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ABSTRACT 
 
In this paper, we examine the complexities involved in retrieving images from a database 

comprised of objects of very similar appearance. Such an operation requires a process 

that can discriminate among images at a very fine level, such as distinguishing among 

various species of fish. Furthermore, incidental environmental factors such as change in 

viewpoints and slight, nonessential shape deformation must be excluded from the 

similarity criteria. To this end, we propose a new method for content-based image 

retrieval and indexing, one that is well suited for discriminating among objects within the 

same class in a way that is insensitive to incidental environmental changes. The scheme 

comprises a global alignment and a local matching process. Affine transform is used to 

model the different viewpoints associated with positioning the camera, while multi-

dimensional indexing techniques are used to make the global alignment scheme efficient. 

A local matching process based on dynamic programming allows the optimal matching of 

local structures using cost metrics that may ignore nonessential local shape deformation. 

Results show the method's ability to cancel out visual distortions caused by a changing 

viewpoint, and its tolerance to noise, occlusion, and slight deformations of the object.  
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1. INTRODUCTION 

Indexing and retrieval operations for image databases present a new set of challenges not 

often encountered in conventional databases. For instance, images stored in databases are 

usually inexact pieces of data, often acquired with imprecise photographic equipment, 

corrupted by noise, and degraded by lossy data compression to facilitate efficient storage. 

Furthermore, the search matching criteria are often based on an entirely different set of 

objectives than what is normally used in numeric or textual databases. While queries on 

conventional databases are geared toward matching some relational criteria (such as “find 

entries that has a value greater than 5.0”), the same cannot be said for image databases, 

which requires some analysis on a more semantic level. Consider for example, two 

images of the same object, say a chair, taken under different circumstances such as pose 

and lighting. Although the individual pixel values and various statistics of the two image 

arrays of the photographs can have very little resemblance to each other, almost all 

humans posing the query will most likely consider the two images as similar and thus a 

correct match. Hence, the query requires the database system to have some notion of 

what the images are in terms of the way humans understand them. But precisely what 

makes two images appear similar to humans? Even this fundamental definition of 

similarity remains elusive. Thus, the manner and effectiveness in which different systems 

measure similarity can vary widely. 

In the case of imaged objects, there is a consensus that two images are similar if they are 

photographs of the same object, or at least the same type of object. But even identical 

objects can appear different when photographed under different conditions. Aside from 
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the individual peculiarities of objects, there can be slight nonessential deformations in 

their shape. Also, the pose of the same object can differ greatly between images and thus 

appear distorted from some viewpoints. A given object can appear in an infinite number 

of possible poses (or viewed from an infinite number of angles) in the final stored image. 

Therefore, for the retrieval to be effective, a database system must be able to disregard 

changes in the appearance caused by changing viewpoint and slight shape deformation.  

The retrieval procedure (and consequently, the form of the query) are generally of two 

types; text-based methods, where the search is performed by examining textual 

annotations that accompany each image, or content-based methods, where the search is 

achieved by automatically extracting certain visual cues from the images itself and 

matching them to estimate similarity. It is this latter technique that is of interest in this 

paper.  

In text-based methods, the query is intuitive, allowing the user to simply enter keywords 

or a short description of the images that needs to be retrieved. However, a human 

operator needs to manually prepare the textual annotations in advance, and the retrieval 

system is only as accurate as the ability of the human operator to predict likely keywords 

in future queries. In fact, there is a clear limitation as to how one can adequately and 

consistently describe any particular image. The automatic construction of these 

annotations requires that the computer have semantic understanding of the images in the 

database, something that is beyond the reach of the current technology. Moreover, textual 

annotations that accompany each image in the database must be maintained, and can 

easily become tedious and unmanageable for large databases.  
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The alternatives are content-based methods that rely on the automatic extraction of visual 

features, such as colors, geometric patterns, textures, and shapes. In many instances, the 

query is in the form of examples of the images that the user would like to retrieve, 

possibly even in the form of a rough sketch. This is especially useful in allowing the user 

to browse the database through relevance feedback, where the user can narrow down the 

search by identifying correct hits in intermediate results, which in turn serve as the new 

set of queries for another round of search. 

A particularly interesting case is where the database is composed of images of the same 

class of objects, and thus the images appear very similar to each other. These are called 

homogeneous databases. Examples of homogeneous databases include scientific digital 

libraries such as the FishBase [15] featuring thousands of images of fish and the Perseus 

Digital Library [13] which features images of historical objects like vases and sculptures.  

Most image retrieval systems are capable of distinguishing between different classes of 

objects in non-homogeneous databases, called “inter-class” retrieval. For example, these 

systems can effectively differentiate between fish and airplane images, because each one 

has its own distinct general shape. To query homogeneous database systems, on the other 

hand, requires the ability to discriminate among images at a finer level, such as 

distinguishing among the various species of fish. This is called “intra-class” retrieval. It 

is clearly more desirable to accommodate both types of retrieval. However, current 

systems that adopt global (or aggregate) features (such as histograms and low-ordered 

moments surveyed in [28][37]) capture only the general shape of a class and do not have 

enough descriptive power to distinguish among objects within a particular class. Thus, 
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queries such as retrieving pictures of rainbow trout (characterized by the shape of the 

body and fins) from an ensemble of fish images will fail with these types of systems, 

generating instead lists of images containing various species of fish.  

