An acceleration scheme for solving convex feasibility
problems using incomplete projection algorithms *

N. Echebest T M. T. Guardarucci ! H. Scolnik # M.C.Vacchino T
December 2001.

Abstract

The Projected Aggregation Methods (PAM) for solving linear systems of equali-
ties and/or inequalities, generate a new iterate z**! by projecting the current point
z* onto a separating hyperplane generated by a given linear combination of the orig-
inal hyperplanes or halfspaces. In H. Scolnik et al [12] we introduced acceleration
schemes for solving systems of linear equations by applying optimization techniques
to the problem of finding the optimal combination of the hyperplanes within a PAM
like framework. In this paper we generalize those results, introducing a new accel-
erated iterative method for solving systems of linear inequalities, together with the
corresponding theoretical convergence results. In order to test its efficiency, numerical
results obtained applying the new acceleration scheme to two algorithms introduced
by U. M. Garcia-Palomares and F. J. Gonzélez-Castaiio [6] are given.

Key words. Aggregated projection methods, systems of inequalities, incomplete
projections.

AMS subject classifications. 65F10

1 Introduction

The class of convex feasibility problems consisting in finding an element of a non-empty
closed C convex set which is a subset of ", defined by

C={zeR":¢9(z) <0,i=1,2,....,m}

*Work supported by the universities of Buenos Aires and La Plata (Project 11/X243), Argentina.

fDepartamento de Matemaética, Facultad de Ciencias Exactas, Universidad Nacional de La Plata,
Argentina(opti@mate.unlp.edu.ar).

¥Departamento de Computacién, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires, Argentina(hugo@dc.uba.ar).

such that the functions g;(.) are convex and differentiable in R", have a wide range of
applications, like image reconstruction techniques [2, 8]. One of the well-known methods
appearing in the literature for solving the problem C = N™,_,;C;, where each C; is
convex and closed, is the algorithm of sequential orthogonal projections of Gubin, Polyak
and Raik [7]. That method is particularly useful when the projections onto C; can be easily
computed, as for instance in the particular case of hyperplanes or halfspaces. This last
observation leads to generate for each iterate ¥, in more general cases, a suitable closed
convex set S*, satisfying C C S*, that facilitates the computation of the exact projection
onto it [6]. The choice of the sets S* may have a significant influence on the convergence
rate of the algorithms. Garcia-Palomares and Gonzalez-Castafio in [6] have proposed an
incomplete projections algorithm (IPA) for obtaining an approximate projection of z* onto
special convex sets Sf, CC Sf , 1 =1,2,...,q, arising from the separation of subsets of
the violated constraints. The next iterate is defined by means of the projection of z* onto
a hyperplane H* strictly separating C, generated by means of a combination of aggregate
hyperplanes HZ’C relative to the incomplete projections onto each set S{“.

In this paper we present an accelerated iterative projection method for solving the
convex feasibility problem defined by Az < b, A € R™*"™, b € R™. This method is an
extension of the projection methods for solving systems of linear equations given in [11]
and [12]. The general scheme is similar to the IPA algorithm given in [6], and therefore is
very convenient for parallel processing. The idea is, therefore, that at the current iterate
the set of violated constraints is splitted into subsets or blocks Szl“, in such a way that
the required incomplete projection is obtained by combining exact projections onto simple
convex sets. The new iterate z*t! is defined by the projection of the current z* onto
a separating hyperplane given by a suitable combination of the hyperplanes obtained by
incomplete projections onto the blocks.

The new acceleration schemes here presented appear in the algorithm DACCIM when
exact projections are made, and later on they are applied to a more general method called
ACIPA, both for computing incomplete projections onto each block as well as for obtaining
the new iterate £t!. The basic idea is to consider at the current iterate the generated
separating hyperplane, forcing the new iterate to lie on the convex region defined by it.

In Section 2 the acceleration scheme for solving systems of linear inequalities is pre-
sented and applied to a version of the EPA algorithm that employs exact projections as in
[6], and prove the main results leading to an improved rate of convergence. In subsection
2 we apply the acceleration scheme to the ACIPA algorithm, that uses incomplete pro-
jections onto blocks of inequalities. In Section 3 the numerical results obtained with the
new method are given, showing the efficiency of the acceleration scheme. The last section
summarizes the conclusions.

2 Algorithms and convergence properties

Consider the non-empty convex set C characterized by a systems of m linear inequalities

C:={zeR": alz<b, i=12,...,m} (2.1)
The matrix of the system will be denoted by A € R™*", and ||z| will be the 2-norm of
z € R". We will assume that each row a] of A is such that [la;|]| = 1. We will use the
notation z* for any feasible solution of Az < b.
Fori=1,2,...,m, we define

Ci={zeR": alz <b;, b e R}, and Pr,(z) = argmingec;||z — yl|-

The general scheme of a parallel projection algorithm [6] for finding an element of C
is as follows:

Given z*, we define the set of violated constraints J* := {j : aka —b; > —0}, where 0
is zero or a fixed positive constant as in [6]. This set is splitted into subsets J&, J§, ..., Jé“,
such that J¥ = (JL; JF, leading to the corresponding subsets of inequalities

SF={z€R": ajz<b;, j€ I} (2.2)

In the exact projection methods for each SF the projection of z*,

yF = ar gmmin,,c gk lly — z*|| is calculated.

As an alternative, Garcia-Palomares and Gonzélez-Castaiio in [6] proposed an algo-
rithm (TPA) for obtaining approximate projections y¥ of z* onto sets S¥, i = 1,2,...,q,
satisfying

[o* € C] = [llyf — 2*|| < [|z* — 2] (2:3)

This condition is in particular satisfied if y¥ is the exact projection onto S¥.

