;:‘ Multimedia Tools and Applications, 23, 7-30, 2004
uwer Academic Publishers. Manufactured in The Netherlands.
‘ 2004 K1 Academic Publishers. Manuf: d in The Netherland

An Efficient Synchronization Mechanism
for Mirrored Game Architectures

ERIC CRONIN ecronin@eecs.umich.edu
ANTHONY R. KURC tkurc @eecs.umich.edu
BURTON FILSTRUP bfilstru@eecs.umich.edu
SUGIH JAMIN* jamin@eecs.umich.edu

Electrical Engineering and Computer Science Department, University of Michigan

Abstract. Existing online multiplayer games typically use a client-server model, which introduces added latency
as well as a single bottleneck and single point of failure to the game. Distributed multiplayer games minimize
latency and remove the bottleneck, but require special synchronization mechanisms to provide a consistent game
for all players. Current synchronization methods have been borrowed from distributed military simulations and are
not optimized for the requirements of fast-paced multiplayer games. In this paper we present a new synchronization
mechanism, trailing state synchronization (TSS), which is designed around the requirements of distributed first-
person shooter games.

We look at TSS in the environment of a mirrored game architecture, which is a hybrid between traditional
centralized architectures and the more scalable peer-to-peer architectures. Mirrored architectures allow for im-
proved performance compared to client-server architectures while at the same time allowing for a greater degree
of centralized administration than peer-to-peer architectures.

We evaluate the performance of TSS and other synchronization methods through simulation and examine
heuristics for selecting the synchronization delays needed for TSS.

Keywords: consistency, game platforms, system architectures

1. Introduction

Online multiplayer games typically take one of two basic forms: centralized client-server
(all commands go through a single server), shown in figure 1(a), or distributed peer-to-peer
(commands go directly to other players), shown in figure 1(b). Client-server architectures
are usually simpler, but are also less efficient and scalable. Every command must go from
the client to the server and then be re-sent by the server to other clients in the form of update
messages. This adds additional latency over the minimum cost of sending commands directly
to other clients. In addition, the server becomes a single point of failure in the game. Unlike
centralized games, where there is a single authoritative copy of the game state kept at the
server, distributed game architectures require a copy of the entire game state to be kept at

*This research is supported in part by the NSF CAREER Award ANI-9734145, the Presidential Early Career Award
for Scientists and Engineers (PECASE) 1998, the Alfred P. Sloan Foundation Research Fellowship 2001, and by
the United Kingdom Engineering and Physical Sciences Research Council (EPSRC) Grant no. GR/S03577/01,
and by equipment grants from Sun Microsystems Inc. and HP/Digital Equipment Corp. Part of this work was
completed when Sugih Jamin was visiting the Computer Laboratory at the University of Cambridge.

8 CRONIN ET AL.

— - Command
S

a. Client-Server b. Peer-to-Peer

A

L_(__Prvate__)__,|

L

= * Command
— State Update

¢. Mirrored Server

Figure 1. Multiplayer game architectures.

each client. As a result, these architectures require some form of synchronization between
clients to ensure that each copy of the game state is the same. Without synchronization,
clients’ game states would diverge over time due to network delays and other factors.

Common synchronization techniques used in existing distributed simulation environ-
ments include bucket synchronization, breathing bucket synchronization, and TimeWarp
synchronization [8, 19]. Many of these synchronization mechanisms were initially designed
for use in large-scale military simulations, and were only later adapted for use in multiplayer
games as games gained popularity. In this paper we present a novel new synchronization
mechanism, trailing state synchronization (TSS), which is designed specifically with dis-
tributed first-person shooter games such as Quake [10] in mind. First-person shooters are the
most latency-sensitive class of multiplayer games, and have a different set of optimization
parameters than large military simulations. Existing synchronization techniques suffer from
problems such as introducing too much additional latency, providing only loosely consis-
tent synchronization, or requiring high memory and computation costs. TSS is designed
to execute commands quickly while at the same time maintaining a consistent copy of the
game state at all players, and doing this in a computationally and memory-wise efficient
manner.

The remainder of the paper is organized as follows: in Section 2 we provide background
on multiplayer game architectures, including the mirrored game architecture, and previously

EFFICIENT SYNCHRONIZATION MECHANISM 9

proposed synchronization methods. In Section 3 we introduce trailing state synchronization.
Section 4 examines the performance of TSS and compares it with other synchronization
algorithms. Finally, Section 5 concludes.

2. Background
2.1. Mirrored game server architecture

Despite the added latency, the single point of failure, and the scalability problems, the client-
server architecture is by far the most commonly used architecture in current multiplayer
games. There are a number of reasons behind the popularity of the client-server architecture.
First, the networking code is simpler to write since complicated synchronization processes
can be avoided. Often a single player version of a game can be quickly adapted for client-
server play with only minor changes. Second, and usually more importantly, controlling
the server gives the game publisher more administrative control. Having control over game
servers lets publishers perform authentication, copy protection, accounting and billing, and
easy update of client code. Third, to reap all the benefits of a peer-to-peer architecture,
a multicast connection between clients is needed to reduce the bandwidth requirements.
Unfortunately, IP multicast is not yet widely available, and most existing peer-to-peer
games resort to sending a separate copy of each message to every player, greatly increasing
the bandwidth requirements [13]. End-host multicast [9] can be used to reduce this problem,
but to our knowledge has not been used in multiplayer games.

The mirrored server architecture (figure 1(c)) that we first proposed in [4] is a hybrid
architecture designed to address the problems with client-server and peer-to-peer architec-
tures, similar to the generic proxy architecture proposed in [15]. Instead of a single central
server, there are multiple distributed servers for each game. Clients connect to the mirror
closest to themselves in a traditional client-server fashion. Players can either pick a mirror
manually, or the game client could make use of an Internet distance service [7] to automati-
cally select a mirror close to the client. If the mirrors are well placed, the additional latency
overhead of the client-server architecture is greatly reduced. The mirrors themselves are
then connected to each other over a private, low-latency multicast network used only for
game traffic. The mirrors exchange commands using a peer-to-peer architecture, with each
mirror maintaining its own copy of the game state. The use of a private network allows IP
multicast to be realistically used.

Since there are now multiple servers for the same instance of a game, the single point
of failure in traditional client-server architectures is eliminated. If any one of the servers
crashes, the clients connected to it will be disconnected, but the other servers and clients
can continue with the game. Unlike peer-to-peer games, the networking complexity in the
mirrored server architecture lies in the servers not in the client. In fact, in our prototype
mirrored server version of Quake described in Section 4.1, the Quake client itself is not
changed at all. Unlike a fully distributed game architecture, the mirrored servers are still
under the game publisher’s control. This allows for authentication, copy protection, as well
as the ability to trust mirrors. The ability to trust the mirrors is important because in peer-
to-peer architectures (which the mirror architecture is) where the clients are untrusted, it

10 CRONIN ET AL.

becomes easier to cheat, and it becomes more difficult for other participants to detect when
someone is cheating [2].

The use of mirrored servers does place some restrictions on what the synchronization
algorithm can do. Each mirror must be able to handle multiple clients that could be located
in any part of the game’s world at any given time. As a consequence, it is not straightforward
to perform interest management between mirrors. In a purely peer-to-peer architecture, two
clients who are not interacting with each other need not be tightly synchronized, reducing
the bandwidth requirements, and preventing clients from knowing information they do not
absolutely need (thus reducing the opportunities for cheating). A limited degree of interest
management between individual clients and their mirror is still possible, e.g., the mirror
can send clients only the information necessary to render their current locations. We plan
to study this issue in greater detail as part of our future work.