Moreover, only a handful of the current systems are able to accommodate the visual 

distortions caused by incidental environment changes, and slight and nonessential 

deformations of the query object. Allowing global viewpoint change and local 

deformation increases the complexity of the search. Query images, though belonging to 

the class of interest, can appear different due to several factors, such as a change in the 

camera's viewpoint, or local shape deformations attributed to noise, occlusion, or simply 

peculiarities of the individual objects.  It is this more challenging scenario (that of intra-

class retrieval, with invariance to viewpoint change and nonessential shape deformation) 

that is the focus of this paper.   

It is also worth noting that it is not an uncommon practice in current systems [27] to 

simply compare the query to each image in the database one by one, in a linear fashion, 

until the best matches are found. In these cases, the lack of an efficient search method is 

usually an inherent drawback of the algorithm. Such methods, however, are clearly 

unacceptable in today’s explosion of available multimedia archives, where the size of the 

databases is becoming increasingly larger. 

Hence, efficient, invariant, intra-class retrieval is an important tool for large multimedia 

archives. For example, a useful botanical image database application might be to help 

identify a leaf as belonging to a particular species, thus ascertain that it is not poisonous. 

Children visiting an aquarium might bring an image of a fish (taken from an unknown 
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viewpoint) and an automated search is performed to provide information about its 

particular species, along with other interesting facts such as the migration patterns. Other 

applications include searching on-line catalogs of tools, trademarks, etc., for similar 

designs and patterns. Many real-world applications require intra-class retrieval, and in a 

manner that is computationally efficient and immune to incidental environmental changes 

and slight deformations of the object. We address this problem in this paper. Other 

applications requiring texture and color analysis is addressed in a previous paper [2]. 

In order to achieve viewpoint invariance, the affine transform is used to model the 

different viewpoints associated with positioning the camera. In general, we extract 

representative feature points from the image (e.g., corner and inflection points from 

contours). The recovered affine parameters, derived from an efficient multi-dimensional 

indexing process, will allow a best global alignment between the query object and a few 

good candidate objects that has been narrowed down from the database.  

The discrepancy between two object contours produced by such a global alignment 

process, in general, can be attributed to a number of factors: such as noise, and small 

local deformation (e.g., resulted from the flapping of tail and dorsal fins when a fish is 

swimming). To further refine the matching, we use a local matching process (based on 

dynamic programming) to determine the shape deformation. The cost in the match is used 

to indicate how much local deformation there is between the two objects. The cost metric 

can be designed in such a way (with domain specific knowledge) to discount nonessential 

or incidental local deformation. 
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We have conducted experiments using two different homogeneous databases (Fishbase 

and Squid database) with over 600 queries of varying degrees of viewpoint changes and 

shape deformation. The results are very encouraging. We were able to achieve over 98% 

correct retrieval rate at the expense of examining only a small fraction (less than 1%) of 

the search space. Furthermore, our technique is computationally efficient during runtime 

because a large percentage of the processing load (i.e., establishing hash tables for 

indexing) is done off-line. A profile reveals that over 90% of the processing time is spent 

on locally matching candidate objects, implying that the system can quickly narrow down 

the database to a few good candidates, then devote most of the processing time in 

providing a very detailed analysis of the object shapes for similarity matching; down to a 

level that would be impractical for most retrieval systems that perform linear search on 

the database. A performance comparison with the maxima of curvature scale space 

algorithm [26][27] was also performed. 

The remainder of this paper is organized as follows: In the next section, we briefly 

discuss some background on content-based image indexing and retrieval systems, as well 

past research in using affine transform models and geometric hashing. In Sec. 3, we 

provide technical details of our proposed algorithm and is followed by some theoretical 

analysis in Sec. 4. Some experimental results follow in Sec. 5 to show the validity of the 

method, and finally Sec. 6 contains some concluding remarks.  
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2. REVIEW OF RELATED LITERATURE 

The increasing popularity of the Internet has brought forth a surge in image and video 

archives. Aside from the World Wide Web itself, a wide array of images can be obtained 

from an extensive selection of huge stock photography databases, including Getty Images 

[17], Corel [12], the PressLink library [25], the Time Picture Archive Collection [5], and 

the now defunct Kodak Picture Exchange system (KPX) [22]. Specialized databases that 

exhibit homogeneous characteristics include the Squid [27] and the Fishbase [15] 

collections, which comprise thousands of images of fish, and the Perseus Digital Library 

[13], which features images of historical objects.  

Managing these large volumes of images require a different set of tools than is used in 

conventional databases. To meet this challenge, a number of image retrieval systems have 

evolved, including those using text-based methods [22][13][15][25][5]. Many have also 

ventured into the more sophisticated content-based approach, including a few which have 

set the standard in content-based image retrieval; QBIC [14][30], Virage [1], and 

Photobook [33]. These systems use a combination of color, texture, and shape 

information to obtain the best possible match. Other systems that use a similar approach 

are the CANDID (Comparison Algorithm for Navigating Digital Image Databases) 

system of the Los Alamos National Laboratory [18], and NeTra [23]. Meanwhile, others 

have used a simpler approach, opting to concentrate on single features, such as color 

[6][31][29][38][40], texture [24][34], and shape [1][27][41][39].   

When comparing images for similarity, difficulties arise when the objects undergo non-

intrinsic transformations such as translation and rotation. Moreover, the camera’s position 
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may differ, resulting in a skewed projection and zooming effect. These visual distortions 

create unwelcome complications that must be neutralized prior to estimating image 

similarity. 