In order to assure convergence to a solution of C, the next iterate z**! is defined using
a combination of the directions df = y¥ — z*, d¥F = Y0 whdt, wF > 0, Y, wF = 1.
Then the next iterate is defined as £F1! = z* + wpArd*, where n < wp <2—1, 0<n <1,
and A; depends on the chosen algorithm.

The value defined for A in [6], when wj, = 1, determines that the next iterate coincides

with the projection of z* onto a strictly separating hyperplane of C.

In the following, we will describe the adaptation of the algorithms IPA and EPA, given
in [6], to systems of linear inequalities considering a choice of {wf}? |, n < wj, <2 -1,
0<n<l

Algorithm 1 Parallel Incomplete projections Algorithm (IPA)[6](k-th iteration).
GivenzF ¢ C,0<0<0.1,0<n< 1.

e Define J¥ = {j : a]Ta;k —b; > —0}, and g = card(J*).

Define sets S¥, Sé“,...,Sg according to (2.2).
e Fori=1,2,...,q in parallel

Compute yF such that it satisfies (2.3),

Define di-“ = yzl“ — gk

End For.

e Defined® =YL jwkdf, YL wF=1, wk>o0.
Calculate ¢ RN
=17 1|95 |

)\ — =1
k 2[[dF 2

o Define oFt! =ob + wpd®, n<wp <2—1. o

Remark 1 When wy = 1, the iterate z*t1 is the projection of =¥ onto the separating
hyperplane [6]

q
H* = {z: (@) (@ —a") =Y wf|df|?/2} (2.5)
=1
that is o combination of the separating hyperplanes

Hf = {z: (&) (z - %) = ||} |*/2} (2-6)

When the yzlC are the exact projections onto each intermediate set Sf, the algorithm is
modified [6] using a value of)\, that corresponds to the definition of z**1 as the projection
onto the separating hyperplane, combination of those arising from the exact projections
onto each SE.

Algorithm 2 Parallel Algorithm using Exact Projections (EPA)[6] (k-th Iteration).
Given zF ¢ C,0>0,0<n < 1.

e Define J¥ = {j : a]Ta;k —b; > —0}, and determines q, = card(J*).

Define the sets S¥,.. ., S,’; according to (2.2).

e Fori=1,2,...,q in parallel
Compute the projection of =¥ onto SF: y;*
Define d,-k = yi’“ — zk

End For.

* Deﬁne dk = Zq:].wzk:d’lbc} wiﬂ Z 07 ZZq:]_ wik: =1.
Calculate
L wkl|ak|?

)\k: — =1

[]2 (27)

o Define oFt =ob + wpid®, n<wp <2—1. o
Something characteristic of the PAM methods for linear systems, like those in [5] and
[10], is the definition of zF+! = z*F+\d*, with)\ satisfying Ay = argminy||z® -+ d* —z*||%.
Remark 2 If z* is a solution to the system Az < b, the ideal value of Ay satisfying
m/\in |zF + AdF — z*||2

requires to compute the solution of the problem

min [|z* — 2|2 — 2(d*)" (" — &%) + X[d*]? (2.8)
by means of
() (" ~a*)
1|2
In general, the value of such an optimal X cannot be obtained by a practical formula.

The formulas appearing in (2.4) and (2.7) used in [6], correspond to the related problem
(2.8), avoid this difficulty.

A = (2.9)

2.1 Algorithm DACCIM: Exact Projections
We consider a particular case of the EPA algorithm [6], fixing w; = 1, 8 = 0, card(JF) =1,

for all i = 1,2,...,qx, where g5 = card(J¥). Now, each set S¥ (2.2) corresponds to a
violated constraint in z*.
The exact projection of z* onto each halfspace S¥, i = 1,2,..., g, is easily calculated

by y¥ = (. (z*), if j(4) is the original index of the corresponding inequality of the system

2.1).
T,k

From hereafter we denote by r}“ the difference b; — a; z”.

Remark 3 In particular, when yzlc = Fe;;

r;?(i) =bj) — ajT(i)a:k <0, i=12,...,0.
It is useful to point out that if * is a solution to Az < b, (d¥)T (z* — zF) =

(AT (z* — yF + yE — 2%) > ||d¥||? considering (d¥)T(z* — yF) > 0 as a consequence of the

convezity of SZIC and the definition of di-“ .

(z%) we get df = yF — 2% = r;-“(i)aj(i), being

From the assumptions made in this subsection, we can get the following results

Lemma 1 Given z, J¥ = {j: b; —a]z* <0}, k—card(Jk)
Ifdb =%, ’“d’c df =gk — ok, Y% wk =1, wk =1/qy, then

ZZ7

(i) For eachi = 1,...,q;, df = r;.“(i)aj(i) where r;.“(i) = b)) — (Z)x and j(i) is the
original index of the system of inequalities (2.1) corresponding to i.

