
An acceleration scheme for solving convex feasibility

problems using incomplete projection algorithms *

N. Echebest ! M. T. Guardarucci ! H. Scolnik + M.C.Vacchino |

December 2001.

Abstract

The Projected Aggregation Methods (PAM) for solving linear systems of equali-

ties and/or inequalities, generate a new iterate x**! by projecting the current point

z* onto a separating hyperplane generated by a given linear combination of the orig-

inal hyperplanes or halfspaces. In H. Scolnik et al [12] we introduced acceleration
schemes for solving systems of linear equations by applying optimization techniques

to the problem of finding the optimal combination of the hyperplanes within a PAM

like framework. In this paper we generalize those results, introducing a new accel-

erated iterative method for solving systems of linear inequalities, together with the

corresponding theoretical convergence results. In order to test its efficiency, numerical

results obtained applying the new acceleration scheme to two algorithms introduced

by U. M. García-Palomares and F. J. González-Castaño [6] are given.
Key words. Aggregated projection methods, systems of inequalities, incomplete

projections.

AMS subject classifications. 65F10

1 Introduction

The class of convex feasibility problems consisting in finding an element of a non-empty

closed C' convex set which is a subset of R”, defined by

C= {x ER": g(x) <0, 1=1,2,...,m}

“Work supported by the universities of Buenos Aires and La Plata (Project 11/X243), Argentina.

‘Departamento de Matematica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata,

Argentina(optiâmate.unlp.edu.ar).

*Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos

Aires, Argentina(hugo@dc.uba.ar).

such that the functions g;(.) are convex and differentiable in R", have a wide range of
applications, like image reconstruction techniques [2, 8]. One of the well-known methods

appearing in the literature for solving the problem C = N”,.,Ci;, where each C; is

convex and closed, is the algorithm of sequential orthogonal projections of Gubin, Polyak

and Raik [7]. That method is particularly useful when the projections onto C; can be easily
computed, as for instance in the particular case of hyperplanes or halfspaces. This last

observation leads to generate for each iterate x”, in more general cases, a suitable closed

convex set S*, satisfying C C S*, that facilitates the computation of the exact projection

onto it [6]. The choice of the sets S* may have a significant influence on the convergence
rate of the algorithms. Garcia-Palomares and Gonzdlez-Castano in [6] have proposed an
incomplete projections algorithm (IPA) for obtaining an approximate projection of z* onto
special convex sets S*, C C SF, i=1,2,...,q, arising from the separation of subsets of

the violated constraints. The next iterate is defined by means of the projection of z* onto

a hyperplane H* strictly separating C, generated by means of a combination of aggregate

hyperplanes HF relative to the incomplete projections onto each set St .

In this paper we present an accelerated iterative projection method for solving the

convex feasibility problem defined by Az < 6, A € R™*", be R”. This method is an

extension of the projection methods for solving systems of linear equations given in [11]

and [12]. The general scheme is similar to the IPA algorithm given in [6], and therefore is
very convenient for parallel processing. The idea is, therefore, that at the current iterate

the set of violated constraints is splitted into subsets or blocks St , In such a way that

the required incomplete projection is obtained by combining exact projections onto simple

convex sets. The new iterate x*+! is defined by the projection of the current x” onto

a separating hyperplane given by a suitable combination of the hyperplanes obtained by

incomplete projections onto the blocks.

The new acceleration schemes here presented appear in the algorithm DACCIM when

exact projections are made, and later on they are applied to a more general method called

ACIPA, both for computing incomplete projections onto each block as well as for obtaining

the new iterate z*+!. The basic idea is to consider at the current iterate the generated

separating hyperplane, forcing the new iterate to lie on the convex region defined by it.

In Section 2 the acceleration scheme for solving systems of linear inequalities is pre-

sented and applied to a version of the EPA algorithm that employs exact projections as in

[6], and prove the main results leading to an improved rate of convergence. In subsection

2 we apply the acceleration scheme to the ACIPA algorithm, that uses incomplete pro-

jections onto blocks of inequalities. In Section 3 the numerical results obtained with the

new method are given, showing the efficiency of the acceleration scheme. The last section

summarizes the conclusions.

2 Algorithms and convergence properties

Consider the non-empty convex set C’ characterized by a systems of m linear inequalities

C:= {2 ER": aba <b;, i=1,2,...,m} (2.1)

The matrix of the system will be denoted by A € R”*”, and ||x|| will be the 2-norm of

z ER”. We will assume that each row a? of A is such that ||a;|| = 1. We will use the
notation z* for any feasible solution of Ax < b.

For à = 1,2,...,m, we define

Ci; ={x ER": aba <b, 6; ER}, and Pe (x) = argminycc,||z — yl.
2 t y t

The general scheme of a parallel projection algorithm [6] for finding an element of C
is as follows:

Given x*, we define the set of violated constraints J* := {j : af at —b; > —0}, where 9

is zero or a fixed positive constant as in [6]. This set is splitted into subsets J*, J&,..., JE,

such that J* = Lo JE, leading to the corresponding subsets of inequalities

S* :={reER": ají < bj, j € JF} (2.2)

In the exact projection methods for each St the projection of x*,

y? = argmin, ese |ly — z*|| is calculated.

