Skip to main content
Log in

Training a Wireless Sensor Network

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

The networks considered in this paper consist of tiny energy-constrained commodity sensors massively deployed, along with one or more sink nodes providing interface to the outside world. Our contribution is to propose a scalable energy-efficient training protocol for nodes that are initially anonymous, asynchronous and unaware of their location. Our training protocol imposes a flexible and intuitive coordinate system onto the deployment area and partitions the anonymous nodes into clusters where data can be gathered from the environment and synthesized under local control. An important by-product of the training protocol is a simple and natural data fusion protocol as well as an energy-efficient protocol for routing data from clusters to the sink node. Being energy-efficient, our training protocol can be run on either a scheduled or ad-hoc basis to provide robustness and dynamic reconfiguration. We also outline a way of making the training protocol secure by using a parameterized variant of frequency hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Agre and L. Clare, An integrated architecture for cooperative sensing networks, IEEE Computer 33(5) (2000) 106–108.

    Google Scholar 

  2. F. Akyildiz, W. Su, Y. Sankarasubramanian and E. Cayirci, Wireless sensor networks: A survey, Computer Networks 38(4) (2002) 393–422.

    Google Scholar 

  3. R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems (Wiley, New York, 2001).

    Google Scholar 

  4. R. Anderson and M. Kuhn, Tamper resistance — a cautionary note, in: Proc. 2nd USENIX Workshop on Electronic Commerce, Berkeley, CA (1996), pp. 1–11. IEEE Wireless Communications 9(1) (2002) 40–48.

  5. S. Bandyopadhyay and E. Coyle, An efficient hierarchical clustering algorithm for wireless sensor networks, in: Proc. INFOCOM'2003, San Francisco, CA (April 2003).

  6. D. Braginsky and D. Estrin, Rumor routing algorithm for sensor networks, in: Proc. Internat. Conf. on Distributed Computing Systems (ICDCS-22) (November 2001).

  7. N. Bulusu, J. Heidemann and D. Estrin, GPS-less low cost outdoor localization for very small devices, IEEE Personal Communications 7(5) (2000) 28–34.

    Google Scholar 

  8. N. Bulusu, J. Heidemann and D. Estrin, Scalable coordination for wireless sensor networks: self-configuration localization systems, in: Proc. 6th Internat. Sympos. on Communication Theory and Applications (ISCTA-2001) (July 2001).

  9. S. Capkun, M. Hamdi and J.-P. Hubeaux, GPS-free positioning in mobile ad-hoc networks, Cluster Computing 5(2) (2002) 157–167.

    Google Scholar 

  10. D.W. Carman, P.S. Kruus and B.J. Matt, Constraints and approaches for distributed sensor network security, Technical Report 00–010, NAI Labs (2000).

  11. D. Coore, R. Nagpal and R. Weiss, Paradigms for structure in an amorphous computer, MIT Artificial Intelligence Laboratory Technical Report AI-1616 (October 1997).

  12. L. Doherty, H.S.J. Pister and L.E. Ghaoui, Convex position estimation in wireless sensor networks, in: Proc. INFOCOM'2001, Anchorage, AK (April 2001).

  13. A. Ephremides, J. Wieselthier and D. Baker, A design concept for re-liable mobile radio networks with frequency hopping signaling, Proceedings of the IEEE 75(1) (1987) 56–73.

    Google Scholar 

  14. D. Ganesan, R. Govindan, S. Shenker and D. Estrin, Highly resilient, energy-efficient multipath routing in wireless sensor networks, ACM Mobile Computing and Communications Review 5(4) (2001).

  15. S. Ghiasi, A. Srivastava, X. Yang and M. Sarrafzadeh, Optimal energy-aware clustering in sensor networks, Sensors 2 (2002) 258–269.

    Google Scholar 

  16. L. Girod, V. Bychkovskiy, J. Elson and D. Estrin, Locating tiny sensors in time and space: A case study, in: Proc. International Conference on Computer Design (ICCD 2002), Freiburg, Germany (September 2002).

  17. R.G. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics (Addison-Wesley, New York, 1989).

    Google Scholar 

  18. http://www.darpa.mil/mto/mems/

  19. http://www.stanford.edu/class/ee321/ho/MEMS-14-sensors.pdf

  20. http://www.xs4all.nl/?answijk/chipdir/m/sensor.htm

  21. C. Intanagonwiwat, R. Govindan and D. Estrin, Directed diffusion: A scalable and robust communication paradigm for sensor networks, in: Proc. MOBICOM'00, Boston, MA (August 2000).

  22. K. Jones, A. Wadaa, S. Olariu, L. Wilson and M. Eltoweissy, Towards a new paradigm for securing wireless sensor networks, in: Proc. New Security Paradigms Workshop (NSPW'2003), Ascona, Switzerland (August 2003).