(1) l;o'r iazh 1=1,...,q, r;-“(i) = bj() — a]T(i)x’“ > a?(z.)zc* — a]T(i)zz;’“, if T* is a solution to
xz < b.
(i) ()7 (5* — k) = S0, wh(d)T (* — 2¥) = S, whrk ol (0% — ob),

(iv) ()7 (z* — z*) > 3F wh(rf,)? > 0,
(v) If 211 = zF +- Xd¥, A > 0 then

2" —a*|* = lo* — &7 — 2A(d")" (" — 2¥) + NP < (2.10)

¥ — a2 2A2w rk o) + (V)| (2.11)

(vi) If Ay, is the argmin of (2.11), then

‘Ik ((z))
Ap = , 2.12
IId’“II2 212
Furthermore
okt = a*2 = flok — %2 — 2 (@) (" —) + OWZIE I, (213)
satisfies
H£I7k+1 _ -7;*”2 < ||.’17k _ x*HQ — oy, (2.14)
where (ax k(k)2)2
R owr(r?,.
_A%Hdk||2 _ Q=1 Wi 3(®) (2.15)

la* >

(vii) F T = k4 \pdF, with Ay given by (2.12) is the projection of z* onto the hyperplane

{z: (d*)T(z — 2" Zw](Z) (2.16)

(viii) Moreover, (2.16) is the separating hyperplane of £* with respect to C.

Proof. (i)-(iii) follow immediately from the definitions and the stated hypothesis. In order
to prove (iv) we just have to take into account that for all i = 1,2,..., g, T;-“(i) < 0,
together with Remark 3 and (i)-(iii). By simple comparison (v) follows from (iv). The
first part of (vi) follows directly by finding the argmin of problem (2.11).

The remaining results follow just replacing argmin in (2.11). For proving (vii) it is
enough to replace z¥*! in (2.16). For proving (viii) consider the inequa,lity given in (iv).
That inequality shows that (2.16) is a separating hyperplane of C when "% wk(r ;-“(i))Q #
0. O

Lemma 2 Given z*, if d* = Y ek Wy dJ, where d'c Pe; (z*) — 2 for all j € J*, and
k k 2
oF = gk 4+ \pdF, N = 2 ET‘ZH;PH il , then the sequence {z*} satisfies

25Tt — z*)|2 < ||zF — 2*||® — a, where (2.17)
= Alla®l? = (D whllas(*)?/1dF)% (2.18)
jeJk

Proof. Tt follows from (vi) of the previous Lemma. [

The following results are needed for justifying the acceleration scheme that will be
applied to the EPA algorithm with unitary blocks.

Lemma 3 Given z*, J, = {j : b; — a k <0}, d*, \p and zF*1 as defined in Lemma
2, then

(i) (z* — *tH)Td* > 0.

.. k+1
(ii)(@* —)T dk > 3, whrkrktt,

(iii) it = rk — Neald®, j e Jk.
Ic+1
(1v) EJEka ri =0.

Proof. Using the definition of z**1 and X\ in (z* — z¥t1)Td* (i) follows. Due to the

fact that (z* — 2FT1)Tdk = ZJEJk whrkal (z* — z¥11), and considering a] z* < b, we get

k+1 T gk k T k:—l—l ko .k.k+1
("E*) d >2j€Jk 7](bJ a; T)k: k%]fi]k wJTJ’rJ .

To prove (iv) we substitute (iii) in 3 ;c;, wjrjr;"". Then, replacing the expression of Ay

. . k41
in 3, w;-“(r;-“)Q — M (Xjes, wfr;-“adek) we obtain 3¢ ;. wfrfrj"r =0. O

Lemma 4 Given z*, consider J*, d*, \;, and z**1 as defined in Lemma 2.
If JEL = {5 a; wk+1>b} and J'H'1 ={y: jEJk+1 a; Tzk < b},
JEl={j:je J’“ z*1 > b;}, then

(i) For all j € J]chl ;-Fd’“ > 0.

(@I =3 i+ witr¥ el then (1511 Tdk < 0.

(iii) If ti+1 .= ZJEJk+1 wf“rf“ T the sign of (t5*1)Td* tends to be negative when the

negative reszduals of the constmmts wncrease in absolute value. On the other hand,
it tends to be positive when |7'k+1| < |7° |.

Proof. To prove (i) we consider j € JEHL phtl — ok AkaTd’“ <0, y r;“ > 0. Then,

it follows that a}“d’c > 0. As a consequence Jof (i) th+1 = E b+ wf“ ;“Haf, satisfies
(t’fH)Tdk < 0. For all j € J;“H, we get 7';-”1 <0 and r;-“ < 0. In that case, the sign of
f“ f = —AkaTdk depends on the sign of aTal’c Thus, if aTd’C < 0 then |r;-“+1| < |7';-“|,
while if aTd’“ > 0 the opposite holds. Therefore since t]hLl = Eje JhH1 wf“rf“af, the
sign of (t’“H)Td’c can be either negative or positive depending on the absolute values of

the negative residuals. O

From Lemma 4 we can infer the direction d**!, that combines the exact projections
to the violated constraints at z**!, may satisfy (d**1)Td* < 0. Such property has been
observed in different numerical experiences in almost all iterations. Considering (ii) and
(iii) from the previous Lemma, we see that such a situation is possible due to the zigzagging
appearing when non-violated constraints in a given iteration are violated in the next, and
the residuals of those constraints that remain violated (|'r;-“+1| o~ |r |) do not decrease in a
sensible way.

Moreover, if (d*T1)Td* < 0, then the next iterate along the direction d**! will lie
outside of the convex region defined by the separating hyperplane (2.16) which contains
the current point z**1. This observation led us to define a new algorithm such that the
defined direction takes into account that property.

Lemma 5 Given zF11, if o = (d**)Tv < 0, and v = d¥, then the direction d*t1 :=
P, dF*Y satisfies

O Gkl gkl (dFHTdR)
(i) d*+' = d KWEHQLZd .
(,”) dk+1 (.’L‘* _ :L‘k'H) > (dk+1)T(£E* _ xk—i-l) > 0.
(i) | Pprd® |2 < [|d*H12.