As an alternative, García-Palomares and González-Castaño in [6] proposed an algo-
rithm (IPA) for obtaining approximate projections yf of z* onto sets SF, ¿=1,2,...,g,

satisfying

[a* € C] = [lyf — 2" || < [2º — 21] (2.3)
This condition is in particular satisfied if y* is the exact projection onto S*.

In order to assure convergence to a solution of C, the next iterate «*+! is defined using

a combination of the directions d¥ = y¥ — x*, d* = 4, wd, wk > 0, SL, wt = 1.
Then the next iterate is defined as c*t! = x*+u,A,d", where n <wk <2-n 0<n<l,

and A, depends on the chosen algorithm.

The value defined for A, in [6], when w, = 1, determines that the next iterate coincides
with the projection of z* onto a strictly separating hyperplane of C.

In the following, we will describe the adaptation of the algorithms IPA and EPA, given

in [6], to systems of linear inequalities considering a choice of {w¥}4_,, 7 < we < 2-7,

O<n<al.

Algorithm 1 Parallel Incomplete projections Algorithm (IPA)[6/(k-th iteration).
Given x* ¿C,0<0<0.1,0<n<1.

e Define J® :={j: alba —b; > —0}, and qy = card(J*). j j
Define sets S*, S%,..., st according to (2.2).

oe fori =1,2,...,q in parallel

Compute y* such that it satisfies (2.3),

Define dê = yf — gk

End For.

e Define d*=Y wd, 4, wi* =1, wt > 0.

Calculate aku aku?

¡15 (1d; | A — 4=1

' 2][a* [?

o Define xt = qt + wand", n<wp<2—n. o

Remark 1 When wy, = 1, the iterate a*+! is the projection of x* onto the separating

hyperplane [6]
q

H* := (2: (4) (22) = Y willdi|2/2) (2.5)
1=1

that is a combination of the separating hyperplanes

Hj = (0: (di)! (a — at) = ||df||?/2} (2.6)

When the y? are the exact projections onto each intermediate set sE, the algorithm is

modified [6] using a value of Az, that corresponds to the definition of z*+! as the projection
onto the separating hyperplane, combination of those arising from the exact projections

onto each St.

Algorithm 2 Parallel Algorithm using Exact Projections (EPA)/6] (k-th Iteration).
Given z* €C,0>0,0<n<1.

e Define J* :={j: afc —b; > —6}, and determines qy = card(J*). 3 J

Define the sets Sf,..., SÊ according to (2.2).

e Fori=1,2,...,q tn parallel

Compute the projection of x” onto St: y

Define d;* = y;* — af

End For.

e Define d® = Y wd, wE>0, SL wk =1.

Calculate

10% ll |? Ak — 1=1

[ar]? (2.7)

o Define xt = qt + wand", n<wp<2—n. o

Something characteristic of the PAM methods for linear systems, like those in [5] and
[10], is the definition of *+! = 2*+);,d*, with r, satisfying A, = argminy||2* +Ad*—2* ||’.

Remark 2 [f x* is a solution to the system Ax < b, the ideal value of A, satisfying

min la* + da* — g* |?

requires to compute the solution of the problem

min [|z* — 2*]P— 22(af)"(2* — 24) 4 d° lla? (2.8)

by means of

(dt)T (a* — at)
Id ||?

In general, the value of such an optimal À cannot be obtained by a practical formula.

The formulas appearing in (2.4) and (2.7) used in [6], correspond to the related problem

(2.8), avoid this difficulty.

Ne = (2.9)

2.1 Algorithm DACCIM: Exact Projections

We consider a particular case of the EPA algorithm [6], fixing w, =1, 0 =0, card(J*) = 1,

for all i = 1,2,...,q%, where q, = card(J*). Now, each set S* (2.2) corresponds to a

violated constraint in x*.

The exact projection of z* onto each halfspace St, 4=1,2,...,q%, is easily calculated

by yF = Pes) (x*), if j(4) is the original index of the corresponding inequality of the system

(2.1).
Tank From hereafter we denote by rf the difference b; — a; x".

k Remark 3 In particular, when y? = Pc,,.(x*) we get d¥ = y* — x
5 (4)

reli) = b;(i) — Ai TÉ < 0, t= 1,2, cs Ok.

It is useful to point out that if x* is a solution to Ax < b, (d¥)* (2* — 2*) =
(d®)* (a* — y® + yk — x*) > ||d¥ ||? considering (d*)* (x* — yF) > 0 as a consequence of the
convexity of St and the definition of dk,

= 2) being

From the assumptions made in this subsection, we can get the following results

Lemma 1 Given x* ={j: bj) - a; he ob dk = - card?)

If dF = YE, wha’, “ec = y? — ak, E, wÉ =1, wi =1/qx, then

(i) For each i= 1,...,q4, di = a where reli) = bi) — at", and j(i) is the

original index of the system of inequalities (2.1) corresponding to i.

(i) For eachi=1,..., 4, reli) = b;(i) — att" > asa" = aye, if x* is a solution to

Ag < b.

