Parametric Interval Linear Solver

Evgenija D. Popova*
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
bl. 8, Acad. G.Bonchev str., 1113 Sofia, Bulgaria

e-mail: epopova@bio.bas.bg

Abstract. IntervalComputations ‘LinearSystems‘ is a Mathematica package supporting tools
for solving parametric and non-parametric linear systems involving uncertainties. It includes a variety of
functions, implementing different interval techniques, that help in producing sharp and rigorous results in
validated interval arithmetic. The package is designed to be easy to use, versatile, to provide a necessary
background for further exploration, comparisons and prototyping, and to provide some indispensable
tools for solving parametric interval linear systems.

This paper presents the functionality, provided by the current version of the package, and briefly
discusses the underlying methodology. A new hybrid approach for sharp parametric enclosures, that
combines parametric residual iteration, exact bounds, based on monotonicity properties, and refinement
by interval subdivision, is outlined.

Keywords: parametric linear systems, validated interval software.

MSC (2000): 65F10, 65G20, 65Y15

1 Introduction

Solving parametric linear systems, involving uncertainties in the parameters, is an important
part of the solution to many scientific and engineering problems. In most engineering design
problems, models in operational research, linear prediction problems, etc. [2], [4], [5], [6] usually
there are complicated dependencies between coefficients. The main reason for this dependency
is that the errors in several different coefficients may be caused by the same factor.

Consider a parametric linear system

A(p) -z = b(p) (1)

with affine-linear dependencies in the coefficients

k k
aij(p) == Nijo + >_ Nijupus bi(p) == Bio + D Buwpu, (2)
v=1 v=1
Nij, Bi € R¥+1 (i,5 = 1,...,n) are numerical vectors and the parameters p, can take arbitrary
values from given intervals [p,], (v =1,...,k). The parametric solution set (PSS)
2P =% (Alp),bp),[p]) = {z cR" | Alp) -z = b(p) for some p < [p]} 3)
is usually a subset of the corresponding non-parametric solution set 9 = 3([A], [b]) := {z €

R™ | Ax = b for some A € [A] = A([p]), b € [b] = b([p])} and has much smaller volume than

*This work was supported by the Bulgarian National Science Fund under grant No. I-903/99 and by the NATO
CLG 979541. The presentation at SCAN 2002 was supported by the Swiss NSF Co-operation Agreement No. 7
TP 65642.

the latter. The simplest example of dependencies is when the matrix is symmetric or skew-
symmetric. Since the solution sets have a complicated structure (see e.g. [1]) which is difficult
to find, we look for the interval hull 0% := [inf ¥, sup X], whenever ¥ is a nonempty bounded
subset of R"™, or for an interval enclosure of (1.

At present, there is an increasing interest in interval applications to various practical prob-
lems involving the solution of parameter dependent linear systems. However, no official (public
or commercial) software for solving such systems is available.

Although designed quite long ago, the only available iterative method for solving parametric
interval linear systems [15] seems to be not known to the application scientists, or at least it
is not applied. Except for [8], by now there is no other work that would apply and study the
results of this method. Remarkably, the parametric Rump’s method was recently reinvented in
slightly different notations [2]. A significant effort has been devoted to eliminate the sources of
overestimation by several construction methods that reduce the number of parameters in the
system to be solved [4], [5], [6]. Despite of the many attempts (mainly from an application
point of view) to treat the parametric problem, there is a lack of a suitable software basis for
comparison of different methods and studying their efficiency.

The quest for narrow and rigorous results, as well as for performance efficiency, requires care-
fully designed software based on an expertise and state-of-the-art in validated interval computa-
tions. In this paper we present a Mathematica package IntervalComputations‘LinearSystems‘
which tries to fill in the existing gap. The package is initially designed for studying the perfor-
mance and cost-efficiency of different algorithms and approaches for solving parametric linear
systems. The focus is on the iterative residual methods (parametric and nonparametric) and
on methods for proving monotonicity of the solution components. Since the environment is a
computer algebra system, tools for finding the exact solution hull are also involved, and the
impact of computer algebra on interval computations is outlined. A fruitful synergism between
different methods leads to a new hybrid approach, presented in Section 2.4, for sharp parametric
solution enclosure. A second goal is to provide the application scientists with carefully designed
mathematical software, providing validated solutions and sharp bounds, so that they focus on
developing applications rather than debugging low-level code.

Various methods for the application of FEM and for composing the parametric system to
be solved usually lead to different parametric systems with different properties. Although the
number of parameters may be reduced, or the different parameters can be grouped and isolated,
the linear system that should be finally solved usually involves more dependencies than in a
symmetric matrix. The methods, implemented in this package, and the corresponding software
tools are general in the sense that they are applicable to any parametric system independent of
the way a particular system has been obtained.

This paper aims at presenting mainly the functionality of the package and briefly discusses
the underlining methodology. A comparison of the algorithms, although depending very much
on the problem to be solved, deserves extensive presentation in a separate paper.

2 Mathematica Package

Since version 2.2 Mathematica supports the object Interval into the kernel of the system [16].
Basic interval arithmetic is automatic, performed with machine or user-specified precision and a
posteriori outward rounding. Mathematica is maybe the only environment that supports exact
interval arithmetic and combined rigorous usage of approximate numbers with exact numbers,
mathematical constants and exact singletons at the interval end-points. Based on the exact or
validated interval arithmetic of the Mathematica kernel, all the functions involved in the package
IntervalComputations‘LinearSystems‘ provide rigorous results.