(iv) || P, d™*H| £ 0

Proof. From the definition of d*1, (i)follows. Multlplymg (i) by = —ka, and considering
the result of Lemma 3 (i), we get (d*t1)7(z* — zF 1) > (dFt1)T(z* — zFt1). Then, since

(@FHT (g% — k1) > Iy Zk"'l(rf('")l) > 0, we obtain (ii). The results (iii) and (iv)

follow dlrectly from (i) and (ii) respectively. O

Lemma 6 Given z¥, v =z , consider J*, d* as defined in Lemma 2.

If (d)Tv <0, and #*11 = zF 4+ \pd*, with d* defined as in Lemma 5, and

k_ pk-1

i lewk(Tk)2

= 2.19
TR (219
then o .
18541 — 2*|? = [|&* — 2*[|* — 2X(d") " (2% — 2*) + A¢ |||
satisfies
||$k:+1 *”2 < ka—i—l _ 37*||2 (2.20)
where zFt = 2 4 A\ d®, and N\ defined in (2.12).
Proof. To derive the 1nequa11ty (2.20) it is enough to consider the definitions of z%+1, gk+1

and their distances to z*

~ ~ k& k k2

&+ — 2|2 = fla* — o*|2 — 28(d)7 (" — o¥) + 32[d¥]2, where &y = Zazit()
w et
okt — a2 = [|a* — 2* | — 20(@)7 (" — %) + M2, with Ay = 2zl

The difference ||zFT! — z*||2 — ||z*T! — 2*||? coincides with
[—224(@%)" (@* — 2*) + M2 (1 dF|17] = [22k (@) (a* — =*) + X} [1d*||°].

Reordering this expression we get

Qk wk ,rk2 . . U ok (k)2 .
[2 =1 - g) (dk)T(iL‘ —:L‘k) _9Ltu= ldkzg z) (dk)T(iE —:L‘k)]—
1]l 1]l
(SR whrh)? (Sl w2,
EAE [|d¥|?
The first bracket
[2 lewk(rrk)2 (Jk:)T(x* _ :L‘k) -9 gﬁl wi'c(’rz]f:)2 (dk)T(iL‘* _ :L‘k)] >

||k |2 |d¥|2

9k k(rlc)2_

cl[w — W]’ where ¢; = 2(d*)7 (z* — z¥) i wi (s

The second bracket coincides with
1 1 .
CQ[W —Ta ||2], where c2 = (%, wk(rF)2)2. Hence, since c¢; > 2c2, c2 > 0 and

W - H_d’“llﬁ >0, we get (2.20). O

Now, we have the necessary results for presenting the new algorithm. Due to the hy-
potheses of Lemma 6, the iterate zF+! is defined along the direction d* = P, (3%, wfd}),
where v is the direction d*~! from the previous iteration.

Given z*, let us consider J*, card(J*) = q;. We will denote by Qj the projector onto
the orthogonal subspace to v = zF — z#~1. In particular, Qg = I, where I, is the identity
matrix. The following scheme describes the iterative step (k > 0) of the new algorithm,
in a version not adapted to parallel processing.

Algorithm 3 DACCIM (k-th iteration):

Given z*, Ji, Qp, v =d* 1.
o Fori=1,...,q; do
Compute y¥ = C;ciy (zF).
Define di-“ = yzlC — gk,
End For.

e Define d* = Fal wkdk

1= et
e Compute o = vT'd*
If ¢ < 0, define d* = Q4 (d*), else d¥ = d*.

e Compute zFt1 = 2% + X, d¥, X; defined by (2.19). o

This algorithm can be easily adapted to parallel multiprocessing.
The following Lemma proves that algorithm DACCIM is well defined.

Lemma 7 Given z¥, ¥ # z*, the new direction d* and X asin (2.19) are well defined.

Proof. Tt is of interest to consider the case v7d* < 0, v = zF — %=1, Taking into account
(ii) and (iii) of Lemma 5 it follows immediately that d* # 0 and therefore, X; is well
defined. O

10

Lemma 8 The sequence {z*} generated by DACCIM satisfies
l2F+! — 2*||* < ||2* — 2*||* — &k, where
i, wi]|df|*)?

og kY 7l (e
G = QW) lla* = === o

(2.21)

satisfying &y > o, ap given in (2.18).

Proof. The result follows using the expressions of Ak, the Lemmas 2 and 6. O

2.1.1 Convergence

The convergence of the sequence generated by the DACCIM algorithm to a solution z* is
proved applying the theory developed by Gubin et al. in [7], taking into account that the
sequence {||z* — z*||} decreases, Lemma 6 and 8.

2.2 Accelerated incomplete projections algorithm (ACIPA)

In this subsection we apply the acceleration scheme to the ACIPA algorithm, by using
incomplete projections onto blocks of inequalities as in the IPA method described in [6].
To compute the approximate projection onto each Sf, we use the DACCIM algorithm with
a stopping condition such that it finds a yf satisfying the condition (2.3) (one iteration
guarantees this).
As a consequence of the procedure to find yf, the next result justifies that sz is a
deeper separating hyperplane the one given in [6].
Denoting by 2/ the intermediate iterates of DACCIM until obtaining y¥, and using
20 =z, we get
Lemma 9 Given y¥, z* € C. If y¥ — z¥ = ;’zl(zJ — 2771, then
(i) v =20, 12 — 2712 > 0,
(i) llyf — =*[|? < ||z~ — 2F||2 = I, (|27 — 201 |2
(i) (gt —)T (2" — a*) > (g — ¥ +)2, with 7 >0

Proof. The first assertion follows immediately because if z* is unfeasible, at least one
iteration of DACCIM is performed and, therefore, we obtain the result given in (2.17).
According to Lemma, 2 each intermediate 27 satisfies

|27 —z*||2 < ||z*— 27 71||2— || 2f —27~1||2, hence obtaining (ii). Moreover, since ||y* —z*||> =
2% — z*]|2 — 2(yF —)T (z* — 2*) + ||y — *||? we derive (iii) using the inequality (ii). O

11

This implies that the hyperplane

HY ={z: (yF — ") (@ — %) = (Iyf — 2"I* + %) /2}

is deeper than HF given in (2.6) and introduced in [6]. Likewise, the hyperplane
generated from the convex combination of the previous ones

q
A* = {z: () (@ —a*) = wi(ldf|* +)/2} (2.22)

=1
where df = yf — 2%, dF = 3 | wkd®, shares the same property when compared to (2.5).