(itt) (d*Y? (x* — a) = 4, wha)? (w* = 2) = DH, wht a (a? 0º),
(iv) (d*)? (a* — at) > NA we (Thay)? > 0,

(0) If c++ = o* + dd*, X> 0 then

[2 — a? = lat — at? 2A(4* (27 — 2) + llar? < (2.10)

Iz" —a* |? — AS ut Ol (2.11)

(vi) If Az is the argmin of (2.11), then

ak wh (r rita)”

“= EE o on
Furthermore

jack — a" |? = ||a* — 0° ||? > 2 (487 (2º — 2º) + (MP P, (2.13)
satisfies

lot! — ar |P < lat Pa (2.14)
where

(Es wi (ria)? = Mar? = LA 2011 (2.15)
[las [1

(vii) PH — qk 4 Ad", with À, given by (2.12) is the projection of x* onto the hyperplane

fo: (da — at un wi (2.16)

(viii) Moreover, (2.16) is the separating hyperplane of x with respect to C.

Proof. (i)-(iii) follow immediately from the definitions and the stated hypothesis. In order
to prove (iv) we just have to take into account that for all ¿ = 1,2,..., qx, reli) < 0,

together with Remark 3 and (i)-(iii). By simple comparison (v) follows from (iv). The
first part of (vi) follows directly by finding the argmin of problem (2.11).

The remaining results follow just replacing argmin in (2.11). For proving (vii) it is
enough to replace 2*+! in (2.16). For proving (viii) consider the inequality one in (iv).
That inequality shows that (2.16) is a separating hyperplane of C when)~#*,, w#(r rita)” +

0. O

Lemma 2 Given z*, if d* = Ejes wi edk, where di = Pe, (1%) —a* for all j € JF, and

RH = gk + Aga", Ay = Pescar OL then the sequence {x*} satisfies

jaftl = *|2 < la? — a*[? — az, where (2.17)

= Alla"? = (Y wd 127/1144 11. (2.18)
jes

Proof. It follows from (vi) of the previous Lemma. UO

The following results are needed for justifying the acceleration scheme that will be

applied to the EPA algorithm with unitary blocks.

Lemma 3 Given z*, J, = {j: b; — af at <0) d*, Ay and x**! as defined in Lemma

2, then

(i) (a* — a**+1)F dk > 0.

0. k+1 (ii)(a* — ak)Tak > je rr,

(iii) ret) = rk — dat d®, je Jr.

(iv) ica, MRTG sett = 0.

Proof. Using the definition of z*+1 and Ax in (x* — at t)T gr (i) follows. Due to the
fact that (a* — a*+1)?d* = cy, wirias (2* — att), and considering af x* < bj, we get

gk t1)T gk k nho a; 8H kk, k+1
(a* — +) d 2 jos jr (05 — +) = Dio OPTA r POC
To prove (iv) we substitute (iii) in Sie Ja wkrkr*t! Then, replacing the expression of Az POC
; : k+1 in Dijes, wh (rk)? — Ak (Yijen, whrta;' d*) we obtain ey, wrens =0. O

Lemma 4 Given z*, consider JF, d”, Ap and «*®+1 as defined in Lemma 2.

If JF == LG: aja? > bj), and get = {j: eg az 4º < by},
JE = (5: je Ta! Foktl > bj}, then

(i) For all j € JE, a a; d* > 0.

TE gh k+1,.+1 k+1 (ait = Djegt+ wt re ar, then (ti)T dê <0.

(iii) FR := y, jes ara, T, the sign of (tE*D)T ar tends to be negative when the

negative residuals of the constraints increase in absolute value. On the other hand,

it tends to be positive when re | < Iril.

Proof. To prove (i) we consider j € JF*, roth = = rk — Apaj dê <0, y rá > 0. Then,
j

k41,k+1, T ; k+1 it follows that a; d > 0. As a consequence of (i) 4" :— 5. jest UG Tr; aj,

(HT de <0. Foral je JE, we get rt <0 and rá < 0. In that case, the sign of

rt rá = —Apaj dê, depends on the sign of a; df. Thus, if as d' < 0 then re < Inf;
while if a; d > 0 the opposite holds. Therefore, since — = Lie jet Etr jap » the

EITA

satishes

sign of can be either negative or positive depending on the absolute values of

the negative residuals. UO

From Lemma 4 we can infer the direction d*+!, that combines the exact projections

to the violated constraints at x*+1, may satisfy (d*+!)?d* < 0. Such property has been
observed in different numerical experiences in almost all iterations. Considering (ii) and
(iii) from the previous Lemma, we see that such a situation is possible due to the zigzagging

appearing when non-violated constraints in a given iteration are violated in the next, and

the residuals of those constraints that remain violated (ea = ~ Ir’ |) do not decrease in a
sensible way.

Moreover, if (d*+1)d* < 0, then the next iterate along the direction d*+! will lie

outside of the convex region defined by the separating hyperplane (2.16) which contains
the current point «*+!. This observation led us to define a new algorithm such that the

defined direction takes into account that property.

Lemma 5 Given «**!, if o = (d**1)Tu < 0, and v = d*, then the direction dit! .=
P,.d**" satisfies

(i) de qe A
(ii) qk+1 (x* o ght) > (ADT (g* o ht) > 0.

(64) [PE P< [ae |".

(iv) ||Pid®*"|| £0

Proof. From the definition of d*+1, (i)follows. Multiplying (i) by «*—2*t!, and considering
the result of Lemma 3 (i), we get (d*+!)7(a* — a+!) > (gh T (g* — gk+1), Then, since
(de+1)P(g* — tt) > Nin we (ri)? > 0, we obtain (ii). The results (iii) and (iv)
follow directly from (i) and (ii) respectively. O

Lemma 6 Given x’, v = x* — x*~', consider J*, d® as defined in Lemma 2.