In many such scenarios, the affine transform is a suitable model particularly because of 

its ability to account for an object's rigid motion, as well as the camera's change in 

viewpoint and/or zoom. Using a combination of translation, rotation, scaling and shear, 

the affine transform is often sufficient to explain the many different ways that an object 

can be posed. Hence, a number of research efforts have used this model to cancel out the 

effects of unknown camera parameters. Mokhtarian [27] used curvature scale space to 

establish an affine-invariant signature along the object shape boundary by computing the 

position of the inflection points as Gaussian smoothing is iteratively applied to the 

contour. Their paper is described in more detail in Sec. 5.1. Startchik [39] employed 

intersections between line segments, bi-tangents and cusp tangents as a representation 

scheme for the object shape. Other techniques using the affine model for comparing 

images include [1][16][4][32]. Reiss [37] and Weiss [43] provide some discussion on the 

use of affine invariants. 

Our approach employs an efficient, affine-invariant, multi-dimensional indexing similar 

to that of Califano [9], and which is a generalization of the basic geometric hashing 

technique by Lamdan [20]. Lamdan first incorporated geometric hashing techniques to 

improve indexing for efficient runtime retrieval. In this technique, visual features of the 

images are hashed into bins for quick retrieval during runtime while simultaneously 

accounting for possible transformations of the query. Consequently, preprocessing time is 
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sacrificed for efficient runtime. Bose [7] using triangular ratios, and Lamiroy [21] using 

line segment intersections, both later followed on the same technique. Wang [42] also 

used geometric hashing in indexing polar coordinates of the feature points, and Proctor 

[35] used it to recognize polyhedral objects, but these methods were not affine invariant.  

 

3. TECHNICAL DETAILS 

There are two major issues we must address: canceling out the effect of a changing 

viewpoint through global alignment, and obtaining accurate similarity measure through 

local matching. 

3.1 Global alignment 

To achieve viewpoint invariance, the affine transform is used to model the different 

viewpoints associated with positioning the camera. The affine transform model has the 

ability to account for an imaged object's rigid motion, as well as the camera's change in 

viewpoint and/or zoom. Using a combination of translation, rotation, scale, and shear, 

this model is often sufficient to explain the many different ways that an object can be 

posed (or conversely, the many different ways the camera can be positioned). It is also a 

generally accepted approximation to the more general perspective projection, as long as 

the perspective distortion is not too severe [20]. Mathematically, an affine transformation 

of a point [x,y]T is defined by 
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for some nonsingular matrix A, and aij, tx, ty ∈  ℜ . Such a transformation preserves a 

number of characteristics in an image. For instance, straight lines remain straight and 

parallel lines remain parallel. On the other hand, many significant measurements are lost 

in the transformation. For example, distances are not preserved, nor are angles between 

line segments. This visual distortion in the image is primarily what makes it difficult to 

compare images with one another. 

At the heart of our global alignment algorithm is a well-known geometric property on 

affine transform, which states that the ratio of the area of two triangles is constant under 

an affine transformation [37]. That is, given any two triangles ∆1 and ∆2,  
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where α denotes the area and ∆' is some affine transformation of ∆. Assuming that we 

can effectively decompose an image into a small set of representative feature points, we 

can use the fact that a correspondence of only three ordered points uniquely determines 

an affine transformation between images, thus allowing us to recover the pose of the 

object.  However, the number of possible triplet correspondences between two sets of n 

points is in the order of n6. Since only one correspondence is needed, the search space is 

reduced to n3. Therefore, assuming v is the time to verify a similarity match between two 

images, and there are m models in the database, the total search time for a given query 
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will be in the order of O(n3mv), which can be prohibitively high, especially with very 

large databases. 

Therefore, we need to make the process efficient, achieved by employing ideas from 

multi-dimensional indexing [9] and geometric hashing [20] techniques that have gained 

popularity over the past decade. The main idea is to build a hash table that can be 

processed off-line without prior knowledge of the query image. A set of affine-invariant 

features (or signatures) (Eq.2) is extracted from each image in the database, and is used 

as indexes into the hash table to enter the same image code in the different bins. During 

the search phase, the same affine-invariant features (or signatures) are extracted from the 

query image, and used as indexes into the hash table, with the expectation that similar 

objects will index to the same set of bins in the hash table. Hence, by inspecting only 

relevant bins in the hash table during the search phase, and ranking the images based on 

the number of times they are retrieved from the hash table, huge numbers of unlikely 

candidates from the database are immediately filtered out, allowing for a closer 

inspection of only a small number of good candidates.  

Since the hash table is built only once and well in advance of any search task, the time 

needed to construct it becomes immaterial. As will be shown in Sec. 3.1.3, however, the 

actual search time can be reduced to the order of n*v, if we assume a negligible number 

of collisions in the bins. 
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3.1.1 Pre-processing stage 

A multi-dimensional hash table is constructed, and is filled in with encoded information 

from each image in the database. Each image is reduced to a set of representative feature 

points, which are carefully chosen such that the same set of points are highly likely to 

present in the query image (e.g., corner and inflection points) even with viewpoint change 

and shape deformation.  

 

 Figure 3-1. Multi-dimensional index construction  

 

For each image M in the database represented by m feature points, and for each ordered 

triplet (P1,P2 ,P3) of M,  



14 

1. Compute a set of 3-tuple index keys, described in Sec.3.1.2.  

2. At the bins designated by each 3-dimensional index key, the entry (M,(P1,P2,P3)) 

is added.   

Figure 3-1 summarizes the hash table construction process. 