2.2. Synchronization techniques

In peer-to-peer games, instead of sending commands to a central server that computes the
game state and issues updates, clients send messages directly to each other. In order for each
client to have a consistent view of the game state, there needs to be some mechanism to
guarantee a global ordering of events [12].! This can either be done by preventing misorder-
ing outright (by waiting for all possible commands to arrive), or by having mechanisms in
place to detect and correct misorderings. An additional complication to synchronization of
multiplayer arises from their continuous nature. Even if there are no direct misorderings of
commands, the time at which they are executed can create additional ordering constraints.
In these simulations, both the order and the simulation time of execution are important in
maintaining consistency. How this synchronization is performed is very important to the
success of the game; if it is not possible to maintain ordering within a reasonable time, no
one will be willing to play the game.

2.2.1. Conservative algorithms. Lockstep synchronization [17], used in military simula-
tions, is by far the simplest technique available to ensure consistency. No member is allowed
to advance its simulation clock until all other members have acknowledged that they are
done with computation for the current time period. This takes the first approach to providing
a global ordering of events: preventing out of order events from even being generated. In
this system, it is impossible for inconsistencies to occur since no member performs calcu-
lations until it is sure it has the exact same information as everyone else. Unfortunately, this
scheme also means that it is impossible to guarantee any relationship between simulation
time (also sometimes referred to as global virtual time (GVT) or game time) and wall-clock
time. There is no way to guarantee that the game will advance at a regular rate, much less at
a rate fast enough for interactive gameplay. In a multiplayer game, this is not an acceptable
tradeoff. There are a number of similar conservative algorithms that perform better than
lockstep but are still unable to maintain a constant rate in all situations. One of these is
fixed time-bucket synchronization [17], where a synchronization delay is used to reduce the
dependency on latency between members; an optimistic version of this algorithm that is bet-
ter suited to multiplayer games is discussed below. While these “conservative” algorithms

EFFICIENT SYNCHRONIZATION MECHANISM 11

Events (GVT

Late event (should have been executed hers)

Last executed event
-
- buckets

)
1 ——
Simulation time

Rollback L
host1 : 1 >
- 7 Z o time
Loan gm S W w g PR Synchronization delay
L L L - ’ Simulation time \ ot
—~—§—: 7 Transmission delay
/ y ~<—Network transmission
Rollback Magnitude \/‘ host2 —e f f } f .
Anti-messages time
a. TimeWarp b. Optimistic Bucket

Figure 2. Optimistic synchronization algorithms.

perform poorly in fast-paced games where a constant rate of simulation is important, they
may still be suitable for slower turn-based games.

2.2.2. Optimistic algorithms. The second approach to ensuring consistency is to detect
and correct any differences in states. Optimistic algorithms execute events before they know
for sure that no earlier events could arrive, and then repair inconsistencies when they are
wrong. This class of algorithms is far better suited for interactive situations. It is worth
looking at several examples of existing optimistic algorithms and their shortcomings when
used with games like Quake before describing TSS.

TimeWarp synchronization [19] (figure 2(a)) works by taking a snapshot of the state
before each execution (we call this snapshot the execution context), and issuing a rollback
to an earlier state if an event earlier than the last executed event is received. On a rollback,
the state is first restored to that of the snapshot, and then all events between the snapshot time
and the current execution time are re-executed, including the late command in its correct
place. Periodically, all members reset the oldest time at which an event can be outstanding,
thereby limiting the number of snapshots needed (and also limiting the maximum lateness
of a command that can be recovered from).

A main limiting feature of TimeWarp synchronization in a game such as Quake is the
requirement to checkpoint the execution context at every message. A Quake execution
context consumes about one megabyte of memory, and new messages arrive at a rate
of one every thirty milliseconds from each client (more recent games have even higher
frame rates and larger execution contexts). Additionally, copying an execution context
involves not just the memory copy but also repairing linked lists and other dynamic struc-
tures. Copying state on every command requires both a fast machine and large amounts of
memory.

One optimization to remove this limitation is to only take snapshots of the state periodi-
cally [14], which reduces the memory and copy overheads, but makes rollbacks potentially
more costly since there is no longer always a snapshot from exactly before the inconsistency
occurred. Additionally, to reduce memory usage, the snapshots can contain only what has
changed in the state instead of the entire state. This enhancement however complicates both

12 CRONIN ET AL.

command execution (requiring all changes to state to be explicitly logged) and rollbacks
(requiring the game to support an “undo” mode of operation), both of which require tight
integration into the design of the game engine.

Another complication with rollbacks is that TimeWarp assumes that events directly gen-
erate new events. As part of the rollback, special anti-messages are sent out to cancel previ-
ously generated events that have become invalid (that in turn can trigger other rollbacks if
these messages have already been executed, which in turn trigger more anti-messages and
so on). This explosion of anti-messages can bog down the network and tie up servers with
anti-message processing instead of executing the game. In addition, in interactive games
the player sits between incoming events and newly generated ones, removing this direct
causal relationship. Anti-messages do not fit in well with this architecture, since the player
is outside the control of the synchronization mechanism.

Finally, TimeWarp issues a rollback immediately upon detecting a late command. While
this has the benefit of making rollbacks as small as possible, if there are several delayed
commands in rapid succession, there will be several of these rollbacks in a row. The com-
bined effect of these multiple rollbacks is similar to that of a single larger rollback to the
player. If the additional delay is small, delaying these rollbacks and aggregating them into
one will not be noticed by the player.

“Breathing” algorithms [18] attempt to solve the problem of excessive rollbacks seen
in TimeWarp by restricting the number of commands that can be executed optimisti-
cally. Instead of fully optimistic execution, breathing algorithms limit their optimism to
events within an event horizon. Events beyond the horizon can not be guaranteed to be
consistent, and are therefore not executed. As with anti-messages in TimeWarp, a prob-
lem with applying this to Quake is that nearly all events in Quake are not directly gen-
erated by other events. Instead, they are generated by user actions (that may be influ-
enced by earlier events), and it is therefore not clear how to accurately define an event
horizon.

The algorithm implemented in MiMaze [8] is an optimistic version of the conservative
bucket synchronization algorithm (figure 2(b)). Events are delayed for a time that should be
long enough to prevent misorderings before being executed. If events are lost or arrive later
than expected, however, MiMaze does not attempt to detect inconsistencies or recover in any
way. If no events from a member are available in a particular bucket, the previous bucket’s
event is dead reckoned, for example by simply replaying the last event again or extrapolating
a new event based on the last few events; if multiple events are available in a particular
bucket, only the most recent one is used. Late events are scheduled for the next available
bucket; however, late events are not likely to be used because only one event for each
member is executed per bucket. For a simple game such as MiMaze, in which movement is
limited to a confined maze where positional errors are minimal, and interactions between
players are limited enough that any inconsistencies do not dramatically impact gameplay,
these optimizations at the cost of consistency may be acceptable. For a game like Quake,
where interactions between players are much more frequent, small inconsistencies are
likely to combine to lead to larger divergences between different states. It is possible to
decrease the number of inconsistencies in bucket synchronization, but only by increasing
the synchronization delay, which decreases responsiveness.

EFFICIENT SYNCHRONIZATION MECHANISM 13

3. Trailing state synchronization

None of the existing distributed game or military simulation synchronization algorithms
introduced above are entirely suited to a game such as Quake that has frequent updates, has
aneed for strong consistency, and is very latency sensitive. Our solution to this problem is a
new algorithm called trailing state synchronization (TSS). Similar to TimeWarp, TSS is an
optimistic algorithm, and must execute rollbacks when inconsistencies are detected. How-
ever, it does not suffer from the high memory or processor overheads of TimeWarp, is able
to aggregate multiple rollbacks into a single one, is able to provide an arbitrary maximum
lateness that can be recovered from, and has the potential to recover from inconsistencies
without full rollbacks in some situations.