If (Ay <0, and gett = gk + ApdF, with dE defined as in Lemma 5, and

K mk
1. = Drei We (rp) (2.19)

[d+]?

then o a

[58H — qt? = af — w* ||? — 2d, (d*)? (a* — 2%) + Ag df |?

satisfies
art o a? < [a+ o a? (2.20)

where c*t+! = xk 4 Apd*, and Aj defined in (2.12).

Proof. To derive the inequality (2.20) it is enough to consider the definitions of ¢*+!, gk+
and their distances to z*, _ o . Gk ank(pk)2

eh? — oF ||? = [at — a ||? — 2X (dt) (2* — 2º) + Agilld* 2, where Ay = See
qk k(pky2 lat — at P= ab — ar]? 2 (a (0 — a) 4 Aa, wit dy = Piti

The difference ||x*t! — q*||2 — ||g*+1 — g*[1? coincides with

[22 (dt)F (1º — at) + Ap? dé [PP] — [-2Ap (dt)P (a* — at) + Ai ld* |]

Reordering this expression we get

Eb an % yk (rh
[2 ER (d*)? (x —a*)—2 =

é pa Y A er)"
[| d+ 12 dj?

The first bracket

tk pb om, de apt (rt
po (dat — at) 20

dk (pk)? cle — pl): where cy = 2(d*)? (a* — ak) ny we (Tr;

The second bracket coincides with
1 1 29 .

col Tae — ter): where o» = (0%, wi(ri)?)?. Hence, since cy > 2c2, c2 > 0 and
TIP — we > 0, we get (2.20). O

Now, we have the necessary results for presenting the new algorithm. Due to the hy-

potheses of Lemma 6, the iterate a*+l is defined along the direction d* =P, (NE, w*éd?),
where v is the direction d*71! from the previous iteration.

Given z*, let us consider J*, card(J*) = qy. We will denote by Q; the projector onto

the orthogonal subspace to v = x* — q*=1. In particular, Qo = In, where J, is the identity

matrix. The following scheme describes the iterative step (k > 0) of the new algorithm,
in a version not adapted to parallel processing.

Algorithm 3 DACCIM (k-th iteration):

Given x*, Jp, Qu, v = dk.

e Ffori=1,...,g; do

Compute y® = Citi) (24).

Define di = y? — ak,

End For.

e Define d* = 7%, wkd* 1= 197)

e Compute o = v” d*

If o < 0, define d* = Q,(d*), else d* = d*.

e Compute ¢*t! = gk + Aude, Ag defined by (2.19). o

This algorithm can be easily adapted to parallel multiprocessing.

The following Lemma proves that algorithm DACCIM is well defined.

Lemma 7 Given x*, «* £ x*, the new direction d* and Ay as in (2.19) are well defined.

Proof. It is of interest to consider the case v' d* < 0, v = gt — qt-1 Taking into account

(ii) and (iii) of Lemma 5 it follows immediately that d* O and therefore, Ay is well
defined. O

10

Lemma 8 The sequence [x*) generated by DACCIM satisfies

lak tt — oF ||? < |la* — a*||? — Gy, where

Se, ud)? cig = (Ade = 2 —- , (2.21)
dj?

satisfying Q, > Ap, a, given in (2.18).

Proof. The result follows using the expressions of \,, the Lemmas 2 and 6. O

2.1.1 Convergence

The convergence of the sequence generated by the DACCIM algorithm to a solution «* is

proved applying the theory developed by Gubin et al. in [7], taking into account that the
sequence {||z* — x*||} decreases, Lemma 6 and 8.

2.2 Accelerated incomplete projections algorithm (ACIPA)

In this subsection we apply the acceleration scheme to the ACIPA algorithm, by using

incomplete projections onto blocks of inequalities as in the IPA method described in [6].

To compute the approximate projection onto each sE, we use the DACCIM algorithm with

a stopping condition such that it finds a yf satisfying the condition (2.3) (one iteration
guarantees this).

As a consequence of the procedure to find ye, the next result justifies that HE is a

deeper separating hyperplane the one given in [6].

Denoting by z/ the intermediate iterates of DACCIM until obtaining y*, and using

29 = a*, we get

Lemma 9 Given y*, 2* EC. If yk —2* = E (2) — 2-1), then

(i) y = IL, - 2 > 0,

(65) yb — el? < lot — HP A, la — 241

(65) (yb — 07 (at — ak) > (yk — at? 4 7)/2, with qí>0

Proof. The first assertion follows immediately because if x* is unfeasible, at least one

iteration of DACCIM is performed and, therefore, we obtain the result given in (2.17).
According to Lemma 2 each intermediate 2? satisfies

2d —2* 11? < la*— 24711? —||24 —2471/12, hence obtaining (ii). Moreover, since |lyF—a2*||? =
[xk — 2*||? — 2(y® — YT (x* — 4) + [[y? — a* 1? we derive (iii) using the inequality (ii). O

11

This implies that the hyperplane

Hy = {a: (yy —2")" (a — 2°) = (lye — 2" |? + 94)/2}

is deeper than HF given in (2.6) and introduced in [6]. Likewise, the hyperplane

generated from the convex combination of the previous ones

q

HF = (o: (47) (2 2) = Y wh (lai |? + 9i)/2) (2.22)
i=1

where dt = yF—a2*, d*= Y, wéd*, shares the same property when compared to (2.5).