In principle, as in the IPA algorithm, the new iterate will be obtained projecting z*
onto the deeper separating hyperplane HF. Taking into account z* is on the separating
hyperplane H*~! (being v = z* — z*¥~1 the normal vector), when the new direction
dF satisfies (d*)Tv < 0 and leads to a point exterior to the halfspace limited by H*~!
containing C, the direction will be modified by projecting it onto the “correct” region.
Such a modification is identical to the one proposed in the DACCIM algorithm when
dealing with the same situation.

Therefore, if v is the direction at step zF —zF=1 and d* satisfies (d*)Tv < 0, we define

d¥ .= P, d*, and #%t! = z*F + \;d*, being
o k())
A = =l T : (2.23)
2]|d¥||>
the argmin of the problem
k 2 k2 2 Gk (|2
Iz* =™ [I* = 2x Y S wi (I [1* +) /2 + ()| (2.24)
=1

that is an upper bound of the one given in (2.8), now using the new direction dk.

We describe in the following the iterative step of the incomplete projections algorithm
ACTPA.
Given z*, denoting by @} the projector onto the orthogonal subspace to the one defined
by the previous direction v = z¥ — zF~!, and defining Q¢ = I,.

Algorithm 4 ACIPA (k-th iteration).
GivenzF ¢ C,v=d*"1, 0<0<0.1, 0<p<1.

e Define Ji, = {j : aka—bjz —0}, and SF, i=1,2,...,q.

12

o Fori=1,2,...,q in parallel
Compute y¥ using Algorithm DACCIM, and compute +;.
Define d;i¥ = y;* — z*.
End For,

e Define wf >0, such that 7 | wF =
Define d* = Y1 wkd®, and compute o = (dF)Tv,

Define d* = Qr(d¥) if o <0, else dk = dF.
Compute Ny, given in (2.23).

o Define zFtl =gk + wipAkd®, with N<wg<2—1n. ©

We are now going to prove the algorithm is well defined and later on the convergence
results.

Lemma 10 Given z*, z¥ # z*, z* € C, the direction d* of ACIPA is well defined and
satisfies

(i) (d¥)T (z* — 2*) > (d*)T (z* — 2¥) > 0, being d¥ = XL, whd¥

3 -

(i) ||d%|| < ||d¥|, if d* =L, whd® satisfies vTd* <0, where v=d"', k>1.
Proof. For k=0, d° coincides with the direction given by the IPA algorithm.

Assuming the direction db=1 k> 0, is well defined, it is interesting to analyze the case
when o = (d¥)Td*~! < 0. According to the definition, d* satisfies d¥ = d* — UW. Thus,
multiplying both sides by (z*—z¥), and using (d*~)”(z* —z*) > 0 due to the definition
of z¥, we get (d*)T (z* — z*) = (d¥)T (z* — 2*) — (ﬁzﬁ)’c (T (z* — %)) > (d*)T (z* — z*) > 0.
From this inequality we derive (i) and also that ||d*|| > 0. Therefore, the direction is
well defined in the special case when its definition modifies the one of the IPA algorithm.

On the other hand, and for the same special case, the following holds

13| = [|d¥||* — (02)/[|v]%. Thus, d* satisfies (ii). I

The differences between ACIPA and IPA [6] are the following:
1) we calculate y¥ explicitly (algorithm DACCIM);
2) zFt1 is the projection of z* onto a deeper separating hyperplane;
3) we preserve the fact that the new iterate does not fall outside of the region defined by
the last separating hyperplane.

13

In order to theoretically analyze the comparative behaviour of the sequences generated
by the algorithms ACIPA and IPA we proceed in two stages. First, we compare the step
given by ACIPA with the one obtained by an algorithm using the same approximate
projections y¥, but for defining z¥*! it uses directly d¥ without projections. Second, we
compare such a sequence with that obtained by the original TPA algorithm.

For comparison purposes we will denote by #**1 the ACIPA iterate and by z*t! the
one given by IPA.

Lemma 11 Given zk yzlC ,1=1,2,...,q, ~dk, d* and Ak defined in ACIPA.
If o = (d*)Td*1 <0, and ! = 2% + Ay d*, then
o wE (kP)

(i) [|ZFH — z*|| < ||zFtt — z*|| if 2Pl =2F + A\dF, and N = &=t 2i|d &

Furthermore,

(ii) If %11 is defined as in (i), then
|kt —z*|| < ||zF*+! —z*|| when zF+ is obtained using the original Ay, of [6] explicitly
stated in (2.4):

WD {15!
A - 2||dk||2

Proof. To prove the inequality (i) let us consider,

|Z*+ —2*||? = ||:vk—x*||2—ZXk(J’“)T(x*—xk)+5\%||cikH2, replacing A, by the expression
given in (2.23).