When rollbacks are required, instead of copying the state from a snapshot taken just prior
to the offending command as TimeWarp does, TSS copies the state from a second copy of
the same game that is running at a delay relative to the inconsistent state. This second copy
of the game state, since it is trailing the first in execution, has had more time to reorder
commands and does not have the inconsistency that must be repaired (in fact, as we will see
later, it is this second state that actually detects that an inconsistency has occurred). This use
of dynamically changing states as the source of rollbacks as opposed to static (including
periodic [14]) snapshots is a fundamental difference between TSS and TimeWarp.

Instead of keeping snapshots at every command (or every few commands), TSS keeps and
updates a fixed number of copies of the game state, each of which is at a different simulation
time. These copies, referred to as states, each execute every command, but after differing
synchronization delays. Only the leading state, which has the shortest synchronization
delay, is rendered to the clients’ screens, while the other trailing states are used to detect
and correct inconsistencies. At simulation time ¢, if the leading state Sj is executing a
command from simulation time ¢ — dp, then the first trailing state S; will be executing
commands up to simulation time # — d}, the second trailing state S, commands up to t — d5
and so on, wheredy < d; < ... < d,.In this manner, only one snapshot’s worth of memory
is required for each trailing state, reducing and bounding the memory requirements. Note
that the synchronization delays do not have to be linearly spaced. From this description, it
is clear that a main assumption with TSS is that the cost of executing commands multiple
times in each of the states is less expensive than just taking a snapshot. In Section 4
we will revisit this assumption, and see that for first person shooters it appears to hold
true.

Figure 3 graphically depicts the components of TSS. Time increases to the right. The
0 point on each state is in reference to execution time, not simulation time. TSS is able
to provide consistency because each trailing state sees fewer misordered commands than
the state preceding it by waiting longer for delayed commands to arrive before executing.
The leading state executes with a small synchronization delay (dp). The synchronization
delay for a state is defined as the difference between the current simulation time (a global
value at each client with which new commands are timestamped before being sent) and the
execution time of the state. The simulation time is used to allow commands to be reordered
properly before execution. If a command is stamped with simulation time 7 at the generating
client, then it cannot be displayed until simulation time ¢ + dp, even at that same client. In

14 CRONIN ET AL.

Current Simulation time
(Issue time) \
Simulation Time o

r T T
Oms 100ms

T T
(Render time) 00

Leadiné; State Sol
o =50ms 4

Execution Time/d
Trailing State S1
d1g= 100ms| / d \

Executed Commands d1 = 100ms

Synchronization Delay Pending Commands

Figure 3. TSS terminology.

other words, the simulation time is used internally to timestamp commands when issued,
while the execution time of the leading state is what is actually rendered to clients.

3.1. TSS operation

As commands arrive (or are generated) at a client, they are placed on a pending list for
each trailing state in timestamp order. Late moves whose timestamps are earlier than the
current execution time for a state are placed at the head of the pending list for the state
and are executed immediately. Different copies of a particular command in each trailing
state are linked together, so that the command from state S; can find the copy of the same
command that was executed in the preceding state S;,_;. To detect inconsistencies, each
trailing state looks at the changes in game state that the execution of a command produced,
and compares them with the changes recorded in the directly preceding state. While this
execution information kept is similar to that kept in the second TimeWarp optimization
discussed in Section 2.2.2, the record in TSS need not contain everything that would be
required to repair the changes, but only enough data to determine that the two executions
were not identical. This has the potential to make TSS simpler to integrate into an existing
game engine.

When a command is executed in the last of the trailing states, the command is deleted from
all states since it will never be needed again. The last state has no trailing state to synchronize
it, and therefore any inconsistencies in it will go undetected. However, if it is assumed (as
is done in the other bounded optimistic algorithms) that the longest synchronization delay
is large compared to expected command transit delays, this is unlikely to pose a problem.

If an inconsistency is discovered, a rollback from the incorrect leading state to the correct
trailing state is performed in the leading state. This consists of copying the game state from
the trailing state to the leading state, as well as adding back to the leading state’s pending
list any commands that were executed in the incorrect state after the rollback time. The next
time the leading state executes, it will re-execute these commands and return to the proper
execution time for its synchronization delay. If a rollback occurs between states S; and S;_,

EFFICIENT SYNCHRONIZATION MECHANISM 15

it is possible that once S;_; re-executes to correct the inconsistency, new inconsistencies
between S;_; and §;_, will be found, generating a rollback between S;_; and S;_». In this
fashion, any inconsistencies in a trailing state that the leading state also shares will be
corrected.

When an inconsistency is detected between states S; and S;_;, where i > 1, the rollback
“cascades” until it reaches Sy. The first rollback will be between S; and S;_;. Then, once
S;_1 re-executes and detects the inconsistency with its leading state S;_», a second rollback
between S;_; and S;_, will occur. This repeats until finally Sy is corrected. This mechanism
is used as opposed to just executing several rollbacks immediately between S; and S;_;, S;
and S;_5, ..., S; and Sj to prevent unnecessary re-execution. In order for TSS to continue
to function correctly, all the states between S; and Sy must eventually re-execute commands
between S;’s execution time and the execution time of the intermediate state to maintain
consistency. If the rollbacks all occur at once, many of these re-executions will be duplicated
in all the states, whereas with cascading rollbacks each command is only re-executed once
and the updated (consistent) state copied to the preceding state where further re-executions
will be done. There is no additional cost to using cascading rollbacks other than having to
do the comparison to detect that an inconsistency has occurred in each state.

One of the not immediately obvious features of the way TSS detects inconsistencies is that
arollback in TSS may actually repair more than one inconsistency, eliminating the need for
future rollbacks. In TimeWarp, as soon as an out of order command is received, a rollback
occurs. In TSS however, rollbacks are delayed until the trailing state reaches the point
where the inconsistency occurred in the leading state. In this extra time, other commands
may have arrived which were also late for the leading state, creating more inconsistencies.
When the rollback occurs however, these commands will be moved back to the pending
list to be re-executed, this time in the correct order. This feature can be seen as delaying
the rollback in order to amortize its cost over several inconsistencies. This amortization of
rollbacks is unique to TSS among the optimistic synchronization algorithms studied.

When a rollback occurs, the player’s position will jump from the incorrect position to the
correct position and gameplay continues. Occasionally, rollbacks will cause more drastic
changes, such as the player coming back to life when they thought they had been killed. The
impact of these events can be lessened by delaying slightly the notification that the player
has been killed, in case there is a rollback. Instead of issuing anti-messages on rollbacks
as in TimeWarp, we take the same approach often used in dead reckoned games, applying
the new commands to the corrected state. These problems are no worse in TSS than in any
other dead reckoned game that corrects for inconsistencies [3].

3.1.1. Weakly and strictly consistent events. The synchronization techniques studied in
Section 2.2 treat all commands in the same way, i.e., they do not distinguish between differ-
ent types of commands when determining how to handle late commands. By differentiating
between different types of commands, TSS has the potential to avoid rollbacks in some sit-
uations where TimeWarp (or other synchronization algorithms that do not employ multiple
execution states) would not be able to. By waiting until the results of the on-time execution
of a command are known before triggering a rollback, TSS has more information available
when determining if the rollback is necessary. If either the correct or incorrect execution

16 CRONIN ET AL.

result is unavailable when the rollback decision must be made, as is the case with TimeWarp,
the only choice is to be conservative and trigger a rollback.