In principle, as in the IPA algorithm, the new iterate will be obtained projecting x*

onto the deeper separating hyperplane Fr. Taking into account x* is on the separating

hyperplane H*—! (being v = x* — gt! the normal vector), when the new direction
d® satisfies (d*)7v < 0 and leads to a point exterior to the halfspace limited by H*—!

containing C’, the direction will be modified by projecting it onto the “correct” region.

Such a modification is identical to the one proposed in the DACCIM algorithm when

dealing with the same situation.

Therefore, if v is the direction at step «*—ax*—!, and d* satisfies (d*)"v < 0, we define

dê = Pd”, and 2H = qk 4 pd", being

q kk?
~ Dj=10 (ld; +) de= ada (2.23)

the argmin of the problem

q

x" — a*||? — 20'S 0 (+ 2)/2+ 0) 1414 (2.24)
w=1

that is an upper bound of the one given in (2.8), now using the new direction d*,

We describe in the following the iterative step of the incomplete projections algorithm

ACIPA.

Given x*, denoting by Q; the projector onto the orthogonal subspace to the one defined

by the previous direction v = x* — x*—!, and defining Qo = In.

Algorithm 4 ACIPA (k-th iteration).
Given x* ¿C,v=d*"1, 0<0<0.1, 0<n<1.

e Define Jy = {j: aja? — bj > —O}, and SF, i=1,2,...,¢.

12

e Fori=1,2,...,q in parallel

Compute y* using Algorithm DACCIM, and compute Yj;.

Define d;* = y;* — «*.

End For;

e Define w* > 0, such that Y | wr =1.

Define dê = 52, wfdk, and compute o = (d*)?v,
WwW; di »

Define d* = Ona") if a <0, else dé = d*.

Compute \, given in (2.23).

e Define «®t! = gk + wpApdE, with n<wp<2—n. o

We are now going to prove the algorithm is well defined and later on the convergence

results.

Lemma 10 Given x*, c* 4 x*, a* e C, the direction d* of ACIPA is well defined and

satisfies

1) (EY (a* — at) > (dE (a* — a*) > 0, being d* = wrdk. (i) (=1

ii) ||d*|| < |ld* ||, if dê = wkd* satisfies v' d* <0, where v= del k>1. =1 2

Proof. For k =0, dº coincides with the direction given by the IPA algorithm.

Assuming the direction dt! k > 0, is well defined, it is interesting to analyze the case

when o = (d*)'d*-! < 0. According to the definition, d* satisfies d* = d* — SP Thus,

multiplying both sides by (2*—2x*), and using (d*—!)7(2*—a*) > 0 due to the definition

of a, we get (d'JT (a! — ak) = (d*)" (@* — ak) — PE (ut (@* — 2h)) > (a*)T(a* — 08) > 0.
From this inequality we derive (i) and also that ||d*|| > 0. Therefore, the direction is
well defined in the special case when its definition modifies the one of the IPA algorithm.

On the other hand, and for the same special case, the following holds

d+” = dé 7 — (o?)/||v||?. Thus, d* satisfies (ii). O

The differences between ACIPA and IPA [6] are the following:
1) we calculate y* explicitly (algorithm DACCIM);
2) z K+! is the projection of x* onto a deeper separating hyperplane;

3) we preserve the fact that the new iterate does not fall outside of the region defined by

the last separating hyperplane.

13

In order to theoretically analyze the comparative behaviour of the sequences generated

by the algorithms ACIPA and IPA we proceed in two stages. First, we compare the step

given by ACIPA with the one obtained by an algorithm using the same approximate

projections y*, but for defining x**+! it uses directly d* without projections. Second, we

compare such a sequence with that obtained by the original IPA algorithm.

For comparison purposes we will denote by z*t+! the ACIPA iterate and by z*t! the
one given by IPA.

Lemma 11 Given ar, y? ,1=1,2,...,9, ar, d* and Ay defined in ACIPA.

Ifo = (di) dt 1 <0, and GH — q* 4 Ad", then

Dp k k||2
. ~k+1 k+1 . k+1 _ _k k — ¡1% (|? || +74)

(i) (54 — at] < Jab! —a*|| if ck ak + dyd*, and y= =o
Furthermore,

11) If 2º tt às defined as in (i), then à) If «8H is defined as in (i), th
joe tt—a*|| < |lc*t1—2*|| when x**! is obtained using the original \;, of [6] explicitly
stated in (2.4):

x Deer Pe?)
Ak + 2]|d*]|2

Proof. To prove the inequality (i) let us consider,
|zett—a* ||? = ||a* —ar* ||? 2, (d*)? (a* —a*) +2 ||d*||?, replacing \, by the expression

given in (2.23).

Analogously, replacing the expression of dy in ||a*t!—a* ||? = ||a*—2*||/?-2d4(d*)? (a*—

qt) + Milld* 2.
The difference ||x*t! — q*||2 — ||g*+1 — q*||2 coincides with

[24 (8) (2* — at) + Alla"? — [-2A4(4*) (2? — 2) + Alla" 17.

Reordering as in Lemma 6 we observe that the involved expressions are similar to those

appearing there, except by their numerators Az and Ne , but they have no influence on

the comparison we are interested in. Hence, repeating the steps of Lemma 6 we prove (i).