3.1.2 Computing the hash index key 

Given a triangle ∆P1P2P3  (using three feature points as vertices), we use the remaining 

m-3 feature points Qi in M to compute a set of ratios that are invariant to an affine 

transformation (see Eq.2). We present two variations. 

 

Figure 3-2. Two ways to compute the hash index key. 

In Figure 3-2a, the hash index keys are computed as follows. For each point Qi, compute 

the areas of ∆P1P2Qi, ∆P1P3Qi and ∆P2P3Qi, which become part of the first, second, and 

third dimensions of a 3-dimensional key, respectively. The hash index key corresponding 

to point Qi, with α denoting area, will be 
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which is quantized according to a fixed bin size (discussed later in Sec. 4). This results in 

m-3, 3-tuples that are affine-invariant. 

An alternate version is shown in Figure 3-2b. For each unordered pair of points Qi1 and 

Qi2, we compute the areas of ∆P1Qi1Qi2, ∆P2Qi1Qi2 and ∆P3Qi1Qi2. As before, the hash 

index key corresponding to the unordered pair {Qi1,Qi2} will be the quantized components 

of 
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resulting in m-3C2 (order of m2 ) 3-tuples that are affine-invariant. 

The choice of which variation to use is completely domain-specific, the most noticeable 

difference being in the number of entries produced by each method. 

3.1.3 Retrieval of candidates 

After the off-line construction of the hash table, the system searches for a given query 

image, represented by n feature points,  

1. Select an arbitrary ordered triplet (P1,P2,P3) from the set of points of the query 

image, and compute a set of 3-tuple index keys for this triplet, as described in 

Sec.3.1.2.  

2. Check the entries in each bin designated by the computed index keys, and 

accumulate the image/triplet information encoded within. To account for noise 
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and deformations of the object, neighboring bins within a certain radius should 

also be included.  

3. Compute a histogram for the occurrence of each accumulated (image, triplet) pair, 

and select the peak values as suitable candidates for the correct image and triplet 

values in the database corresponding to the query image and triplet (P1,P2,P3), 

respectively. 

4. Since three ordered points uniquely determines an affine transformation between 

two images, recover the affine parameters A and T (Eq. 1) which transforms the 

candidate triplet to the triplet (P1,P2,P3). Immediately exclude affine transforms 

that unrealistically distort the image, by using the condition number of the 2x2 

matrix of A (Eq. 1), ||A ||*||A-1||, as an estimate. The condition number measures 

how nearly singular a matrix is. 

5. Apply A and T to all feature points (and possibly the whole image itself) in the 

database image M to obtain M', canceling out the effect of any affine 

transformation. 

6. Verify that M' is a suitable match for the query image, using a suitably designed 

similarity metric, as described in Sec. 3.2. If no (image, triplet) candidate pair is a 

suitable match, or if a refinement of the search results is desired, return to step 1 

for another triplet. 

3.2 Local matching 

Since M' (from Sec. 3.1.3, step 5) and the query image are now properly aligned in the 

same affine coordinate frame, any visual distortion caused by a change in viewpoint, 
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including translation, rotation, scale, and shear, has been canceled out. The two images 

can thus be conveniently compared, point-by-point, using a similarity metric suitably 

designed for the particular domain. 

Conventionally, the measure of similarity is defined to be the summation of some cost 

function (such as squared Euclidean distances) between matched points (with 

corresponding penalties for unmatched points), among all possible pairings of the points 

between the two contours. However, this does not have to be the only choice. If we are 

interested in qualitative similarity, e.g., the two contours should have similar twists-and-

turns characteristics, (for example, maple leaves are not going to be identical in shape and 

size, but will have very similar visual characteristics that are described by a pattern 

grammar or a production rule for that species), then a metric measuring the number and 

ordering of corner and inflection points will suffice, without insisting that the corner and 

inflection points be at exactly the same locations. Domain specific knowledge, (e.g., 

downplaying the dissimilarity of fin and tail positions when a fish is swimming) can also 

be brought in to emphasize/de-emphasize certain characteristics. By carefully designing 

the cost function, nonessential local deformation can be de-emphasized.  

The underlying assumption from Sec. 3.1.3, step 3, is that the correspondence of three 

points, (P'1,P'2,P'3) to (P1,P2,P3), is already known. Hence, we can break the problem 

down into matching the three contour segments, P'1P'2, P'2P'3, and P'3P'1 with the 

corresponding segments from the other contour P1P2, P2P3, and P3P1, respectively.  

Consider matching m points si of segment S to n points s'j of segment S'. The ordering of 

the points along the contour is assumed preserved. That is, if point si corresponds to s'j, 
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then a point sk can only correspond to points s'l, for k < i and l < j, or for k > i and l > j. 

To obtain an optimal solution, a dynamic programming algorithm is used, described as 

follows. A table T is constructed, and filled according to the following rules: 

T [i,0] = i * ρ 

T [0,j] = j * ρ                                                      (Eq. 5) 

T [i,j] = min ( T[i-1,j-1] + δ(si,sj), T[i-1,j] + ρ, T[i,j-1] + ρ ) 

where ρ is the penalty imposed for failing to match a point, and δ is the cost function 

between two points, typically the squared Euclidean distance. An entry T[i,j] represents 

the optimal value in matching the first i points in S with the first j points in S'. The 

optimal solution for the whole contour segment is thus found by computing for T[m,n]. 

