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Regional Gossip Routing for Wireless Ad Hoc Networks
Xiang-Yang Li� Kousha Moaveninejad� Ophir Frieder�

I. INTRODUCTION

One of the key challenges in ad hoc networks is the development of
dynamic and efficient routing protocols. Some routing protocols use
nodes’ positions, while some protocols are based on flooding essen-
tially. Gossip based routing method had been used and re-investigated
[1] to reduce the number of messages: Every node will forward a mes-
sage based on a uniform probability p. The gossiping exhibits a bi-
modal behavior [2]. Then, there is a threshold value p0 such that, in
sufficiently large random networks, the gossip message quickly dies
out if p < p0 and the gossip message spreads to all network if p > p0.
So ideally, we would set the gossiping probability close to p0, thus
save about 1 � p0 message overhead compared with the flooding.

Gossiping still produces lots of unnecessary messages in regions
that are far way from some line connecting the source to target nodes.
We propose regional gossiping, in which essentially only nodes inside
some region (derived from the source and target) will execute the gos-
siping protocol, and nodes outside the region will not participate in
the gossiping at all. The region we select in our simulations are some
ellipses using the source and target as foci. Our results show that, by
using appropriate optimization heuristics, we can save up to 94% mes-
sages even compared with the global gossiping method.

II. REGIONAL GOSSIP

Assume that wireless mobile hosts are a set V of n points distributed
in a two-dimensional space, such as a unit area square (or disk) accord-
ing to random uniform distribution Xn, or Poisson process Pn. As-
sume that all nodes have the same maximum transmission range equal
to r. Let G(V; r) be the graph defined on V with edges uv 2 E if and
only if kuvk � r. Let G
(Xn; rn) be the set of graphs G(V; rn) for
n nodes V that are uniformly and independently distributed in a two-
dimensional region 
. Gupta and Kumar [3] showed that a random
graph in G
(Xn; rn) is asymptotically connected with probability one
as n goes infinity, when 
 is a unit disk.

In this paper, a broadcast by a node u means u sends the message to
all nodes within its transmission range. The main communication cost
in wireless networks is to send out the signal while the receiving cost is
neglected here. We assume that the source node knows the target posi-
tion, the global ellipse factor `, in addition to its own position through
a low-cost GPS. In many applications such as data-centric sensor net-
work, there is only a fixed number of sinks, which are often static,
thus every node knows the positions of these possible target nodes.
Otherwise, location service is needed for finding the location of the
destination node. The geometry information of the source node and
the destination node is piggybacked along with the message packet.

When a node, say v, receives a message, it retrieves the geometry
position of the source s node and the target node t. Node v then checks
if it is inside the ellipse defined by using s and t as foci, i.e., whether
kvsk + kvtk � ` � kstk. When a node is not inside the ellipse, the
node will just simply discard this message. Otherwise, with a fixed
probability p, the node forwards this message to all nodes within its
transmission range. Hereafter, we call p the relay probability and `
the ellipse factor of our regional gossiping method. Obviously, the
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probability that the destination node receives the message depends on
the relay probability p, the ellipse factor `, the number of nodes n, and
the transmission range r.

We then estimate the relay probability. Consider the network of n
nodes distributed in a square region with side length a. It was shown
in [4] that if each node has transmission range rn and being off or fault
with probability p, the network is connected with high probability if p �
n�r2n ' 2 lnn. Assume that the source and target distance is d and the
ellipse factor is `. The number of nodes inside the ellipse is then about

Nd = n
a2
� �`

p
`2�1

4
d2. Since each node inside the ellipse forwards

the message with probability p after it receives the message, to let the
target receive the message almost surely, the subnetwork composed of
the nodes inside the ellipse with fault probability p must be connected.
The relay probability in our regional gossiping is thus at least p �
lnNd+c(Nd)

Nd��(r=a)
2 . Here c(Nd) is a number going to1when Nd goes to1.

The probability that the network (each node is chosen with probability

p) is connected is e�e
�c(N

d
)

. Substituting in Nd, we have

p � 4a4 ln(n�`
p
`2 � 1d2=(4a2))

�2d2r2`
p
`2 � 1 � n =

ln(n�è2 ed2=4)
n�2 è2 ed2er2=4

Here è2 = `
p
`2 � 1, ed = d=a, and er = r=a. Since for a random

pair of source and target nodes, d � p
2a, we have p ' ln(n�e`2=4)

n�2e`2er2=4
.

For example, consider a network with n = 1000, a = 15, and r = 1.
For ellipse factor ` = 1:2, we can estimate the relay probability p
such that the regional gossiping routing can deliver the packets almost

surely as p ' ln(n�e`2=4)

n�2e`2er2=4
= 0:74. The actual relay probability should

be larger since we omit the number c(Nd) here, which actually decides
the success probability of the regional gossiping. The percentage of all

vertices involved is at most p � Nd=n = ln(n�e`2 ed2=4)

�er2�n
' 0:46. Since

most pairs of source and target have distance d much smaller than a,
the actual number of involved vertices is much smaller. Let Pd be
the probability that a pair of source and target has distance d. The
average percentage of number of vertices (for all source and target
pairs) is actually

R a

x=0
p � NxPx=ndx. It is not difficult to show that

the percentage of vertices involved in regional gossiping is at most
p � Nd=2n = 0:23. When the ellipse factor ` = 1, we can estimate
the relay probability of the regional gossiping as p ' lnn

n�er2
= 0:495.