Analogously, replacing the expression of \; in ||zF 1 —z*||2 = ||z¥ —z*||2—2); (dF)T (z*—
zF) + A3l d¥ |2,

The difference ||z¥T! — z*||2 — ||#%T! — 2*||? coincides with

[~2X6(d") T (&* — &) + A}[|d°)1%] — [=22e(d")T (¥ — &) + XE(Id°)1%).

Reordering as in Lemma 6 we observe that the involved expressions are similar to those
appearing there, except by their numerators A; and e , but they have no influence on
the comparison we are interested in. Hence, repeating the steps of Lemma 6 we prove (i).

In order to get (ii) we consider as in (i)

|zF L — z*||2 = ||z* — 2*||2 — 22, (dF)T (z* — 2*) + A2||d*||2, replacing the expression
corresponding to \;. Also ||zFt! — 2*||2 = ||z* — z*||? — 20 (d*)T (z* — zF) + ||d*||2, and
taking into account that the value of), is the one given in (2.4).

It is easy to see the difference ||zFT! — z*|2 — ||z*T! — 2*||?, is equal to

200 — A)d® (@ — 2®)] = [= A0)[1d*|]

and using (d*)T (z* — z%) > \g|ld¥||? , Ak — A > 0, (ii) follows. O

14

Lemma 12 If d* is defined as in the ACIPA algorithm, z*t! = zF + wi e d®, with Xy
given in (2.23), n < wy < 2 —n then the generated sequence {z*} satisfies

2t — 2% < [|l2* — 7|1 — 6y, (2.25)
where
L k k|12 2 7k 112
ay = wi(2 —wi) O wi (145 11> +7))?/ (4l1d*]1%) (2.26)
i=1

where d¥ and v; are those from ACIPA.

Proof. The result follows from the definition of %!, d* and that of A; given in (2.23) .
O

2.2.1 Convergence

The convergence of the sequence generated by the ACIPA algorithm is a consequence of
the comparisons made in Lemma 11 with the IPA algorithm, together with Theorem 1 in
[6] and Lemma 12.

3 Numerical experiences

The first purpose of the numerical experiences is to illustrate the behaviour of the accel-
eration of DACCIM (Algorithm 3), using exact projections onto the violated constraints,
in comparison to the EPA method [6]. For that purpose a version of the EPA method was
implemented, called EPACIM, using card(JF) = 1, wf = 1/g; if the number of violated
inequalities in z¥, whose indexes are stored in J* = {j : a]T:I;k —b; > 0}, is gx. We briefly
describe this version as follows:
EPACIM :Given z*, J*, qi = card(J*) (as in DACCIM), define

dk =, wfr;?(i)aj(i) where wf = é.
The new iterate is £F ! = 2% + A\p.d¥, with My as in (2.12).

The second purpose is to compare the results of ACIPA (Algorithm 4), that uses
incomplete projections onto blocks of violated inequalities, with those obtained with a
version of the IPA algorithm [6] called IPACIM. In both algorithms the computation of
the approximate projections yf is similarly done by means of the procedure of DACCIM,
accepting an approximation if the condition described below is satisfied. Hence, in this
version of IPA the convex combination d* = 1 wi*d;® where d;* = yf —zkF for

1=1,2,...,q, is similar to the one used in ACIPA.

15

Now, we will describe briefly the algorithms being compared, using an experimental
code.
IPACIM (Incomplete projections algorithm: Given an ilerate =¥, J*, Sf, yf for each
1=1,2,...,q, we define the direction

d* = i=1 wikd;* where di-“ = yf —zFfori=1,2,...,q,

Define zF*! = z* + \;d*, where)\ is the original one of [6] as given in (2.4).

ACIPA (Accelerated incomplete projections algorithm: Given an iterate z*, =1, Qu, J*,
Szl“, yf, i=1,2,...,q, we define the direction d* as in IPACIM,

Define d¥ = Q,(d*) if (d*)Td* ! < 0, otherwise d* = d*,

Define 251 = 2% 4+ X, d*, where X is the one defined in (2.23).

In the implementations of ACIPA and IPACIM we consider:

(i)A constraint is violated at z* if afmk —b; > —(5%107%). The set J* of violated
constraints is in principle splitted into ¢ = 4 blocks of equal cardinality, adding if
necessary the remaining inequalities to the fourth block.

(ii) Incomplete projection onto each block: We compute it by means of the DACCIM
algorithm.

Given z¥ € ®?, and a block Sf, from 20 = z* we compute 2!, 22, ... while none of
the following conditions is satisfied:

(1) r(z) <1072 % 7(2°), where r(2!) = max,c (0, o] (2!) — b;) is not satisfied, or
(2) [l2" = 271 < 1074|2" — 2°, or
(3) the maximum number of allowed iterations (15) has not been reached.

Test problems.

We have run different problems of the type Az < b, where the matrix A € R™*" has
been chosen to reflect a variety of condition numbers and/or sparsity patterns. For that
purpose we used the Zlatev routine from SPARSKIT2/Library [9] (www.cs.umn.edu/
Research/darpa/SPARSKIT).

Another set of problems has been obtained randomly using different sparsity patterns
according to predefined densities. More precisely, the indices of nonnull entries were
generated randomly, as well as the corresponding matrix values. Approximately density *
m*n entries of the matrix will be nonnull. After generating the matrix, the code computes

16

the independent term b in such a way that Az < bis compatible. The initial approximation
used was a vector 0 whose components were zero.

Numerical results

The problems were run on a PC Pentium III, 800MHz, with 256 Mb Ram and 128 Mb
Swap using FORTRAN 90.