In Quake, there are two basic classes of commands. The first type we refer to as weakly
consistent, which consists of move commands. With these commands, it is not essential
that the same move happened at the same time, as much as that the position of the player in
question is within some small margin of error in both states. The other class of commands we
refer to as strictly consistent. For these commands, such as weapons being fired (particularly
projectiles), it is important that both states agree on exactly when and where the event
occurred. Strictly consistent commands also dominate any weakly consistent commands
near them in time. For example, when a weapon is fired, having the exact correct position
for players within the weapon’s range becomes important. For other uses of TSS, there may
be similar classifications where comparing the results of a command, as opposed to just
the execution time of the command, gives a better indication of whether an inconsistency
occurred.

The advantage of separating commands into classes in this manner is that when comparing
the results of executing a command in two states, weakly consistent commands can be
allowed a margin of error, and less invasive means of repairing inconsistencies can be
employed (for example, by adjusting the player’s trajectory to correct for positional errors).
If these less invasive corrections are ineffective, the error will become large enough to
trigger a rollback, to maintain complete consistency. The disadvantage is that the game
must now provide functions to classify commands, compare two executions of commands,
and perform corrections without rollbacks.

If commands are not separated into classes, the information needed to determine if
two executions of a command are consistent is reduced to determining if the command
was executed on time or not. This has the advantage that if a move arrives late, there is
no need to place it at the head of the pending list to be executed immediately, since we
already know that this execution will be incorrect and it will need to be re-executed once a
rollback occurs. Depending on the game however, it may still be advantageous to execute
the command immediately, even though we know it will be re-executed later, in order to
lessen the impact of the rollback on the client.

3.2. An example of TSS

We provide a graphical example of TSS’s operation. Figure 4(a) shows the normal on-time
operation of TSS. A command with timestamp 225 ms arrives at the synchronizer when it
is at simulation time 250 ms. Because the synchronization delays in use are 50 and 100 ms,
the command is placed in the pending list for both states, to be executed in the future. It
will first be executed at simulation time 275 ms in state Sy. At time 325 ms, state S; will
execute it, and compare its results with that of Sy. Since they are identical, no inconsistency
is found and the command is discarded from the synchronizer.

Figure 4(b) depicts what happens when a command arrives late. The synchronizer is still
at simulation time 250 ms, but now the arriving move has a timestamp of 175 ms. The state
So, which has a synchronization delay of 50 ms is already at execution time 200 ms, so the
command is executed immediately there, but still 25 ms later than it should have been (we

EFFICIENT SYNCHRONIZATION MECHANISM

Simulation Time -
T

T T T T
oms 100ms 200ms

Leadmg State Sc‘ o e
o = 50ms |

Trailing State S|‘
di = 100ms

|: timestamp=225
a. On-Time Command

Figure 4. TSS execution.

Simulation Time -
T

r T T T T T
oms 100ms 200ms 300ms

=50ms

Leadilgu State Sn‘ é i ‘.

175 1= 200,

Trailén‘gfn‘%aems;‘ E! .
;: timestamp=175

a. Detection

Simulation Time -

T T
oms 100ms. 200ms 300ms

Leading State So
o = 50ms

Trailing State St I
dr = 100ms

| : timestamp=175

b. Late Command

Simulation Time -
T T

T T T
oms. 100ms 200ms 300ms

Leading State So .
o = 50ms
{COPYT Rollback Magnitude ————+

Trailing State S1
001

E!|=1 ms i.l i

g: timestamp=175

b. Repair

Figure 5. TSS rollback.

assume for illustrative purposes that late commands are always executed). State S| has a
large enough synchronization delay and the move can still be executed on time.

When S; executes this command and compares its result with that of Sy, they do not match
(figure 5(a)), which triggers a rollback (figure 5(b)). The entire state of S; is first copied
over Sy’s incorrect state. Any commands in the 50 ms gap between where S; has executed
up to and where Sy was executing before the rollback (dark shaded region in the figure) are
moved back to the pending list in Sy to be re-executed. If any of the other commands in
the dark shaded region had originally arrived late at Sy (e.g. the second command shown,
with timestamp 290), they will no longer generate a rollback in the future since they will
be re-executed on-time as part of the 175 ms command’s rollback.

3.3. Analysis of TSS

TSS is an optimistic algorithm, executing commands before it is certain that no earlier
commands may still be in transit. This distinguishes it from the entire family of conservative
protocols, and makes it suitable for use in first-person shooters where the game must be able
to keep up with wall-clock time. Although it uses a synchronization delay as in MiMaze, TSS
is able to provide both a quick initial delay and a long window for which all inconsistencies
will be detected through the use of multiple states. In MiMaze, these two variables are
controlled through the single synchronization delay parameter, so the system can either be
responsive or consistent but not both.

TSS is most similar to TimeWarp, since both are fully optimistic and employ rollbacks to
recover from any inconsistencies. With the addition of optimizations such as less frequent
snapshots, to contain the memory usage, and a synchronization delay, to prevent unnecessary

18 CRONIN ET AL.

rollbacks in a game environment, TimeWarp can be made to perform similarly to TSS in the
respective aspects. TimeWarp is not, however, able to handle bursts of late events in a single
rollback, nor is it able to control how much re-execution is needed when fewer snapshots
are used (sometimes a rollback will occur a few events after a snapshot, sometimes a few
events before the next snapshot). In addition, TimeWarp is unable to take advantage of event
classifications to reduce the number of rollbacks needed.

TSS performs best when the cost of executing a command (multiple times) is less than
the cost of making a snapshot because it must run multiple parallel versions of the same
game. Experiments in Section 4 show that in the case of Quake, the cost of executing a
command is an order of magnitude less than the cost of making a snapshot. Although it
must execute each command multiple times (once for each state being maintained), since
each state is independent, TSS is able to perform these executions in parallel if the server
has multiple processors or support for CPU threading.

3.3.1. Choosing synchronization delays. There is a tradeoff in TSS between how many
states are used (and the synchronization delays for each of them) and the number of com-
mands that must be re-executed on a rollback. The number of states used also determines the
responsiveness of the system. Because an inconsistency is not detected until it is executed
in the trailing state, the leading state will have progressed further down an incorrect path
than in TimeWarp. The longer TSS waits before detecting the inconsistency, the more the
states will have diverged, and the more likely it is that the player will notice the rollback
when it occurs.

With a synchronization delay of zero, the leading state would provide the fastest updates,
allowing clients to see their own commands immediately (if TSS is run at the client side).
However, with a synchronization delay of zero, the leading state would also almost always
be incorrect, because commands from other players cannot arrive that quickly, and there
will be many rollbacks. If the synchronization delay of the leading state is very large, the
number of rollbacks will be reduced, but the game will become much less responsive. In
Section 4.2, we examine several heuristics to pick this first synchronization delay in order
to reduce rollbacks but still provide adequate responsiveness.

Picking the correct number of states and the synchronization delay for each state is also
important to the optimal performance of TSS. In order to provide a large enough window
of synchronization, if too few states are used the gaps between states must necessarily
be large. This leads to greater delay before an inconsistency is detected, which in turn
leads to more drastic and noticeable rollbacks. Conversely, if too many states are used, the
memory savings provided by TSS will be eliminated, and the cost of executing commands
in each state will grow. Additionally, rollbacks will likely be more expensive since a longer
cascading rollback involving more state copies is needed before reaching the leading state.

4. Performance evaluation

There are two main questions we want to ask when evaluating TSS. First, were we correct in
our main design assumption that, for a first person shooter, it is significantly more expensive
to take a snapshot of the state than it is to execute commands multiple times? Second, does

EFFICIENT SYNCHRONIZATION MECHANISM 19

TSS perform better than other synchronization mechanisms when using similar memory
settings?