As the table is filled-in diagonally from T[0,0] to T[m,n], the operation can easily be 

visualized as going through each contour segment, point-by-point, starting with the first 

pair of points. At each turn, there is choice of whether to match the two points, declare 

the point of S as unmatched, or declare the point in S' as unmatched. As the optimal 

solution is found, point correspondence for all points is easily established by tracing the 

decision made at each turn. 

 
 
4. THEORETICAL ANALYSIS 
 

We consider two scenarios that contribute to the failure of the proposed scheme. First, the 

base triangle chosen in Sec. 3.1.3, step 1 for the query image must be consistent with the 
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one used for the models in the construction of the hash table. Different choices of bases 

result in distinct recordings in the hash tables, which are not comparable. Therefore, 

unless there is an identical choice of bases, the scheme will result in a catastrophic 

failure, as similarity matching will not be possible.  

Since it is generally not possible to guarantee that the same base triangle will be used, the 

solution is in selecting multiple such base triangles for database images to construct hash 

tables (because this process can be performed off-line in advance and is not time critical) 

and use only a single base triangle for query images to ensure efficient query processing1. 

The next logical question to ask is how many such base triangles are needed? With n 

feature points, there are theoretically )(
3

3nO
n

=






 choices of base triangles. However, 

recording all these base combinations significantly clutters a hash table and is expensive 

even for an off-line process. Our first analysis is thus to compute the minimum number of 

such base triangles needed for database images in order to guarantee with a certain 

confidence (a tunable parameter) that at least one of these triangles will be the one used 

for the query images. 

Second, we examine the case of remediable failure, as computing the hashing keys can 

also be prone to precision errors. (E.g., feature positions extracted from images are 

affected by the imprecision in line and corner detection and image noise.) Furthermore, 

the affine model is only an approximation to true camera distortion. All these induce 

error in the computed hash indices. Fortunately, such error is not fatal, as we can deal 

                                                 
1 Note that in real experiments, more than one base triangle can be used to generate object signatures for 
query images– if time permits. Hence, our anlaysis is for the worst case assuming that only a single base is 
used. When multiple bases are used for query images as well, the chance of having the same base used for 
both database and query images can only increase and we can only do better than what is predicted in the 
theoretical anlaysis. 
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with them by probabilistically estimating the deviation in the index keys – given the error 

in feature localization. The error estimate is used in determining how an index key should 

be recorded. In the following, we present a more thorough analysis.  

4.1 Catastrophic Failure Analysis 

To avoid catastrophic failure, more than one base is chosen for computing the hash tables 

in the database images. In practical implementations, the number of bases used should be 

minimized. We sort the areas of all possible bases by size and record the signature of an 

image in the hash tables using only the largest k bases.  For the query image, we again 

sort possible base triangles by size but compute the hashing key for only the largest base 

for efficiency. Catastrophic error is avoided if the largest base in the query image 

happens to be one of the k largest bases that were used in creating the hash tables for the 

database images. The question then is: in order to assert with a certain confidence c that 

at least one such base also exists in the query image, how many bases should we use for 

the database images?  

There are three possible sources of error that might make a top k base absent from the 

query image: (1) the area becomes smaller which drops it out of the top k ranking. Since 

all triangular areas are scaled uniformly by an affine transform, theoretically this cannot 

happen, unless errors in image processing randomly displaces feature points and alters 

triangle size. However, we consider this unlikely if the random perturbation in feature 

point location is small relative to the size of a triangle, and if the base triangle is well 

conditioned, or equilateral, (this point is studied further in Sec. 4.2; (2) a feature point 

used as a vertex for a top k triangle is missing due to occlusion and image processing 

error; and (3) extraneous features are accidentally added in the query images.  
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In our application, database images are usually acquired under standard imaging 

conditions that allows the ingest and catalog operations to be automated. For example, to 

construct a database of airplane images, many books on civil and military aircrafts are 

available with standard front, side, and top views taken against a uniform or uncluttered 

background. (The above is also true for applications in botany and marine biology.) This 

allows the contours of the objects of interest to be extracted automatically or with the aid 

of standard tools such as the flood fill mask in Photoshop. Hence, we assume that 

database images are processed relatively free of error.  

On the other hand, query images are usually taken under different lighting and viewing 

conditions (a situation that we address in the paper). Objects of interest can be embedded 

deeply in cluttered background that makes automated extraction difficult, if not 

impossible.  Here, our intention is not to provide a foolproof, fully automated solution to 

this difficult segmentation problem. Instead, we enlist the help of the user to specify the 

object of interest. A query-by-sketch or a “human-in-the-loop” type solution with an 

easy-to-use graphics interface and segmentation aids are perfectly adequate and do not 

impose undue burden on the user. This proved to be feasible in our experiments.  

With the above setup in mind, we argue that while it is possible features can be missing 

from query images due to occlusion (case 2 above), it is not likely that extraneous 

features are added (case 3 above) because the user should know what she is looking for 

and can correct error in segmentation not to include extraneous feature points.  

Our analysis will hence focus on case 2 above. In this case, a base triangle will simply 

not be computed if one or more of its vertex is missing in the query image.  Assuming 

that there are a total of n feature points to start with and any one of the features may 



22 

disappear from the query image with a probability p because of occlusion and image 

processing errors, the question is then how many bases (k) do we need to use to guarantee 

a certain level of confidence?  