The actual relay probability should be larger, so do the percentage of
vertices involved in global gossiping. The experiments discussed in
the following sections verify the above study.

III. EXPERIMENTAL STUDIES

We tried unit disk graphs with different number of vertices that are
randomly placed in a 15�15 square. We choose n among 1000, 1500
and 2000. The ellipse factor ` is chosen from 1:2, 1:4, 1:6, 1:8 and
2. We also consider the case where the ellipse factor ` is 1 which is
just the traditional global gossiping method. The transmission range
is chosen from 1, 1:5, 2, 2:5 and 3. From [3], given 1000 nodes in a
15 � 15 square, we need r > 0:7 to guarantee a connected network
theoretically. We use the relay probabilities p from 0:1 to 1:0 with step
0:1 To study this transmission phenomenon in detail, we conduct fur-
ther simulations using relay probabilities from 0:02 to 0:30 with step
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0:02. We randomly select 100 pairs for each graph and conduct re-
gional gossiping routing for each pair. To compute the delivery rate,
we tried sending the message 1000 times for each pair. The algorithm
works better for dense graphs than sparse graphs with the same param-
eters p and `. Here we want to involve as little nodes as possible, i.e.,
to minimize the number of involved nodes that relay the message. The
ellipse factor, the relay probability, and graph density are the major
factors determining the number of involved vertices.

We first conduct extensive simulations to study the effect of the relay
probability on the message delivery rate. Intuitively, if we increase the
relay probability, the message delivery rate increases. Besides the relay
probability, we vary either `, n, or r. As can be seen in Figure 1, when
the probability p exceeds some threshold the delivery rate jumps from
near 0% to near 100%. This threshold decreases as ` increases.
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(a) n = 1000 (b) n = 2000.

Fig. 1. Message delivery rate v.s. relay probability. Here r = 1.

From Figure 1, we observed that when the graph becomes denser the
curve jumps earlier, since each time when a vertex relays the message,
more nodes will get the message so the probability that the message
reaches the target increases. Another important observation is as we
increase the ellipse factor, the message delivery rate does not increase
proportionally. Surprisingly, when the ellipse factor is around 1:8, the
message delivery rate is almost as good as the one using global gos-
siping (i.e., ` = 1). Intuitively, the vertices far away from the line
connecting the source and target do not help improving the message
delivery rate. We also observe that, for dense graphs, even a narrow el-
lipse could guarantee a good message delivery rate. On the other hand,
the ellipse factor does not compensate the the graph density.
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(a) n = 1000 (b) n = 2000

Fig. 2. Nodes involved v.s. relay probability. Here r = 1.

Not only the delivery rate is important, but also the number of ver-
tices involved in the message delivery is important for the network life
since the wireless devices are often powered by the batteries only. The
challenge is to find an ellipse factor and a relay probability such that
not only the delivery rate is high (close to 100%) but also the number
of vertices involved in the message delivery is as small as possible.
Actually they work against each other: a bigger ellipse factor implies
higher delivery rate, but more vertices involved. As can be seen in
Figure 2, the relation between the number of vertices involved and the
relay probability with respect to ellipse factors is close to linear.

Assume that we want to have the delivery rate more than 99% while
minimize the number of involved nodes, denoted by VI . We built the

left table of Table I as follows: for each ellipse factor, we can find
the needed relay probability to guarantee the message delivery above
99% from Figure 1, and then by knowing the values of ellipse factor
and the relay probability we can find the percentage of vertices that
are involved from Figure 2. To guarantee the message delivery rate
above 99%, we could involve only 15% of vertices when ` = 1:2, and
p = 0:9 when n = 1000.

TABLE I
PERCENTAGE OF THE VERTICES INVOLVED IN MESSAGE DELIVERY

` p VI %
1.2 0.9 15%
1.4 0.8 22%
1.6 0.7 25%
1.8 0.7 30%

infinity 0.7 70%

` p VI %
1.2 0.3 8%
1.4 0.24 11%
1.6 0.22 13%
1.8 0.20 14%

infinity 0.20 15%
n = 1000 n = 2000

We then study the effect of transmission range. In Figure 3 the trans-
mission range is 2 and n = 1000. Obviously the larger the transmis-
sion range is, the denser the graph will be and that causes the jump to
occur earlier. Since the jump happens earlier and quicker, we plot the
figures using relay probability range [0; 0:3] for r = 2, instead of [0; 1]
for r = 1. We built the right table of Table I for n = 1000, r = 2, the
same way as we built the left one. It shows that we could involve only
8% of vertices to guarantee the message delivery rate above 99% for
n = 1000, r = 2. For networks of 2000 nodes with r = 2, then only
6% of vertices will be involved (figures are not shown here).
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(a) Delivery Rate (b) involved vertices

Fig. 3. Delivery rate and involved nodes v.s. relay probability

IV. FUTURE WORK

We had assumed that two nodes can always communicate if their
distance is no more than the transmission range. However, practically,
some pair of nodes cannot communicate at all even they are close. We
can model this by assigning another link probability pl: a link exist
with probability pl. Here probability pl could be uniform or dependent
on the distance between the pair of nodes. We need study the effect of
link probability on the performance of regional gossiping. We can also
use non-uniform ellipse factors: a bigger ellipse factor when the source
and target are close.
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