To answer these questions we performed two different experiments. In the first exper-
iment, we implemented a mirrored server architecture based on the popular Quake I first
person shooter, and used TSS as the synchronization mechanism. This allowed us to de-
termine the costs of rollbacks and command executions empirically. To answer the second
question, we turned to a simulation of just the synchronization mechanisms, and looked at
the performance under different parameterizations. Section 4.1 presents the first experiment,
and Section 4.2 the second.

4.1. Command execution and rollback costs

We implemented TSS in the open-source QuakeForge [16] server for the Quake I first-
person shooter. For the experiments reported here we set up two mirrored servers, with
three clients connected to each (see figure 1(c)). The servers run TSS to synchronize the
commands from the six clients. There is a very low-latency connection between clients
and servers. The latency of the server-to-server connection is 50 ms. As mentioned above,
the main goal of these experiments is to get a concrete example of the costs of rollbacks
and re-executions in a first person shooter. A second result of this experiment was insight
into some of the challenges in adding a synchronization mechanism to an existing game
engine.

4.1.1. Implementation. The first step in implementing TSS in QuakeForge was to alter
the server so that all game state data was within an execution context, and create func-
tions capable of copying one execution context onto another. Although for performance
reasons Quake uses almost no dynamic memory, within the statically allocated structures
the developers of Quake use numerous tricks to avoid extraneous pointer dereferencing.
These optimizations make the encapsulation and copying of game state a non-trivial task.
In addition, changes had to be made to the game to account for the use of random numbers
for events such as item placement. Ideally, a separate pseudo-random number generator
(RNG) with the same initial seed would be used to provide consistent random numbers in
each execution context. On rollbacks, the RNG state can be included in the copied state
in case the leading state had used more random numbers. Unfortunately, Quake was not
designed this way and preserving random events turned out to be the major difficulty in
implementing and evaluating TSS in QuakeForge.

Once the QuakeForge server had been altered to use execution contexts, it was fairly
simple to add synchronization. When client commands are received by a mitror, instead
of being executed immediately, they are diverted and sent out over the multicast chan-
nel to all the mirrors (including the mirror that received the command initially). Upon
receiving a multicast command, it is inserted back into Quake’s network buffer at the
mirror and parsed by the Quake engine. If the command is one that requires synchroniza-
tion (some commands that do not alter the game state can be executed immediately), it
is placed in TSS to be executed later. In the main event loop, the mirror checks each of
the TSS states for any pending commands that are ready to be executed. Inconsistencies

20 CRONIN ET AL.

Table 1. Trailing state synchronization execution times in QuakeForge.

Synch. Execution Executed Command Rollback Rollback
Run delays (ms) time commands cost time Rollbacks cost
1 0,50 6.14 s 40,780 0.15 ms 1.15s 817 1.41 ms
2 0,100 6.37s 45,401 0.14 ms 123 870 1.41 ms
3 0,50,100 9.02s 59,981 0.15 ms 1.32s 938 1.40 ms
4 0,50,100,150 12.15s 79,357 0.15 ms 1.53s 1,092 1.41 ms
5 0,50,100,500 13.26 s 99,730 0.13 ms 3.36s 2,370 1.42 ms

between the executing trailing state and its leading state are checked for, after com-
mands are executed. In addition to mirroring and synchronization, we also added a trace
feature to the QuakeForge server. This logs to a file every command sent to the mul-
ticast channel and allows games to be replayed exactly in the future for deterministic
simulations.

4.1.2. Execution results. To test the performance of TSS in this mirrored server, we ran
a series of simulations using the aforementioned trace feature with different network and
synchronization parameters. Unfortunately, due to difficulties accounting for all random
events, inconsistencies often occurred, despite the use of a synchronization mechanism.
Nevertheless, we were able to gather the cost of rollbacks in Quake. The results in Table 1
show five runs, all using the same trace file, with three users connected to each of the two
mirrors. The statistics were gathered at mirror one, which saw 18,593 commands in total.
The “Executed Commands” column shows the total number of Quake moves executed by
the mirror, including the 18, 593 - #states commands that would be executed with no roll-
backs, plus any additional commands re-executed due to rollbacks. The “Execution Time”
column shows the total time (system and user) spent executing these commands, measured
by the instrumented server. The “Rollbacks” column shows the number of rollbacks that
occurred during the simulation, and the “Rollback Time” column shows the system and
user time spent performing the execution context copy, repairing data structures within the
execution context, and moving events back to the event queue to be re-executed. “Total
Time” includes command execution, rollback, and other functions of the server such as
providing reliable multicast. Finally, “Command Cost” and “Rollback Cost” are calculated
by dividing the execution time and rollback time by the number of commands and rollbacks
respectively.

The command cost is dominated by the actual execution of commands in the Quake
engine. TSS event queue management and other bookkeeping turn out to be minor compo-
nents of the time. Similarly, the rollback cost is dominated by the time to copy the execution
context and repair data structures, while the time spent moving executed commands back
to the event queue for re-execution is minor. In all of the runs these costs were nearly
identical, with command execution being an order of magnitude less expensive than roll-
back. This confirms our assumption that command executions are far cheaper than state
snapshots.

EFFICIENT SYNCHRONIZATION MECHANISM 21

4.2. TimeWarp and TSS performance comparison

In order to explore the parameter space for TSS, as well as to compare its performance
to that of TimeWarp, we use trace driven simulation of the protocols to collect statistics
on a number of metrics relevant to both server and client performance. We do not include
MiMaze’s bucket synchronization in this comparison because it cannot provide adequate
consistency without an unnecessarily large synchronization delay. This makes it unsuitable
for a first person shooter such as Quake.

We made several straightforward modifications to TimeWarp to allow a side-by-side
comparison of the two algorithms, as follows. To prevent unnecessary rollbacks from local
commands being executed immediately, a synchronization delay d is added to TimeWarp. To
reduce and bound memory usage, we also provide a maximum time / for which consistency
must be maintained and a fixed number of snapshots s TimeWarp can use. The time between
snapshots is computed as (I — d)/s (we generate a new snapshot based on time since last
snapshot, not the number of commands since last snapshot). As in TSS, we assume that
TimeWarp will not issue any anti-messages on rollback.

4.2.1. Trace collection. Ideally, we would like to simulate these two mechanisms using
traces gathered at each of the nodes of a mirrored or distributed FPS game deployed on the
Internet. These traces would contain the time at which each command is sent by its issuing
mirror, and the time at which the command arrives at every other mirror. Unfortunately,
for a number of reasons, collecting these ideal traces is not practical. First and foremost,
all popular first-person shooters presently use the client-server architecture. To solve this
problem we constructed artificial mirrored architecture traces from available game server
logs.

To gather traces of typical game play, we instrumented and ran a well-connected Quake
IIT server at the University of Michigan. We collected the round trip times (RTTs) between
the server and each connected client once per second over several periods in January, 2002.
Quake III was chosen because it is far more popular than QuakeForge, making it easier
to get traces with more than one or two active players. The game itself and its network
properties are roughly the same as Quake I or any of the other first person shooters for
which TSS was designed.

We obtained client RTTs from two sources: the Quake III server’s internal RTT measure-
ments and an external ping program. The server was modified to record its internal RTT
measurements to each client in the game log once a second. The external program sends
a ping to each client once per second as long as they are connected to the server. It relies
on TCP pings [5] as opposed to ICMP pings, since the latter are more often blocked by
ISPs or personal firewalls. A comparison of the server and external ping data shows that
the server measurements contain a significant amount of application-level latency, as well
as additional jitter. Therefore, our simulations rely on the more accurate external ping data.
These latencies are between the clients and the server, not between pairs of clients as it
would be in a mirrored architecture. True client-to-client latency measurements would have
required cooperation from every player who used our server, asking them to run measure-
ments and return the results to us. Many players are very untrusting (fearing viruses or trojan

22 CRONIN ET AL.

horses), and we did not feel this was a realistic goal. Instead, we assume that client RTT is
nearly symmetric, and therefore the one-way delay between our server and a client is half
the measured ping time. We then approximate the end-to-end latency between two clients
to be the sum of the one-way delays between the clients and the server. The consequence
of this is that the topology is somewhat artificial, but still provides a suitable basis for
comparing the different protocols in identical conditions. To approximate the origination
time of a packet from a mirror, we use the time the packet arrives at our server minus the
most recently observed one-way delay. The arrival times at the other mirrors is calculated
as packet origination time plus the approximated one-way delay in the star topology.