Denote Ai as the event that the base triangle i chosen for a database image also exists in 

the query image, ki ≤≤1 . Then it is easily seen that confidence c is 
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The critical part is then to compute )( 21 imii AAAP L∩∩ . Define δ(m,s) as the number 

of ways for constructing m triangles using a total of s points. We can then compute 

∑
=

−
















=∩∩

),3min(

3
21 )1)(,(

3

1)(
nm

s

s
mimii psm

s
n

n
AAAP δL  

 

Or that m base triangles survive in query images depends on all the vertices used to 

construct these m triangles are preserved (1-p)s, weighed by the number of ways that 

these m triangles can be constructed using these vertices δ(m,s), and possible ways of 

choosing these vertices out of a total of n  vertices , for all possible s. The 
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reason we divide the above expression by 
mn
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3

 is that it is the total number of ways of 

selecting m triangles out of n points, and δ(m,s) can be shown to be  
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To simplify the above analysis, we assume that two base triangles can be the same. In 

fact, we will never select two base triangles with identical vertexes. The confidence we 

get above is higher than that we need. I.e., we use the above equations to estimate the 

number of base triangles needed given a confidence level and the result is an over-

estimate of the base triangles needed. Hence, we can use the estimated value safely. 

 

Table 1. Estimated number of bases needed 
0.05 0.1 0.15 0.2 p 

c        k     n= 
20 

n= 
30 

20 30 20 30 20 30 

80% 1 1 2 2 2 2 3 3 
90% 2 2 3 2 3 3 4 4 
95% 2 2 3 3 5 4 6 6 
99% 4 3 6 5 8 7 11 9 

 
 
Table 1 shows the estimated number of base triangles (k) needed with different 

confidence levels (c) and feature missing probability (p) for 20 and 30 (n) total feature 

points, respectively. As can be seen, the number of base triangles does not have to be 

very large. 
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Figure 4-1. Distribution of key values in geometric hashing 
 

 

 
4.2 Remediable Error Analysis 

The feature positions, as detected from the query image, will not confirm precisely those 

predicted by the affine model. The error occurs because the true image formation process 

is only approximately affine, line and corner detection can be imprecise, image noise can 

be present, etc. This kind of error will cause the index key value to perturb away from the 

theoretical affine prediction. Hence, instead of recording a key in just one bin in the hash 

table, it is also recorded in several adjacent bins, weighed by the probability that the key 

might be perturbed into such bins.  

Assume that the error in localizing a feature in a query image is of a normal distribution 

centered on the predicted feature location (that predicted by the affine model) with 

variance σ. Recall that the key value is composed of the ratio of two triangles’ areas. And 

s 

h1 
h0 

p1 p2 

p3 q 

r 
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these two triangles always share one side. Without loss of generality, these two triangles 

can be arranged such that the shared edge aligns with the x-axis (Fig. 3). Furthermore, we 

can place one point of the shared edge at the origin and the other on the positive x-axis2. 

Then the key becomes the ratio of the vertical distances 
sp

qr

3

 of q and p3 to that common 

side. Furthermore, we denote the theoretical affine predicted values for |p3s| as h0 and for 

|qr| as h1.3 Let the coordinates of pi be (xi ,yi), i=1,2,3; and that of q (x4 ,y4), as predicted 

by the affine model. Then 

      112112 p)p(pp)p(pr +−=+−= 1
2

4 t
x
x ,             

where 
2

4
1 x

xt = . If we ignore the fact that t1 is actually a random variable and use its 

mean position 
2

4
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xt = , then the error in r is normal with zero mean, and variance 
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2
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where q’, r’ are transformed points (with error) in query image, and 
qxε  is the deviation  

between qx (affine predicted value) and qx′ (with error). And we know rq xx = , 
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The error is then 

                                                 
2 This can be accomplished by translation and rotation, which represents a rigid motion and does not 
change the configuration of the two triangles in anyway.  
3 In this section, we use unprimed symbols for quantities predicted based on the  theoretical affine model, 
while primed aymbols for real, observed quanitites.in an image 
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We know that if a variable has a normal distribution ),0(~ 2σNx , then the distribution 

of its square is a Gamma distribution ),(~ 22
1

2
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σλα ==Γx , with expectation 
λ
α=)( 2xE , 

and variance 2
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ασ = [18]. Then it can be shown that the mean of |qr| is 
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variances of relevant variables in Table   2.  

 
Table 2. Variance and mean 
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Similarly, we can show that mean of |p3s| is 

ooooo htthh 2/))1(1( 222 σ−+++= , and the 

variance is oooooh htttt
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+ (max), properly weighed 

by their probability. The same analysis applies to all three keys. Fig.4 shows the range of 

keys when %5010
⋅== hhh σσ  (generally, %10 ⋅= hσ ). As can be seen, the 

uncertainty of key values is relatively uniform and predictable from the plot. 
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Figure 4-2. Range of keys. 

 

5. EXPERIMENTAL RESULTS  

We present results obtained from two different databases, the FishBase [15] and the 

SQUID [27] database, and provide an empirical analysis of querying the latter. The 

silhouettes of the imaged objects were extracted, and both the corner points and points of 

inflection along the object contour were identified as prominent landmarks. It should be 

noted that although these feature points are not affine invariant in a strict sense, they are 

likely to remain unchanged in an affine transformation with a distortion that is not too 

severe and the viewpoint is not incidental (e.g. any 2D pattern looked edge-on reduces to 

a line segment with no corner or inflection points; we use the condition number to make 

sure that this degeneracy does not happen). Hash index keys were computed using the 

second variant (Eq. 4), and used in the construction of a 4-dimensional hash table, the 

additional fourth dimension being a combination of the type of each point in the triplet. In 

particular, we classified each feature point as being one of the following six types: a 
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corner forming a convex/concave angle that is a member/non-member of the convex hull 

(a total of 4 types), and a point of inflection which goes in one direction or the another (a 

total of 2 types). We stored entries only for the ten largest (in terms of triangular area) 

triplets in each model. For query images, again we sort base triangles by size. The 

theoretical analysis presented in Sec. 4.1 allows us to use a single largest triangular base 

for query images. To improve query precision and if time permits, we can also iterate 

among the larger triplets in the query image in a manner similar to database images.  