In order to get (ii) we consider as in (i)
att — a*2 = lla? — gr [2 — 22 (407 (2* — a*) + AZ ||d*||?, replacing the expression

corresponding to Ap. Also ||x*t! — 2*||? = ||a2* — 2* ||? — 2d, (d*)? (a* — x*) + ||d*||?, and
taking into account that the value of A; is the one given in (2.4).

It is easy to see the difference ||z**+! — x*||? — ||x*+! — x*||?, is equal to

[2(A; — Ap) dé (a* — 28] — [A — Ag) lat]

and using (d*)? (2* — 24) > Aplld*||2, A; — Ap >0, (ii) follows. O

14

Lemma 12 If d* is defined as in the ACIPA algorithm, x*+! = a* + wprgd*, with Xz
given in (2.23), yn < we <2—7 then the generated sequence {x*} satisfies

[att — at? < la — 2* ||? — de, (2.25)

where

= k k ||2 2 7k ||2
dp = wp(2 — ue) (D wi (Id |? + vi)? M(alldt |?) (2.26)

i=l

where dê and y; are those from ACIPA.

Proof. The result follows from the definition of z*+!, d* and that of A, given in (2.23) .
O

2.2.1 Convergence

The convergence of the sequence generated by the ACIPA algorithm is a consequence of

the comparisons made in Lemma 11 with the IPA algorithm, together with Theorem 1 in

[6] and Lemma 12.

3 Numerical experiences

The first purpose of the numerical experiences is to illustrate the behaviour of the accel-

eration of DACCIM (Algorithm 3), using exact projections onto the violated constraints,
in comparison to the EPA method [6]. For that purpose a version of the EPA method was
implemented, called EPACIM, using card(JF) = 1, w* = 1/q, if the number of violated
inequalities in z*, whose indexes are stored in J* = {7 : a; 2º — b; > O}, is qx. We briefly
describe this version as follows:

EPACIM: Given x*, J*, q; = card(J*) (as in DACCIM), define
di = ye, Wi Tia Li) where wk = ar:

The new iterate is c+! = q* 4 Ad", with Ap as in (2.12).

The second purpose is to compare the results of ACIPA (Algorithm 4), that uses

incomplete projections onto blocks of violated inequalities, with those obtained with a

version of the IPA algorithm [6] called IPACIM. In both algorithms the computation of
the approximate projections y* is similarly done by means of the procedure of DACCIM,

accepting an approximation if the condition described below is satisfied. Hence, in this

version of IPA the convex combination d* = 1 wifd;* where d;* = y? — ar for

¿=1,2,...,q, is similar to the one used in ACIPA.

15

Now, we will describe briefly the algorithms being compared, using an experimental

code.

IPACIM (Incomplete projections algorithm: Given an iterate «*, J*, sE, y? for each

¿=1,2,...,q, we define the direction

dk = yt wit d;" where d® = y* —x* fori =1,2,...,¢,

Define z*t! — q* 4 Ad”, where Ay is the original one of [6] as given in (2.4).

ACIPA (Accelerated incomplete projections algorithm: Given an iterate ar, dk-1 Qu, J*,

St, vê, i=1,2,...,q, we define the direction d* as in IPACIM,

Define d* = Q,(d*) if (d*)? d*-! < 0, otherwise d* = d*,

Define z*+! = xk + \,d*, where \; is the one defined in (2.23).

In the implementations of ACIPA and IPACIM we consider:

(i)A constraint is violated at x* if a; 2º — b; > —(5 + 107%). The set J* of violated
constraints is in principle splitted into q = 4 blocks of equal cardinality, adding if

necessary the remaining inequalities to the fourth block.

(ii) Incomplete projection onto each block: We compute it by means of the DACCIM

algorithm.

Given z* € R”, and a block S*, from 2º = x* we compute z, z?,... while none of

the following conditions is satisfied:

(1) r(z') < 107? x r(20), where r(z!) = max ;¢ cx (0, as (2) — bj) is not satisfied, or

(2) |[z’ — 2! *|| < 10°4|[z* — 29], or
(3) the maximum number of allowed iterations (15) has not been reached.

Test problems.

We have run different problems of the type Az < b, where the matrix A € R™*” has

been chosen to reflect a variety of condition numbers and/or sparsity patterns. For that

purpose we used the Zlatev routine from SPARSKIT2/Library [9] (www.cs.umn.edu/
Research/darpa/SPARSKIT).

Another set of problems has been obtained randomly using different sparsity patterns

according to predefined densities. More precisely, the indices of nonnull entries were

generated randomly, as well as the corresponding matrix values. Approximately density +

mxn entries of the matrix will be nonnull. After generating the matrix, the code computes

16

the independent term bin such a way that Ax < bis compatible. The initial approximation

used was a vector x% whose components were zero.

Numerical results

The problems were run on a PC Pentium III, 800MHz, with 256 Mb Ram and 128 Mb

Swap using FORTRAN 90.
The stopping criteria were:

If Rmp < 10~°*max{1, Rmo}, where Rms = max;=1,,....m(0, at x* — b;), or if the number

of iterations reaches the maximum allowed ITM AX, with ITM AX = 5000.

The obtained results are presented in the following Tables using the notation:

e Iter: Number of performed iterations.

e Rm,: max;=1,2,....m(0, ai x° —b;), z° being the iterate satisfying the stopping criteria.

e CPU: time measured in seconds.

The starting point was x° = 0.