The timestamps within the Quake III server log only have the one second granularity
provided by the localtime () function in the standard C library. Because of this, the log
does not contain exact arrival times of the 30-50 commands per second from each client
which we need for our simulations. To remedy this lack of information, the command inter-
arrival times for the clients are generated by a model derived from tcpdump [11] logs of
Quake IIT games. We used the Quake III client to connect to several Quake III servers on
the Internet and recorded the game traffic locally with tcpdump. We then used Ethereal [6],
which has a built-in packet decoder for Quake III, to filter out everything except the game
commands sent out by our client. We computed the cumulative distribution function of the
gaps between commands, and used this distribution to randomly pick inter-arrival times
for the commands in the trace. With this last step we now have a trace which contains the
command issue and receive times for each of the mirrors, as we wanted in the ideal case.

A simplification we make for our simulations is to break the traces up into smaller
snippets of gameplay. The set of clients is constant for the duration of the snippet, and the
game does not reset or change levels. We do not look at dynamic adjustment of any of the
synchronization mechanisms below, so including clients joining and leaving would merely
complicate the presentation of the results without gaining any additional insight. For our
simulations, we used a variety of snippets, focusing on those with longer playtime. We
look at different numbers of mirrors (clients) and different distributions of mirror-to-mirror
latencies when selecting the snippets to use.

Below, we examine three different snippets in our simulations. Table 2 shows the number
of moves and total time elapsed for the three snippets. Figure 6 shows cumulative distribution
of the ping times to each of the clients in these traces.

4.2.2. Simulation. There are several metrics of interest when trying to compare the per-
formance of these two synchronization methods. First, there is the total number of rollbacks

Table 2. Log snippets used.

Number of

mirrors Total moves Gametime (mm:ss)
49,590 18:47
94,195 15:55

6 48,684 05:30

EFFICIENT SYNCHRONIZATION MECHANISM 23

1 T 1 T
S oof § oof .
5 2
S osf g osf :
'S
S 07F g 07f 1
3 osr 3 osf i
Z osr g 05 1
2 04F o 04 1
5 o3t 8 o3f i :
E o2 E 02} 5 Client 0—— 1
o . (5] H Client 1
01f Client 0 — 01r i Client 5
i Client 3------- H Client 8 -
0 . b ! 0 . . /
1 10 100 1000 10000 1 10 100 1000 10000
Round Trip Time (ms) Round Trip Time (ms)
a. Two Mirrors b. Four Mirrors
1 T
S oaf .
o
S 08f b
w
5 97) ‘
3 o06f :
=
® 05 7
o
g o4 '
S o3f
E o2
o
01
0 1 it

1 10 100 1000 10000
Round Trip Time (ms)

c. Six Mirrors

Figure 6. Snippet ping time distributions.

needed. This is important both to the server, where rollbacks are expensive and limit the
server’s performance, and to the client, where rollbacks can cause unexpected changes to
the view of the world and disrupt gameplay. All rollbacks are not equal however, so we also
look at the rollback magnitude (which we abbreviate M in the results). The magnitude of a
rollback is how long the state has been incorrect due to the inconsistency. Rollback magni-
tude can be measured either in time (difference between when the inconsistency was caught
and when the command should have been executed) or in executed commands (number of
commands executed after the inconsistent one). Figures 2(a) and 5(b) show how magnitude
is computed for TimeWarp and TSS respectively. In the simulation results below, we mea-
sure magnitude in terms of time. Since Quake has regular packet rates, this can easily be
converted to an approximate number of commands. The higher the magnitude of a rollback,
the more things that could have diverged between the correct state and the executing state.
This means that when the rollback occurs, high magnitude rollbacks are more likely to be
noticed by the client.

From the server’s perspective, another important metric is the amount of work that must
be done during a rollback. This includes re-executing the commands after the inconsistency
in order to return to the correct execution time. In TimeWarp, when the snapshot used to
recover from is older than the point where the inconsistency occurs, the commands between

24 CRONIN ET AL.

the snapshot and the inconsistency must also be re-executed. This metric, combined with
the total number of rollbacks, determines the cost of the synchronization mechanism on the
server.

There are a number of questions we hope to answer with these simulations. The primary
goal is to determine which synchronization mechanism performs best when used in a first
person shooter with a high packet rate. We are interested to find out which synchronization
mechanism requires the least server resources and which disrupts the clients’ gameplay
the least. A second related question is how TSS and TimeWarp compare in a scenario
where there is a lower packet rate, a situation disadvantageous to TSS since there are
fewer potential commands to amortize rollbacks. In addition to head-to-head comparison
of the two protocols, we would also like to know what role the different parameters of
TSS and TimeWarp play in overall performance. Do certain heuristics for picking the
synchronization delays result in fewer rollbacks or a decrease in rollback magnitude? Do
they do so consistently for different sets of mirrors?

To perform this comparative study of TSS and TimeWarp, we created two simulators that
receive as input the trace snippets and produce as output results for the metrics described
above. The simulators simulate only synchronization related operations of their respective
mechanisms, not the actual gameplay. The TimeWarp simulator allows us to modify the
frequency of snapshots and the point at which snapshots are thrown away. There is also a
parameter that adds a synchronization delay between the origination time of the packet and
when each of the mirrors schedule execution of the command. The TSS simulator allows us
to specify the number of states to use and the synchronization delay for each of the states.

When comparing the two synchronization mechanisms, we tried to configure them to
have similar memory usage, consistency, and added minimum delay. Therefore we used n
states in TSS and n — 1 snapshots (plus the additional actual game state) in TimeWarp. The
same synchronization delay was used for TimeWarp and the first state in TSS. Similarly,
the maximum time used for TimeWarp is the synchronization delay used for the last state
in TSS. These settings fully configure TimeWarp, but with TSS there is also the issue of
assigning synchronization delays to the remaining state(s). We look at how this is done
below.

As mentioned above, one of the questions we would like to answer is what impact the
parameters have on performance. In particular, we look at how setting the initial synchro-
nization delay affects the performance of each of the algorithms. We look at different
heuristics that analyze the entire snippet and produce a synchronization delay to be used
when executing that snippet. Ideally, when selecting the first synchronization delay we want
something low enough that it does not hurt gameplay (by adding too much additional la-
tency), while at the same time we want it high enough that most commands do not generate
rollbacks. If latencies were constant, this would simply be the maximum of the end-to-end
latencies to each of the other mirrors. A lower synchronization delay would cause moves
from one client to always arrive late and cause a rollback; a higher one will unnecessary
add additional delay to each command.

The first heuristic we investigate is to set the synchronization delay to the maximum
over all pairs of mirrors of the mean end-to-end delay between the two mirrors. We call
this heuristic “Maximum Mean”. The conjecture here is that in a controlled environment

EFFICIENT SYNCHRONIZATION MECHANISM 25

where all the mirror-to-mirror latencies are roughly the same and variance is low (e.g., on
the private internal network of the mirrored server architecture), the maximum of the means
would be an aggressive setting, having a low added delay; at the same time, it would not
cause many rollbacks and the rollbacks caused would have low magnitudes since the delay
variance is low. In more heterogeneous environments, this heuristic would likely perform
much worse since it would tend to be skewed by outliers.