Dynamic programming was used (Sec. 3.2) to optimally measure the amount of local 

deformation between the query image and the candidate images. The cost function δ (in 

Eq. 5) used was the squared distance between corresponding points.  

As a preliminary test, search results were obtained from a small subset of the FishBase 

[15] database, shown in Figure 5-1. Fifty images were used, the contours of which were 

traced semi-automatically with the aid of an “edge-seeking” selection tool. Notice the 

deformation of the fins in the query image as the fish moves in water. Preliminary tests 

indicate that the method is adept at retrieving very similar objects. 
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Figure 5-1. Results from querying the Fishbase database. 

 

 

Figure 5-2. A sampling of the SQUID database, consisting of 1,100 images of 
marine animal contours. 

 

We then tested the method on a larger scale. Figure 5-2 shows a sampling from the 

SQUID database that was used in [27] to study curvature scale space. (The next section 

provides a performance comparison.) The database consists of 1,100 images of marine 

animal contours, many of which appear very similar to each other. (Unfortunately, the 

actual scanned images are not provided due to copyright restrictions, so for the SQUID 

database, the contour is the image itself). Homogeneous databases such as these require 

painstakingly slow comparisons between the query image and the model images in order 

to distinguish among the many similar images in the database. Such comparisons, 

however, demand too much processing power when performed over each model in the 

entire database. The solution, therefore, is to quickly identify a few promising candidate 

models and perform meticulous comparisons only on this small set of hopefuls.  
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An analysis involving 650 queries on the SQUID database was performed. To obtain 

measurable results, query images were formed from the model database itself. Model 

images were randomly selected and applied varying levels of affine distortion (which is 

similar to the visual distortion caused by changing the camera’s viewpoint). In order to 

prevent degeneracy of the image caused by severe distortion, the set of affine parameters 

was limited to a condition number of at most two. Furthermore, the image was re-

sampled to destroy any remaining semblance of point correspondence between the model 

image and the query image. The preprocessing time to include 1,100 image models in the 

hash table is approximately 12 minutes on a 900Mhz Pentium machine. Figure 5-3 

displays a histogram that reflects the retrieval performance of our method. Of 650 

queries, 98% correctly found the exact model image that was used to form the distorted 

query, 91% of which was selected as the topmost result. Most of the 2% of the queries 

that failed can be attributed to distortion that was severe enough to cause the 

corner/inflection points to be displaced by a large amount or even cause certain feature 

points to be missed or added.   
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Figure 5-3. A histogram of how the correct original image was ranked among the 
retrieved images. Out of 650 queries, 98% succeeded in finding the original image, 
91.1% of which was ranked 1st in the results. 

 

Some results showing the query and the retrieved images are shown starting in Figure 

5-4. The boxed images on the top-left are the query images. (Unfortunately, the actual 

scanned images are unavailable). The top nine search results are shown, arranged in row-

major, with the first one being the most similar to the query image. The upper sub-rows 

depict the retrieved images from the database, identified by the image number in 

parentheses. The lower rows show the best global alignment that was found between the 

query image and the corresponding database image. Such results are typical for this 
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database, affirming the proposed method's ability to retrieve highly similar objects, while 

at the same time, disregarding varying viewpoints and nonessential shape deformation. 

 

 

Figure 5-4. Retrieved images for query kk0020 (top-left). The upper rows are the 
database images; the lower rows are the computed global alignment. 
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Figure 5-5. Retrieved images for query kk0063 (top-left). The upper rows are the 
database images; the lower rows are the computed global alignment. 

 

 

Figure 5-6. Retrieved images for query kk0098 (top-left). The upper rows are the 
database images; the lower rows are the computed global alignment. 
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Subclasses within the database were identified by a human expert to serve as ground 

truths for correct retrieval of relevant images. Figure 5-7 shows samples of such groups 

that were established. Recall and precision measurements were computed on the same 

650 queries on the SQUID database. Recall is computed as the number of relevant 

images retrieved divided by the actual number of relevant images in the database. 

Precision is computed as the number of relevant images retrieved divided by the total 

number of images retrieved. Figure 5-8 graphically shows the relationship between recall 

and precision on this set of queries.  

One of the attractive features of our method is that only a small portion of the entire 

search space is ever inspected. Figure 5-9 shows the retrieval rate, precision, and recall 

with respect to the amount of search space covered. It can be seen that even with only 

0.001 % of the entire search space examined, the retrieval rate is already over 90%. The 

relative decline in precision is a clear indication that it is able to get most of the correct 

relevant matches early on, and only with the need to increase the number of relevant 

matches is it forced to be more permissive in allowing false positives in later stages.  