The stopping criteria were:
If Rmy, < 1075 *max{1, Rmg}, where Rmy = max;—12,._m(0, a;fr’xk—bz-), or if the number
of iterations reaches the maximum allowed ITMAX, with ITM AX = 5000.

The obtained results are presented in the following Tables using the notation:

e Iter: Number of performed iterations.
e Rmg: max;—15.. m(0, azT:cs —b;), z° being the iterate satisfying the stopping criteria.
e CPU: time measured in seconds.

The starting point was z° = 0.

In Table 1-2 we present the results obtained with the algorithms DACCIM and
EPACIM for the problems of SPARSKIT?2 Library derived from Zlatev’s matrices. These
matrices have been generated with different condition depend on the parameter a. The
dimensions were m = 12000, n = 10000, and the problems were run with a = 2°, i =
2,4, 8,12, denoting each problem by Zla(«) according to the sort of conditioning with which
the matrix was generated. In Table 1 results obtained using index = 20, a parameter that
indicates the average number of non-zero elements per row are given, while in Table 2 the
values correspond to index = 100.

Table 1: Zlatev’s matrices, m = 12000, n = 10000
index = 20 Meth Iter | Rmg CPU
DACCIM | 163 | 8.9d-7 2.8
Zla(22) | EPACIM | 858 | 9.2d-7 | 19.5
DACCIM | 231 | 9.9d-7 3.8
Zla(2%) | EPACIM | 888 | 9.7d-7 | 20.0
DACCIM | 182 | 7.33d-7 | 3.1
Zla(28) | EPACIM | 882 | 9.6d-7 | 20.6
DACCIM | 344 | 8.5d-7 5.4
Zla(2'?) | EPACIM | 896 | 9.7d-7 | 20.3

17

Table 2: Zlatev’s matrices, m = 12000, n = 10000
index = 100 Meth Iter | Rmg | CPU
DACCIM | 1064 | 9.9d-7 | 82.9
Zla(2?) EPACIM | 5000 | 1.3d-2 | 589.5
DACCIM | 1130 | 7.8d-7 | 119.0
Zla(2%) EPACIM | 5000 | 9.4d-3 | 631.1
DACCIM | 2070 | 9.9d-7 | 227.2
Zl1a(28) EPACIM | 5000 | 1.2d-2 | 813.8
DACCIM | 1094 | 7.8d-7 | 126.6
Zla(2'2) | EPACIM | 5000 | 6.6d-3 | 518.7

These results show the effect of the acceleration scheme of the algorithm DACCIM in
regard to the algorithm EPACIM, because the number of required iterations and the CPU
time are drastically reduced in all problems.

Table 3: Random’s matrices, density=1.. Average timing (sec.

Meth | m | 800 400 200 100
n| 200 100 50 25
DACCIM 0.44 (32) | 0.09(28) | 0.01(35) | 0(37)
EPACIM 1.11(75) | 0.22(63) | 0.03(82) | 0.01(105)

Tabla 3 shows a comparison of the DACCIM algorithm with the EPACIM version of
EPA [6] using a set of dense randomly generated problems.

Results are given indicating the row and column dimensions m, n of the randomly
generated problems with density 1. The reported CPU time is the average of solving each
problem five times. Between parenthesis the required number of iterations for satisfying
the stopping criteria as in Tables 1-2 are given.

In the next tables we report the results obtained with the ACIPA algorithm, using
incomplete projections onto the violated constraints blocks, and IPACIM, the implemented
version of IPA [6] as described at the beginning of this section. The key difference between
them is the definition of z*+1.

In the Tables 4-6 we present the results corresponding to the Zlatev matrices [9] con-
sidering different sparsity patterns defined by indez in each case.

The results of Tables 4-6 show the efectiveness of the direction d* and the parameter

18

Table 4: Zlatev’s matrices, m = 12000, n = 10000
index = 20 Meth Iter | Rmgs | CPU
ACIPA | 59 |4.2d-7| 8.5
Zla(22) | IPACIM | 115 | 9.3d-7 | 22.7
ACIPA | 82 | 7.6d-7| 9.4
Zla(2*) |IPACIM | 71 | 4.3d-7 | 18.7
ACIPA | 71 |9.9d-7| 9.0
Zla(28) | IPACIM | 898 | 9.9d-7 | 136.6
ACIPA | 75 | 74d-7| 9.6
Zla(2'2) | IPACIM | 92 |8.9d-7 | 20.9

Table 5: Zlatev’s matrices, m = 12000, n = 10000
index = 60 Meth Iter | Rmg | CPU
ACIPA | 73 |94d-7 | 22.2
Zla(2%) | IPACIM | 239 | 8.7d-7 | 154.6
ACIPA | 102 | 4.8d-7 | 25.6
Zla(2*) | IPACIM | 263 | 8.5d-7 | 154.7
ACIPA | 127 | 2.2d-7 | 27.7
Zla(28) | IPACIM | 241 | 9.1d-7 | 149.8
ACIPA | 72 | 5.4d-7 | 22.7
Zla(2'?) | IPACIM | 247 | 8.2d-7 | 150.9

M used in the ACIPA algorithm. In particular, such a performance is more evident in
Table 6, corresponding to more dense problems.

It is also worthwhile to point out that Table 4 shows that the number of iterations
can be similar, while the CPU time is not. This means that the cardinality of the blocks
corresponding to the violated constraints in IPACIM is greater than those in ACIPA.
In other words, ACIPA generates better iterates as predicted by the theoretical results.
Moreover, the version of TPA that we called TPACIM uses the same procedure DACCIM as
in ACIPA for finding the approximations ¥ to the blocks. Thus, the observed differences
in the numerical results clearly arise from the different definitions of z*+1.