Another heuristic we consider is to set the synchronization delay to the maximum of
the 90%-tile end-to-end delays between each pair of mirrors, called “Maximum 90%-tile”.
The intent of this heuristic is to conservatively handle wide variances in delay, where a few
very late commands would skew the mean in the first heuristic. By choosing the 90%-tile
of the maximum, our hope is that rollbacks occur only on network anomalies, while wider
delay distributions with many packets arriving after the mean do not suffer from constant
rollbacks.

The final heuristic we look at is setting the synchronization delay to the 90%-tile of all
end-to-end measurements, which we call “Aggregate 90%-tile”. This heuristic would help
ensure that few total rollbacks would occur overall, akin to the Maximum 90%-tile heuristic.
By using the aggregate delay observations, we more aggressively seek to generate rollbacks
only for outliers. However, this heuristic would be disadvantageous if there is a single high
delay mirror in an environment with few delay outliers. In this case, because the delay is
aggregated, the mirror with high delay would have most of its commands seen as outliers,
and there would be a high likelihood that that mirror’s commands generate rollbacks.

For each of the six snippets (three from each trace), we use these heuristics to compute
synchronization delays. The synchronization delays calculated and used in our simulations
are shown in Table 3. We will evaluate the effectiveness of these heuristics in Section 4.2.5.

The second parameter to the simulators, the final synchronization delay/maximum time,
we set to a fairly conservative two seconds. This was large enough so that all but a few late
commands were able to be recovered from, but not so large that performance suffers due
to it. TimeWarp is particularly vulnerable to this parameter being too large, since it must
evenly space its snapshots between this value and the initial synchronization delay.

Our choice of number of states and the delay for each state was based on the observation
that we wanted rollbacks to cover as little time as possible, but we also wanted to limit the
memory and CPU overhead of the synchronization mechanism. In the experiments below,
we use three states for each synchronizer: the main state and two snapshots for TimeWarp
and three states for TSS. For TSS, the first and last synchronization delays are set as

Table 3. Snippet heuristics based on delay observations.

Synchronization delay (ms)

Number of Maximum Maximum Aggregate

mirrors mean 90%-tile 90%-tile
51 68 66

4 117 91 89

143 243 177

26 CRONIN ET AL.

described before, and the middle synchronization delay is set to be double the minimum
synchronization delay.

4.2.3. Simulation results. The simulators were executed with each of the three snippets,
using the parameters specified by each of the heuristics for a total of nine side-by-side
comparisons for each trace. The results of the simulations are presented in Table 4 for the
realistic trace and in Table 5 for the unrealistic worst-case trace. We look at (1) the total
number of rollbacks, (2) the total number of re-executed commands, and (3) the average
magnitude (M) of rollbacks. The results for each snippet are totals for all of the mirrors in
that snippet combined. From Table 4, we see that, due to its ability to repair bursts of late
commands with a single rollback, TSS has fewer rollbacks than TimeWarp. In most cases,
the number of rollbacks with TSS is dramatically lower, but even in its worst cases TSS has
40% tewer rollbacks than TimeWarp.

Fewer commands are re-executed by TSS than by TimeWarp due to rollbacks. Con-
sider the results for two mirrors. In this case, the number of rollbacks is similar, but the

Table 4. Trace-based simulation results.

Number of
mirrors Sync. alg. Rollbacks Re-execs M (ms)

(a) Maximum mean

2 ™ 11,377 299,429 43
2 TSS 7,737 24,568 62
4 ™ 5,511 852,121 1,358
4 TSS 455 66,296 1,766
[§ ™ 26,440 2,089,045 55
[§ TSS 5,936 121,704 153
(b) Maximum 90%-tile
2 ™ 4,233 119,515 86
2 TSS 2,497 10,046 84
4 ™ 9,819 1,069,622 919
4 TSS 2,136 82,406 932
6 ™™ 2,462 237,686 241
[§ TSS 324 15,037 334
(c) Aggregate 90%-tile
2 ™ 4,955 137,679 75
2 TSS 3,013 11,482 80
4 ™ 11,845 1,170,099 868
4 TSS 2,977 89,707 905
6 ™ 10,599 877,512 90
6 TSS 2,066 54,839 193

EFFICIENT SYNCHRONIZATION MECHANISM 27

Table 5. TSS versus TW using server aggregated moves and maximum 90%-tile heuristic.

No. of mirrors Sync. alg. Rollbacks Re-execs M (ms)
2 ™ 157 138 17
2 TSS 156 217 68
4 ™ 408 1,845 930
4 TSS 322 1,745 1,181
6 ™ 112 357 201
6 TSS 82 430 353

re-executed commands are an order of magnitude lower for TSS. The reason for this dif-
ference is that TimeWarp must roll back from fixed interval snapshots. For this set of
mirrors, the rollback magnitudes are very small (indicating there are few commands after
the inconsistency that must be re-executed), but they often have to be created from a rel-
atively old snapshot. All commands in the interval between when the snapshot was taken
and the point where the inconsistency occurred must be re-executed. In TSS, the trailing
state used in the rollback is always at the point where the inconsistency occurred in the
leading state, so there is no need to re-execute commands to catch up from an outdated
snapshot.

Not shown in Table 4 is the cost of initial execution of commands. It must be kept in mind
that TSS executes every command once for each state, so in these examples there are three
times as many normal executions in TSS as in TimeWarp. Similarly, TimeWarp must make
snapshots approximately once every second while TSS requires no state copying unless a
rollback occurs. This cost is not accounted for in Table 4 either. These costs are constant,
so the server can be properly provisioned to handle them. Re-execution costs, however,
happen unpredictably, and may become very expensive. We consider these to be the larger
problem. Even if rollbacks are rare, if they are so expensive that the game must stop for a
second while the rollback is performed, gameplay will suffer noticeably. Even with the cost
of initial execution and snapshots figured in, TSS places a lower load on the server than
TimeWarp.

The average magnitude of rollbacks is, as expected, higher for TSS than for TimeWarp,
since TSS waits before generating rollbacks while TimeWarp always rolls back immediately.
Depending on the snippet and heuristic, the difference in magnitudes ranges from roughly
even in the 2 mirror case to nearly three times greater for TSS in the 6 mirror case. Because
we set the second synchronization delay in TSS to be twice the initial synchronization delay,
this limits the minimum possible magnitude of a rollback in TSS. Especially in the 6 mirror
snippet, where the synchronization delays are large, this leads to a noticeable difference
between TSS and TimeWarp. Better tuning of the middle synchronization delay(s) in TSS
could reduce this magnitude.

When considering the impact of the average magnitude of rollbacks, it is important
to remember that it is the average for the rollbacks that actually occurred. So although
the average rollback in TSS may be more noticeable, there are so many more roll-
backs in TimeWarp that considering the total magnitude (Rollbacks- M), TSS again

28 CRONIN ET AL.

outperforms TimeWarp for all nine cases. Less encouraging however are the rollback
magnitudes themselves for both TSS and TimeWarp. Especially for the 4 mirror snip-
pet, where Mirror O has a heavy tail in its delay distribution, very large rollbacks that are
likely to be noticeable to the players do occur. Without a significantly larger initial syn-
chronization delay, there is nothing any synchronization algorithm can do to improve this
situation.

4.2.4. Worst-case TSS performance. We also looked at a second trace where the mirrors
generated only one move per second. It is highly unrealistic to assume a move issuance rate
of one move per second in any fast-pace FPS. We use present these results here to show
that even in this worst-case scenario for which TSS was not designed, it does not fall apart.
Table 5 presents the results for the trace containing only one move per second from each
mirror. We would expect TSS to perform poorly in this situation, since it loses the ability to
combine many rollbacks into one, while it still pays the penalty in rollback magnitude by
waiting to execute the rollback. We only show the Maximum 90%-tile heuristic case, but
the results for the other two heuristics are comparable.

