+ 2x(d−1)/2−2 + · · · + 2x + 2
)k1xk1
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=
i∑

k1=0

(
i

k1

) k1∑
k2=0

(
k1

k2

)(
x(d−1)/2−2 + 2x(d−1)/2−3 + · · ·

+ 2x + 1
)k22k1−k2xk1+k2

=
i∑

k1=0

(
i

k1

) k1∑
k2=0

(
k1

k2

) k2∑
k3=0

(
k2

k3

)(
x(d−1)/2−3

+ 2x(d−1)/2−4 + · · · + 2x + 1
)k3 2k1−k3xk1+k2+k3

= · · ·

=
i∑

k1=0

k1∑
k2=0

· · ·
k(d−1)/2−1∑
k(d−1)/2=0

2k1−k(d−1)/2

(
i

k1

)(
k1

k2

)
· · ·

×
(

k(d−1)/2−1

k(d−1)/2

)
xk1+k2+···+k(d−1)/2,

that can be rewritten as∑
0�k(d−1)/2�k(d−1)/2−1�···�k2�k1�i

2k1−k(d−1)/2

×
(

i

k1

)(
k1

k2

)
· · ·

(
k(d−1)/2−1

k(d−1)/2

)
xk1+k2+···+k(d−1)/2

=
i((d−1)/2)∑

j=0

∑
0�k(d−1)/2�k(d−1)/2−1�···�k2�k1�i

k1+k2+···+k(d−1)/2=j

2k1−k(d−1)/2

×
(

i

k1

)(
k1

k2

)
· · ·

(
k(d−1)/2−1

k(d−1)/2

)
xj .

Therefore,

Mi,j =
∑

0�k(d−1)/2�k(d−1)/2−1�···�k2�k1�i

k1+k2+···+k(d−1)/2=j

2k1−k(d−1)/2

×
(

i

i − k1, k1 − k2, . . . , k(d−1)/2−1 − k(d−1)/2, k(d−1)/2

)
.

In every case, the claim follows by recalling that Tn(h, l, d) =∑l
i=1

∑h−1
j=0 Mi,j . �

Theorem 5.7. For every h > 0, l > 0 and d > 1, the max-
imum number of nodes reachable in a chain network by a
canonic 〈h, l, d〉-layout is

�n(h, l, d)

= 1 +
h∑

k=1

Tn(k, l, d)

= 1 +
h∑

k=1

l∑
i=1

h−1∑
j=0

∑
0�kd/2−1�kd/2−2�···�k2�k1�i

k1+k2+···+kd/2−1=j

2k1

×
(

i

i − k1, k1 − k2, . . . , kd/2−2 − kd/2−1, kd/2−1

)
,

if d is even, and

�n(h, l, d)

= 1 +
h∑

k=1

l∑
i=1

h−1∑
j=0

∑
0�k(d−1)/2�k(d−1)/2−1�···�k2�k1�i

k1+k2+···+k(d−1)/2=j

2k1−k(d−1)/2

×
(

i

i − k1, k1 − k2, . . . k(d−1)/2−1 − k(d−1)/2, k(d−1)/2

)
,

if d is odd.

Unfortunately, �n(h, l, d) in general cannot be expressed
by means of a more compact closed formula. However, in
some cases it can be significantly simplified. For instance,

• d = 2: �n(h, l, 2) = h · l + 1.
In fact, by the definition of the matrix M in the proof of
lemma 5.6, the only non null elements of M belong to the
first column and their value is always equal to one. Hence,
the number of the nodes of every Tn(k, l, 2) is l and

�n(h, l, 2) = 1 +
h∑

k=1

Tn(k, l − 1, 2) = 1 + h · l.

This coincides with the result obtained in the previous sec-
tion, and in fact �(h, l, 2) coincides with the layout con-
struction depicted in figure 1.

• d � 2h: �n(h, l, d) = ∑min{h,l}
i=0 2i−1

(
h
i

)(
l
i

) + 1
2 .

In fact, in this case, our model and constructions coincide
with the ones in [9].

6. Conclusion

The main question left open in the paper is if the family of
the canonic layouts contains optimal layouts for d > 2. Even
if not claimed explicitly, our constructions show that this is
true for d � 2 and the previous results shown in the literature
seem to confirm this conjecture.

Moreover, it would nice to extend our results to more gen-
eral topologies and to the case in which the physical and ad-
jacency graphs are not coincident.

Another worth investigating issue is the extension to other
communication patterns like multicast and all-to-all.

Finally, it would be worth to investigate the approximabil-
ity of the layout construction problem for d > 1.
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