We include in the next Table 7 the results obtained with ACIPA and TPACIM for the
randomly generated problems with dimension m = 4000, n = 2000, and density 1. The
reported CPU time corresponds to the average of five runs of each problem.

19

Table 6: Zlatev’s matrices, m = 12000, n = 10000
index = 100 Meth Iter | Rmg | CPU
ACIPA | 118 | 8.9d-7 | 49.0
Zla(2%) | IPACIM | 537 | 7.2d-7 | 577.5
ACIPA | 147 | 9.6d-7 | 55.6
Zla(2%) IPACIM | 637 | 8.4d-7 | 645.0
ACIPA | 166 | 4.9d-7 | 55.2
Zla(28) | IPACIM | 568 | 5.5d-7 | 529.8
ACIPA | 216 | 9.8d-7 | 63.8
Zla(2'2) | IPACIM | 551 | 9.6d-7 | 560.2

Table 7: Random matrix, density =1.
m n Meth Iter | Rmg CPU
4000 | 2000 | ACTIPA | 245 | 1.5d-5 | 474.2
TPACIM | 5000 | 6.0d-3 | 8698.2

Finally, we run the same problems of Table 7 using a density of 0.1 and different
dimensions as shown in Table 8 using the ACIPA and IPACIM algorithms.

Table 8: Random’s matrices, density = 0.1
m n Meth | Iter | Rm, | CPU

7500 | 2500 | ACIPA | 73 | 2.2d-6 | 71.6
IPACIM | 654 | 2.4 d-6 | 446.9
9500 | 2000 | ACIPA | 27 | 1.7d-6 | 30.9
IPACIM | 106 | 1.5d-6 | 85.5
10000 | 1900 | ACIPA | 23 | 1.5d-6 | 274
IPACIM | 74 | 1.2d-6 | 62.3

In all Tables we observe the efficiency of the new algorithms that include the projection
onto the half-space defined by the separating hyperplane defined in (2.22).

20

4 Conclusions

The DACCIM algorithm is an extension to linear inequalities problems of the ACIMM
algorithm [12]. In that algorithm we introduced the basic idea of forcing a new iterate to
belong to the convex region defined by the computed separating hyperplane. Both, the
theoretical results and the numerical experiences, showed the advantages of this approach.

The acceleration scheme applied in the DACCIM algorithm is the basis for extending
its applicability to other class of algorithms suitable for parallel processing. Among them
is the IPA algorithm [6]. In particular, we used the same approach in the more general
ACIPA algorithm based on the original IPA, both for computing incomplete projections
onto each block, as well as for obtaining the new iterate z*t1. As a consequence of
the procedure to find the incomplete projection ¥ onto each block using DACCIM, a
hyperplane ﬂf is obtained, deeper than the one given in [6]. Therefore, the new iterate
2+ is the projection of z* onto a deeper separating hyperplane (2.22). The direction dr
defined by this algorithm preserves the fact that the new iterate does not fall outside of
the region defined by the last separating hyperplane. The numerical results show a very
competitive behaviour when dealing with blocks of inequalities by means of approximate
projections such as in the ACIPA algorithm, as predicted by the theory.

References

[1] R. Bramley and A. Sameh, Row projection methods for large nonsymmetric linear
systems, STAM J. Sci. Statist. Comput. 13 (1992) 168-193.

[2] Y. Censor, Parallel application of block-iterative methods in medical imaging and
radiation therapy, Math. Programming 42 (1988) 307-325.

[3] Y. Censor and S. Zenios, Parallel Optimization: Theory and Applications, Oxford
University Press, New York, 1997.

[4] G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,
Ric. Sci. 16 (1938) 326-333.

[5] U. M. Garcia-Palomares, Parallel projected aggregation methods for solving the
convex feasibility problem, SIAM J. Optim. 3 (1993) 882—900.

[6] U. M. Garcia-Palomares and F.J. Gonzélez-Castano, Incomplete projection algo-
rithms for solving the convex feasibility problem, Numerical Algorithms 18 (1998)
177-193.

21

[7]

[8]

[9]

[10]

[11]

[12]

L. G. Gubin, B. T. Polyak, and E. V. Raik, The method of projections for finding
the common point of convex sets, USSR Comput. Math. and Math.Phys. 7 (1967)
1-24.

G. T. Herman and L.B. Meyer, Algebraic reconstruction techniques can be made
computationally efficient, IEEE Trans. Medical Imaging 12 (1993) 600-609.

Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations. Techni-
cal Report 90-20, Research Institute for Avanced Computer Science. NASA Ames
Research Center, Moffet Field, CA, 1990 .

H. D. Scolnik, N. Echebest, M. T. Guardarucci, M. C. Vacchino, A class of op-
timized row projection methods for solving large non-symmetric linear systems,
Report Notas de Matemdtica-74, Department of Mathematics, University of La
Plata, AR, 2000 (to appear in Applied Numerical Mathematics).

H. D. Scolnik, N. Echebest, M. T. Guardarucci, M. C. Vacchino, Acceleration
scheme for Parallel Projected Aggregation Methods for solving large linear systems,
2000 (submmited to Annals of Operations Research).

H. D. Scolnik, N. Echebest, M. T. Guardarucci, M. C. Vacchino, New Optimized
and Accelerated PAM Methods for Solving Large Non-symmetric Linear Systems:
Theory and Practice, in: Inherently Parallel Algorithms in Feasibility and Opti-
mization and their Applications, D. Butnariu, Y. Censor and S. Reich (Editors),

Studies in Computational Mathematics, Volume 8, Elsevier Science, Amsterdam,
2001.

22