In Table 1-2 we present the results obtained with the algorithms DACCIM and

EPACIM for the problems of SPARSKIT2 Library derived from Zlatev’s matrices. These

matrices have been generated with different condition depend on the parameter a. The

dimensions were m = 12000, n = 10000, and the problems were run with a = 2, i =

2,4, 8,12, denoting each problem by Zla(«) according to the sort of conditioning with which
the matrix was generated. In Table 1 results obtained using index = 20, a parameter that

indicates the average number of non-zero elements per row are given, while in Table 2 the

values correspond to index = 100.

Table 1: Zlatev’s matrices, m = 12000, n = 10000

index = 20 Meth Iter | Rms | CPU

DACCIM | 163 | 8.9d-7 2.8

Zla(22) EPACIM | 858 | 9.2d-7 | 19.5

DACCIM | 231 | 9.9d-7 3.8

Zla(2*) EPACIM | 888 | 9.7d-7 | 20.0

DACCIM | 182 | 7.33d-7 3.1

Zla(28) EPACIM | 882 | 9.6d-7 | 20.6

DACCIM | 344 | 8.5d-7 5.4

Zla(2!2) EPACIM | 896 | 9.7d-7 | 20.3

17

Table 2: Zlatev’s matrices, m = 12000, n = 10000

index = 100 Meth Iter | Rm, | CPU

DACCIM | 1064 | 9.9d-7 | 82.9

Zla(22) EPACIM | 5000 | 1.3d-2 | 589.5

DACCIM | 1130 | 7.8d-7 | 119.0

Zla(2*) EPACIM | 5000 | 9.4d-3 | 631.1

DACCIM | 2070 | 9.9d-7 | 227.2

Zla(28) EPACIM | 5000 | 1.2d-2 | 813.8

DACCIM | 1094 | 7.8d-7 | 126.6

Zla(2!2) EPACIM | 5000 | 6.6d-3 | 518.7

These results show the effect of the acceleration scheme of the algorithm DACCIM in

regard to the algorithm EPACIM, because the number of required iterations and the CPU

time are drastically reduced in all problems.

Table 3: Random's matrices, density=1.. Average timing (sec.

Meth | m| 800 400 200 100
n | 200 100 50 25

DACCIM 0.44 (32) | 0.09(28) | 0.01(35) | 0(37)
EPACIM 1.11(75) | 0.22(63) | 0.03(82) | 0.01(105)

Tabla 3 shows a comparison of the DACCIM algorithm with the EPACIM version of

EPA [6] using a set of dense randomly generated problems.
Results are given indicating the row and column dimensions m, n of the randomly

generated problems with density 1. The reported CPU time is the average of solving each

problem five times. Between parenthesis the required number of iterations for satisfying

the stopping criteria as in Tables 1-2 are given.

In the next tables we report the results obtained with the ACIPA algorithm, using

incomplete projections onto the violated constraints blocks, and IPACIM, the implemented

version of IPA [6] as described at the beginning of this section. The key difference between
them is the definition of x*+!,

In the Tables 4-6 we present the results corresponding to the Zlatev matrices [9] con-

sidering different sparsity patterns defined by indez in each case.

The results of Tables 4-6 show the efectiveness of the direction d* and the parameter

18

Table 4: Zlatev’s matrices, m = 12000, n = 10000

index = 20 Meth Iter | Rm, | CPU

ACIPA | 59 | 4.2d-7 8.5

Zla(22) | IPACIM | 115 | 9.3d-7 | 22.7
ACIPA | 82 | 7.6d-7 9.4

Zla(2*) IPACIM | 71 | 4.3d-7 | 18.7

ACIPA | 71 | 9.9d-7 9.0

Zla(28) IPACIM | 898 | 9.9d-7 | 136.6

ACIPA | 75 | 7.4d-7 9.6

Zla(2!2) | IPACIM | 92 | 8.9d-7 | 20.9

Table 5: Zlatev’s matrices, m = 12000, n = 10000

index = 60 Meth | Iter | Rm, | CPU

ACIPA | 73 | 9.4d-7 | 22.2

Zla(22) IPACIM | 239 | 8.7d-7 | 154.6

ACIPA | 102 | 4.8d-7 | 25.6

Zla(2*) IPACIM | 263 | 8.5d-7 | 154.7

ACIPA | 127 | 2.2d-7 | 27.7

Zla(28) | IPACIM | 241 | 9.1d-7 | 149.8
ACIPA | 72 | 5.4d-7 | 22.7

Zla(2'*) | IPACIM | 247 | 8.2d-7 | 150.9

Az used in the ACIPA algorithm. In particular, such a performance is more evident in

Table 6, corresponding to more dense problems.

It is also worthwhile to point out that Table 4 shows that the number of iterations

can be similar, while the CPU time is not. This means that the cardinality of the blocks

corresponding to the violated constraints in IPACIM is greater than those in ACIPA.

In other words, ACIPA generates better iterates as predicted by the theoretical results.

Moreover, the version of IPA that we called IPACIM uses the same procedure DACCIM as

in ACIPA for finding the approximations y* to the blocks. Thus, the observed differences

in the numerical results clearly arise from the different definitions of x*+?,

We include in the next Table 7 the results obtained with ACIPA and IPACIM for the

randomly generated problems with dimension m = 4000, n = 2000, and density 1. The

reported CPU time corresponds to the average of five runs of each problem.