Since both TSS and TimeWarp have nearly the same numbers of rollbacks, by total
rollback magnitude TimeWarp holds an edge for client performance in this unrealistic
scenario. Nevertheless, TSS still has fewer total rollbacks than TimeWarp with this trace,
which can be attributed to commands from different mirrors being late at the same time,
allowing TSS to occasionally repair multiple inconsistencies. The number of commands
re-executed are roughly the same for both TSS and TimeWarp, since with fewer commands,
an outdated snapshot is no longer as damaging to TimeWarp. Once again, TSS outperforms
TimeWarp with regards to server performance, although the difference is much smaller
in this case. Finally, the rollback magnitude is higher for TSS, but is less than twice as
expensive for the four and six mirror cases, and still below 100 ms for the two mirror
case.

4.2.5. Heuristics for setting synchronization delay. Looking back at Table 4, there is
no clear winner among the three heuristics used to compute the synchronization delay
that performs best for all three snippets, although Maximum 90%-tile has a slight edge.
Maximum Mean has more rollbacks and re-executions than the other two heuristics in the
2 and 6 mirror cases because in these cases the mirrors have a high percentage of their
delays above the mean. The average magnitude of these rollbacks however is the lowest
when using Maximum Mean, since the delay before detecting inconsistencies is lower than
with the other heuristics. In the 4 mirror case, Maximum Mean is skewed by the outliers
in Mirror 0, and produces a delay which is too conservative. The result is few rollbacks,
but with a very high rollback magnitude. Aggregate and Maximum 90%-tile perform about
the same in the two and four mirror cases with similar rollback magnitudes and numbers
of rollbacks, with more differentiation between the two in the six mirror cases. Aggregate
90%-tile has lower rollback magnitudes, while Maximum 90%-tile has fewer rollbacks
and re-executions. Turning to the Rollbacks - M total magnitude again, we give the edge
to Maximum 90%-tile since although its rollbacks have a higher magnitude there are few
enough of them to make up for it.

EFFICIENT SYNCHRONIZATION MECHANISM 29

5. Conclusion

In this paper we have presented TSS, an optimistic synchronization mechanism designed
for multiplayer games with low latency but strong consistency requirements. It provides
for low-latency, consistent gameplay through the use of multiple copies of the game state
and rollbacks. We have shown that because of its design characteristics, TSS performs
well in high-speed games where there is a large game state and many commands to be
synchronized. There are still a number of areas where future work is needed. The benefits
of event classification have not been explored in depth. This has the potential to greatly
reduce the number of rollbacks experienced in TSS. In the mirrored server architecture
(where the mirrors can be trusted), there is potential for performing some pre-execution at
one mirror to reduce the cost of executing in each state at each mirror. Similarly, in purely
peer-to-peer environments there is the ability to employ interest management. Neither of
these optimizations has been explored yet. More accurate game traces, such as those recorded
by pkthisto [1], could be used for simulating TSS and other synchronization algorithms,
although the traces we have used in this paper provide an adequate means of comparing
TSS and TimeWarp side by side. The problem of selecting the right leading synchronization
delay was examined, but the selection of intermediate synchronization delays or the dynamic
adjustment of synchronization delays as network conditions change is still unexplored.

Note

1. When discussing TSS we often use events and commands interchangeably, as the events being synchronized
in Quake are player commands.

References

—_

. G. Armitage, “pkthisto-0.1.2,” 2001, http://opax.swin.edu.au/~garmitage/q3/quake-server-mods.html.
. N. Baughman and B. Levine, “Cheat-proof playout for centralized and distributed online games,” in Proc.
Infocom 2001, 2001.
. Y. Bernier, “Latency compensating methods in client/server in-game protocol design and optimization,” in
Proc. of GDC 2001, 2001.
4. E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game server system,” UM EECS589 Course
Project Report, 2001, http://www.eecs.umich.edu/~bfilstru/quakefinal.pdf.
5. S. Dykes, K. Robbins, and C. Jeffery, “An empirical evaluation of client-side server selection algorithms,” in
Proc. of IEEE Infocom 2000, 2000.
6. G. Combs et al., “The ethereal network analyzer,” http://www.ethereal.com/.
7. P.Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “IDMaps: A global internet host distance
estimation service,” IEEE/ACM Transactions on Networking, Vol. 9, No. 5, pp. 525-540, 2001.
8. L. Gautier, C. Diot, and J. Kurose, “End-to-end transmission control mechanisms for multiparty interactive
applications on the internet,” in Proc. of IEEE Infocom 1999, 1999, Vol. 3.
9. D.A. Helder and S. Jamin, “End-host multicast communication using switch-tree protocols,” in Proc. of
GP2PC, 2002.
10. id Software, “Quake,” http://www.idsoftware.com/.
11. Lawrence Berkeley National Laboratory, “tcpdump,” http://ee.lbl.gov/.
12. L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communications of the ACM,
Vol. 21, No. 7, pp. 558-565, 1978.

(3]

W

30 CRONIN ET AL.

13. P. Lincroft, “The internet sucks: Or, what I learned coding X-Wing vs. TIE Fighter,” in Proc. of Game
Developers Conference 1999, 1999.

14. M. Mauve, “How to keep a dead man from shooting,” in Proc. of the 7th International Workshop on Interactive
Distributed Multimedia Systems, 2000, pp. 199-204.

15. M. Mauve, S. Fischer, and J. Widmer, “A generic proxy system for networked computer games,” in Proc. of
NetGames 2002, 2002.

16. The QuakeForge Project, “QuakeForge,” http://www.quakeforge.net/.

17. J.S. Steinman, “Scalable parallel and distributed military simulations using the SPEEDES framework,” in
ELECSIMO95, 1995.

18. J.S. Steinman, R. Bagrodia, and D. Jefferson, “Breathing time warp,” in Proc. of the 1993 Workshop on
Parallel and Distributed Simulation, 1993, pp. 109-118.

19. 1.S. Steinman, J.W. Wallace, D. Davani, and D. Elizandro, “Scalable distributed military simulations using
the SPEEDES object-oriented simulation framework,” in Proc. of Object-Oriented Simulation Conference
(00S°98), 1998, pp. 3-23.

Eric Cronin received his bachelor’s and master’s degrees from the Department of Electrical Engineering and
Computer Science at the University of Michigan in 2000 and 2003 respectively. He is currently a Ph.D. student at
the University of Pennsylvania. His research interests focus on computer and network security.

Anthony R. Kurc earned his bachelor’s degree in 2000 and master’s degree in 2002 from the Department of
Electrical Engineering and Computer Science at the University of Michigan.

Burton Filstrup got his bachelor’s degree from the University of Virginia, 2000 and his master’s degree from the
University of Michigan, 2001. He is presently at Lincoln Laboratory, MA.

Sugih Jamin is an Associate Professor in the Department of Electrical Engineering and Computer Science at the
University of Michigan. He received his Ph.D. in Computer Science from the University of Southern California,
Los Angeles in 1996 for his work on measurement-based admission control algorithms. He spent parts of 1992
and 1993 at the Xerox Palo Alto Research Center, was a Visiting Scholar at the University of Cambridge in 2002,
and a Visiting Associate Professor at the University of Tokyo in 2003. He received the ACM SIGCOMM Best
Student Paper Award in 1995, the National Science Foundation (NSF) CAREER Award in 1998, the Presidential
Early Career Award for Scientists and Engineers (PECASE) in 1999, and the Alfred P. Sloan Research Fellowship
in 2001.