Figure 5-10 shows the retrieval rate, precision, and recall with respect to time elapsed, as 

conducted on a 900Mhz Pentium machine. A profile of the processing time indicates that 

over 90% of the processing is spent on the detailed local matching that is performed after 

the two images have been aligned. As expected therefore, the curves for the retrieval rate, 

precision, and recall, exhibit the same behavior as in Figure 5-9. That is, its processing 

time is directly proportional to the size of examined search space, and that the time for 

identifying the potential candidates for verification (i.e., accessing the hash table) is 
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constant or negligible. As affirmed by the time profile of the processes, the scheme 

facilitates the quick identification of potential candidates so that a slow, careful, and 

detailed analysis can be performed on only these few candidates. 

 

Figure 5-7. A sample of groupings that were identified in the SQUID database. 
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Figure 5-8. Recall versus precision, out of 650 queries. 

 

Figure 5-9. Retrieval rates (green), recall (blue), and precision (red), with respect to 
the percentage of the search space that was examined. 

 
(retrieval rate) 
 
 
 
(recall) 
 
 
 
 
(precision) 
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Figure 5-10. Retrieval rates (green), recall (blue), and precision (red), with respect 
to processing time (in seconds). 

 

Note that even though contours were used to represent these objects and select the feature 

points, and shape similarity metrics were used to verify the match, it was not necessarily 

the case. The feature points could very well have been selected from the raw image itself, 

and a different image similarity metric used, such as one that uses color/texture 

information. The decision to rely on contours in this case was based on available data, 

and its suitability to this domain. 

5.1 Comparison to the CSS algorithm 

We compared the performance of our method to the Maxima of Curvature Scale Space 

(CSS) algorithm proposed by Mokhtarian, et.al. [27] which has been selected for    

(retrieval rate) 
 
 
 
(recall) 
 
 
 
 
 
(precision) 
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MPEG-7 standardization. Briefly, the CSS image of a curve is represented as a binary 

image on a (u, σ) plane, where u is an approximation of the normalized (affine) arc length 

and σ is the width of the Gaussian kernel used to smoothen the curve. The CSS image is 

formed by smoothing the curve with increasing values of σ, and plotting the points 

corresponding to the locations of zero crossings (inflection points) on the curve. Every 

image in the database is then represented with the locations of its major CSS contour 

maxima, which is affine invariant. A comparison with Fourier descriptors and moment 

invariants is also provided in [26].  

In order to compare performance results, we tested our method using the same 

experimental parameters and methodology described in the CSS paper [26]. Using the 

same dataset of image contours, 500 images were used to generate a database of 5000 

objects; Each of the original 500 images was transformed by rotating the image between 

20˚ and 180˚ with 20˚ intervals (forming 9 new images each, for a total of 5000 images), 

and deforming each using the shearing matrix 








10

1 k , where k is the shear ratio. The 

experiments were conducted on three different databases using shear ratio values k = 1.0, 

2.0, and 3.0 (see Figure 5-11), with the original 500 images as input queries. 

Furthermore, the images were re-sampled along its contour to remove any point 

correspondence from the transformation.  

The success rate for a query is defined as m/mmax x 100, where m is the number of outputs 

which are the actual transformed versions of the input, and mmax is the maximum possible 

value of m. The success rate is observed for the first n outputs, ranging from 2 to 40, and 

in each case, the average success rate of the system for all 500 inputs queries is 

computed.  
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Figure 5-11. Distortion on the image (from left to right) using a shear ratio of         
k = 0,1,2, and 3. 

 
The high value of the shear ratio that was used in the experiment extremely distorts the 

image, up to a point that corner and inflection points no longer become reliable features. 

Corner and inflection points are resistant to affine transformations, but are not completely 

invariant, since angles and distance are not preserved. Slight changes in the contour can 

easily be confused with noise. Hence, a more appropriate feature point selection is 

needed.  

In this experiment, we use the convex hull to serve as feature points since it is affine 

invariant and is unaffected by changes in angles and distance. The convex hull remains 

the same regardless of the level of distortion in the image.  

Figure 5-12 shows the result of the CSS algorithm on the three databases, using affine 

length parameterization. For the first ten outputs, the success rate dips to 98.3% for k=1.0 

and down to 97% for k = 3.0. In contrast, our method performed flawlessly, with a 100% 

success rate regardless of the shear ratio, k, or the number of observed ouputs n.  

The advantage of using our method lies in its flexibility in allowing for the selection of 

appropriate features depending on the conditions, such as the convex hull, which is not 

possible with the CSS algorithm. Furthermore, the features need not be dictated by the 

parameterization of the contour, thus making the method applicable to a wider range of 

databases. The CSS algorithm requires that the boundary shape of the object in the image 

is known. In our method, the same restriction is preferred, but not required, in order for 
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the system to function. Hence, our method can work not just on databases of object 

contours, but also on any image as long as feature points of interest can be located in the 

image. The only consequence will be a larger hash table, caused by the formation of more 

triplet bases (see Sec. 3.1.1) that are not actually part of the object of interest (e.g., the 

background). 

 

Figure 5-12. Results of the CSS algorithm, displaying success rates. In comparison, 
our proposed method, using the same experimental parameters, showed 100% 

success rates regardless of the values for n and k. 
 
 



41 

6. CONCLUSION 

We presented a method for efficiently retrieving images from a homogeneous database. 

Aside from being able to discriminate among images at a very fine level, the technique is 

insensitive to changes in viewpoint and slight, nonessential shape deformation. A 

theoretical analysis of the failure modes was examined, and the method’s performance 

was compared with a similar and popular algorithm. Experiments show promising results, 

validating the method’s ability to handle such types of scenarios.  
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