19

Table 6: Zlatev’s matrices, m = 12000, n = 10000

index = 100 Meth Iter | Rm, | CPU

ACIPA | 118 | 8.9d-7 | 49.0

Zla(22) IPACIM | 537 | 7.2d-7 | 577.5

ACIPA | 147 | 9.6d-7 | 55.6

Zla(2*) IPACIM | 637 | 8.4d-7 | 645.0

ACIPA | 166 | 4.9d-7 | 55.2

Zla(28) IPACIM | 568 | 5.5d-7 | 529.8

ACIPA | 216 | 9.8d-7 | 63.8

Zla(2!2) IPACIM | 551 | 9.6d-7 | 560.2

Table 7: Random matrix, density =1.

m n Meth Iter | Rms CPU

4000 | 2000 | ACIPA | 245 | 1.5d-5 | 474.2

IPACIM | 5000 | 6.0d-3 | 8698.2

Finally, we run the same problems of Table 7 using a density of 0.1 and different

dimensions as shown in Table 8 using the ACIPA and IPACIM algorithms.

Table 8: Random’s matrices, density = 0.1

m n Meth | Iter | Rm, | CPU

7500 | 2500 | ACIPA | 73 | 2.2d-6 | 71.6

IPACIM | 654 | 2.4 d-6 | 446.9

9500 | 2000 | ACIPA | 27 | 1.7d-6 | 30.9

IPACIM | 106 | 1.5d-6 | 85.5

10000 | 1900 | ACIPA | 23 | 1.5d-6 | 27.4

IPACIM | 74 | 1.2 d-6 | 62.3

In all Tables we observe the efficiency of the new algorithms that include the projection

onto the half-space defined by the separating hyperplane defined in (2.22).

20

4 Conclusions

The DACCIM algorithm is an extension to linear inequalities problems of the ACIMM

algorithm [12]. In that algorithm we introduced the basic idea of forcing a new iterate to

belong to the convex region defined by the computed separating hyperplane. Both, the

theoretical results and the numerical experiences, showed the advantages of this approach.

The acceleration scheme applied in the DACCIM algorithm is the basis for extending

its applicability to other class of algorithms suitable for parallel processing. Among them

is the IPA algorithm [6]. In particular, we used the same approach in the more general
ACIPA algorithm based on the original IPA, both for computing incomplete projections

onto each block, as well as for obtaining the new iterate x*+!, As a consequence of

the procedure to find the incomplete projection y? onto each block using DACCIM, a

hyperplane H is obtained, deeper than the one given in [6]. Therefore, the new iterate
a*+1 is the projection of z* onto a deeper separating hyperplane (2.22). The direction d*

defined by this algorithm preserves the fact that the new iterate does not fall outside of

the region defined by the last separating hyperplane. The numerical results show a very

competitive behaviour when dealing with blocks of inequalities by means of approximate

projections such as in the ACIPA algorithm, as predicted by the theory.

References

[1] R. Bramley and A. Sameh, Row projection methods for large nonsymmetric linear
systems, SIAM J. Sci. Statist. Comput. 13 (1992) 168-193.

[2] Y. Censor, Parallel application of block-iterative methods in medical imaging and

radiation therapy, Math. Programming 42 (1988) 307-325.

[3] Y. Censor and S. Zenios, Parallel Optimization: Theory and Applications, Oxford

University Press, New York, 1997.

[4] G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,

Ric. Sci. 16 (1938) 326-333.

[5] U. M. Garcia-Palomares, Parallel projected aggregation methods for solving the

convex feasibility problem, SIAM J. Optim. 3 (1993) 882-900.

[6] U. M. Garcia-Palomares and F.J. Gonzdlez-Castafio, Incomplete projection algo-
rithms for solving the convex feasibility problem, Numerical Algorithms 18 (1998)
177-193.

21

[7]

[8]

[9]

[10]

[11]

[12]

L. G. Gubin, B. T. Polyak, and E. V. Raik, The method of projections for finding

the common point of convex sets, USSR Comput. Math. and Math.Phys. 7 (1967)

1-24.

G. T. Herman and L.B. Meyer, Algebraic reconstruction techniques can be made

computationally efficient, IEEE Trans. Medical Imaging 12 (1993) 600-609.

Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations. Techni-

cal Report 90-20, Research Institute for Avanced Computer Science. NASA Ames

Research Center, Moffet Field, CA, 1990 .

H. D. Scolnik, N. Echebest, M. T. Guardarucci, M. C. Vacchino, A class of op-

timized row projection methods for solving large non-symmetric linear systems,

Report Notas de Matematica-74, Department of Mathematics, University of La

Plata, AR, 2000 (to appear in Applied Numerical Mathematics).

H. D. Scolnik, N. Echebest, M. T. Guardarucci, M. C. Vacchino, Acceleration

scheme for Parallel Projected Aggregation Methods for solving large linear systems,

2000 (submmited to Annals of Operations Research).

H. D. Scolnik, N. Echebest, M. T. Guardarucci, M. C. Vacchino, New Optimized

and Accelerated PAM Methods for Solving Large Non-symmetric Linear Systems:

Theory and Practice, in: Inherently Parallel Algorithms in Feasibility and Opti-

mization and their Applications, D. Butnariu, Y. Censor and S. Reich (Editors),

Studies in Computational Mathematics, Volume 8, Elsevier Science, Amsterdam,

2001.

22

