Skip to main content
Log in

A Function to Test Methods Applied to Global Minimization of Potential Energy of Molecules

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we develop a function with a functional form similar to general potential energy functions and whose global minimum is known. We prove that the number of local minimizers of this function increases exponentially with the size of the problem, which characterizes the principal difficulty in minimizing molecular potential energy functions. In order to guarantee the global optimality and to show the difficulty in obtaining the global minimum of this function, we propose the utilization of a deterministic algorithm. The algorithm is based on a branch and bound scheme that uses interval analysis techniques to calculate the lower bounds. Computational results for problems with up to 25 degrees of freedom are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.L. Allinger, Y.H. Yuh and J.-H. Lii, Molecular mechanics. The MM3 force field for hydrocarbons, J. Amer. Chem. Soc. 111 (1989) 8551–8582.

    Google Scholar 

  2. H. Barbosa, F. Raupp, C. Lavor, H. Lima and N. Maculan, A hybrid genetic algorithm for finding stable conformations of small molecules, in: Proc. of the VIth Brazilian Symposium on Neural Networks (IEEE Computer Soc. Press, Los Alamitos, 2000) pp. 90–94.

    Google Scholar 

  3. T. Brodmeier and E. Pretsch, Application of genetic algorithms in molecular modeling, J. Comput. Chem. 15 (1994) 588–595.

    Google Scholar 

  4. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan and M. Karplus, CHARMM: A program for macromolecular energy minimization and dynamics calculations, J. Comput. Chem. 4 (1983) 187–217.

    Google Scholar 

  5. C.A. Floudas, J.L. Klepeis and P.M. Pardalos, Global optimization approaches in protein folding and peptide docking, in: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 47 (Amer. Math. Soc., Providence, RI, 1999) pp. 141–171.

    Google Scholar 

  6. R.S. Garfinkel and G.L. Nemhauser, Integer Programming (Wiley, New York, 1972).

    Google Scholar 

  7. E.R. Hansen, Global Optimization Using Interval Analysis (Springer, Berlin, 1993).

    Google Scholar 

  8. H. Kawai, T. Kikuchi and Y. Okamoto, A prediction of tertiary structures of peptide by Monte Carlo simulated annealing method, Protein Engrg. 3 (1989) 85–94.

    Google Scholar 

  9. R.B. Kearfott, Rigorous Global Search: Continuous Problems, Nonconvex Optimization and Applications (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  10. J. Kostrowicki and H.A. Scheraga, Application of the diffusion equation method for global optimization to oligopeptides, J. Phys. Chem. 96 (1992) 7442–7449.

    Google Scholar 

  11. C.D. Maranas and C.A. Floudas, Global minimum potential energy conformations of small molecules, J. Global Optim. 4 (1994) 135–170.

    Google Scholar 

  12. C.D. Maranas and C.A. Floudas, A deterministic global optimization approach for molecular structure determination, J. Chem. Phys. 100 (1994) 1247–1261.

    Google Scholar 

  13. G.P. McCormick, Nonlinear Programming: Theory, Algorithms and Applications (Wiley, New York, 1983).

    Google Scholar 

  14. L.G. Mitten, Branch and bound method: General formulation and properties, Oper. Res. 18 (1970) 24–34.

    Google Scholar 

  15. R.E. Moore, Interval arithmetic and automatic error analysis in digital computation, Ph.D. dissertation, Stanford University (1962).

  16. M.A. Moret, P.G. Pascutti, P.M. Bisch and K.C. Mundim, Stochastic molecular optimization using generalized simulated annealing, J. Comput. Chem. 19 (1998) 647–657.

    Google Scholar 

  17. A. Neumaier, Interval Methods for Systems of Equations (Cambridge Univ. Press, London, 1990).

    Google Scholar 

  18. G. Némethy, K.D. Gibson, K.A. Palmer, C.N. Yoon, G. Paterlini, A. Zagari, S. Rumsey and H.A. Scheraga, Energy parameters in polypeptides. 10. Improved geometrical parameters and non-bonded interactions for use in the ECEPP/3 algorithm with application to proline-containing peptides, J. Phys. Chem. 96 (1992) 6472–6484.

    Google Scholar 

  19. P.M. Pardalos, D. Shalloway and G.L. Xue, Optimization methods for computing global minima of nonconvex potential energy functions, J. Global Optim. 4 (1994) 117–133.

    Google Scholar 

  20. L. Piela, J. Kostrowicki and H.A. Scheraga, The multiple-minima problem in the conformational analysis of molecules. Deformation of the potential energy hypersurface by the diffusion equation method, J. Phys. Chem. 93 (1989) 3339–3346.

    Google Scholar 

  21. A. Pogorelov, Geometry (Mir Publishers, Moscow, 1987).

    Google Scholar 

  22. J.G. Rokne, Low complexity k-dimensional centered forms, Computing 37 (1986) 247–253.

    Google Scholar 

  23. D. Stevenson, IEEE standard for binary floating point arithmetic, Technical Report, IEEE/ANSI 754–1985, IEEE (1985).

  24. J.M. Troyer and F.E. Cohen, Simplified models for understanding and predicting protein structure, in: Reviews in Computational Chemistry, Vol. II, eds. K.B. Lipkowitz and D.B. Boyd (VCH, New York, 1991) pp. 57–80.

    Google Scholar 

  25. D.J. Wales and H.A. Scheraga, Global optimization of clusters, crystals and biomolecules, Science 285 (1999) 1368–1372.

    Google Scholar 

  26. S.J. Weiner, P.A. Kollmann, D.T. Nguyen and D.A. Case, An all atom force field for simulations of proteins and nucleic acids, J. Comput. Chem. 7 (1986) 230–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavor, C., Maculan, N. A Function to Test Methods Applied to Global Minimization of Potential Energy of Molecules. Numerical Algorithms 35, 287–300 (2004). https://doi.org/10.1023/B:NUMA.0000021763.84725.b9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NUMA.0000021763.84725.b9

Navigation