  23. J.M. Kahn, R.H. Katz and K.S.J. Pister, Mobile networking for Smart Dust, in: Proc. MOBICOM'99, Seattle, WA, August 17–19 (1999).

  24. J. Kulik, W. Heinzelman and H. Balakrishnan, Negotiation-based protocols for disseminating information in wireless sensor networks, Wireless Networks 8(3) (2002).

  25. K. Langendoen and N. Reijers, Distributed localization in wireless sensor networks, a quantitative comparison, Manuscript (May 2003).

  26. K. Nakano and S. Olariu, Randomized initialization protocols for radio networks, in: Handbook of Wireless Networks and Mobile Computing, ed. I. Stojmenovi? (Wiley, New York, 2002) pp. 195–218.

    Google Scholar 

  27. K. Nakano and S. Olariu, Uniform leader election for radio networks, IEEE Transactions on Parallel and Distributed Systems 13 (2002) 516–526.

    Google Scholar 

  28. National Research Council, Embedded, Everywhere: A Research Agenda for Systems of Embedded Computers, Committee on Networked Systems of Embedded Computers, for the Computer Science and Telecommunications Board, Division on Engineering and Physical Sciences, Washington, DC (2001).

    Google Scholar 

  29. D. Niculescu and B. Nath, Ad-hoc positioning system, in: Proc. IEEE GLOBECOM, San Antonio, TX (November 2001) pp. 2926–2931.

  30. A. Perrig, R. Szewczyk, V. Wen, D. Culler and J.D. Tygar, SPINS: Security protocols for sensor networks, in: Proc. ACM SIGMOBILE, Rome, Italy (July 2001).

  31. G.J. Pottie and W.J. Kaiser, Wireless integrated sensor networks, Communications of the ACM 43(5) (2000) 51–58.

    Google Scholar 

  32. P. Saffo, Sensors, the next wave of innovation, Communications of the ACM 40(2) (1997) 93–97

    Google Scholar 

  33. C. Savarese, J. Rabaey and K. Langendoen, Robust positioning algorithms for distributed ad-hoc wireless sensor networks, in: Proc. USENIX Technical Annual Conference, Monterey, CA (June 2002) pp. 317–328.

  34. R.C. Shah and J. Rabaey, Energy aware routing for low energy ad hoc sensor networks, in: Proc. IEEE WCNC, Orlando, FL (March 2002).

  35. C.-C. Shen, C. Srisathapornphat and C. Jaikaeo, Sensor information networking architecture and applications, IEEE Personal Communications (August 2001) 52–59.

  36. E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang and A. Chandrakasan, A physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks, in: Proc. MOBICOM'2001, Rome, Italy (July 2001).

  37. K. Sohrabi, J. Gao, V. Ailawadhi and G. Pottie, Protocols for self-organization of a wireless sensor network, IEEE Personal Communications (October 2000) 16–27.

  38. S. Tilak, N.B. Abu-Ghazaleh and W. Heinzelman, A taxonomy of wireless micro-sensor network models, Mobile Computing and Communications Review 6(2) 28–36.

  39. A. Wadaa, S. Olariu, L. Wilson, K. Jones and Q. Xu, On training wireless sensor networks, in: Proc. 3rd International Workshop on Wireless, Mobile and Ad Hoc Networks (WMAN'03), Nice, France (April 2003).

  40. B. Warneke, M. Last, B. Leibowitz and K. Pister, SmartDust: communicating with a cubic-millimeter computer, IEEE Computer 34(1) (2001) 44–51.

    Google Scholar 

  41. A. Woo and D.E. Culler, A transmission control scheme for media access in sensor networks, in: Proc. MOBICOM'01 (July 2001).

  42. A.D. Wood and J.A. Stankovic, Denial of service in sensor networks, IEEE Computer 35(10) (2002) 54–62.

    Google Scholar 

  43. W. Ye, J. Heidemann and D. Estrin, An energy-efficient MAC protocol for wireless sensor networks, in: Proc. INFOCOM 2002, NewYork (June 2002).

  44. V.V. Zhirnov and D.J.C. Herr, New frontiers: self-assembly and nano-electronics, IEEE Computer 34(1) (2001) 34–43.

    Google Scholar 

  45. J. Zyren, T. Godfrey and D. Eaton, Does frequency hopping enhance security? http://www.packetnexus.com/docs/20010419frequency_Hopping.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadaa, A., Olariu, S., Wilson, L. et al. Training a Wireless Sensor Network. Mobile Networks and Applications 10, 151–168 (2005). https://doi.org/10.1023/B:MONE.0000048552.15853.c2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MONE.0000048552.15853.c2

Navigation