It is important for all the enclosure methods/tools to be able to estimate the degree of
overestimation they provide. A measure for sharpness of the outer enclosure is based on an

inner estimation of 0% [7], [14]. Inner estimations can be computed by using interval oper-
ations with inward rounding but the overloading concept of some programming environments
hampers the convenient implementation of these operations. That is why most of the interval
packages/environments do not support inwardly rounded interval arithmetic and thus the pos-
sibility to estimate the degree of sharpness of the enclosures or to compute a minimum set of
the solutions instead of an enclosure. The arithmetic of proper and improper intervals possesses
properties due to which inwardly rounded interval arithmetic can be applied at no additional
cost [10]. Based on the methodology developed in [8] and the arithmetic supported by the pack-
age IntervalComputations‘GeneralizedIntervals‘ [10], all the iterative solvers, supported
by the package IntervalComputations‘LinearSystems‘, provide rigorous inner estimations
for the solution. The presented package is maybe the only that provides this feature.

The computer algebra environment of Mathematica provides tools for analytic solution, sym-
bolic differentiation, and algebraic simplification which, combined with exact interval arithmetic
and visualization facilities, present excellent tools for experimentation, exploration, and proto-
typing. Furthermore, the users have the advantage to input and manipulate their parametric
data using convenient mathematical (symbolic) notations. Due to the computer algebra facili-
ties, our package involves functions which can handle also parametric linear systems involving
nonlinear dependencies between parameters.

2.1 Exact Bounds of the Solution Sets.

The existing methods for hull computation of the solution set to parametric and non-parametric
interval linear systems are generally of exponential complexity and/or restricted scope of ap-
plication. However, due to their simplicity and easy implementation, these methods are often
used as reference algorithms during numerical experiments with other enclosure methods. That
is why, the Mathematica package IntervalComputations‘LinearSystems‘ involves some func-
tions computing the exact hull of the solution set to parametric and non-parametric interval
linear systems. The implemented methods are rigorous in exact arithmetic and not rigorous in
approximate floating-point arithmetic. Since Mathematica [16] is an environment that supports
also exact interval arithmetic, all functions from this class produce exact and rigorous interval
results on exactly specified arguments. Matrix and/or vector entries can be either intervals or
elements from the domain Real.

ExactHull[A, b] computes the exact interval hull of the solution set to a non-parametric
interval linear system with numerical interval matrix A and numerical interval vector b. The
computational procedure is based on a J. Rohn’s sign-accord algorithm that requires solving 22"
point linear systems [11].

ExactHull[Ap, bp, parLst] gives the exact hull of the solution set to a parametric linear
system with matrix Ap, right-hand side bp and parameters varying within given numerical inter-
vals specified by a list of Mathematica transformation rules' parLst. A fast algorithm, based on
the signs of the partial derivatives, is used as a default computing method. The latter assumes
that the components of the analytic solution x(p) = A(p)~'b(p) are monotone functions with
respect to each parameter. The function itself does not check the monotonicity, the package
provides another function for this purpose.

For the sake of completeness and experimentation purposes, the package contains functions
ExactHull[A, b, Combinatorial] and ExactHull[Ap, bp, parLst, Combinatorial] that
find the exact hull of the corresponding interval linear system with regular matrix by solving
point linear systems, obtained as all possible combinations of the interval end-points. A11Points
is a symbol, which can be used as last optional argument for these functions applying combina-
torial computing method. A11Points implies output of the solutions to all point linear systems

'Rules of the form name -> value.

solved. In the interactive environment of Mathematica this output could be suitably used for
visualization.

Monotonicity can also be used even when the solution is not monotonic provided its behavior
is sufficiently well known. Some sufficient conditions for PSS having the same quality (OXP =
[0%9) as the solution set to the corresponding non-parametric system A([p]) - z = b([p]) are
proven in [9]. Based on this research, HullCoincidence [Ap, bp, parLst] checks which bounds
of the solution set to a parametric system Ap.x = bp, where the parameters and their interval
values are specified by a list of rules parLst, coincide with the bounds of the corresponding
non-parametric solution set. The output is in the form {{{inf-bds}, {sup-bds}}, {hull}},
wherein {inf-bds} and {sup-bds} are lists with indexes of the coinciding bounds.

2.2 Iterative Solvers.

The Mathematica package IntervalComputations‘LinearSystems‘ contains a collection of
functions which compute guaranteed inclusions for the solution set of a square interval linear
system. These functions, called iterative solvers, implement residual iteration methods, based
on the fixed point theorem, that lead to guaranteed interval enclosures quite fast. The general
methodology is due to S. Rump [13], [15]. The particular solvers differ upon the type of the
linear system to be solved — general nonparametric system, system with symmetric matrix, or
parametric linear system — implementing residual iteration methods, designed to be efficient
for the specific interval problem [13], [3], [15].

ILinearSolve[A, b] computes guaranteed bounds for the solution set X([A], [b]) of a square
interval linear system, where all elements vary independently in their intervals. The input
elements can be either numerical intervals or elements from the domain Real.

Linear systems with symmetric matrix are the simplest special case of a parametric linear sys-
tem. The fixed point iteration algorithm for this special case is proposed by C. Jansson [3]. Due
to the simplicity of its implementation, this algorithm is often used in the applications, although
they may involve more dependencies than in a symmetric matrix [6]. SymmetricSolve[A, b]
computes guaranteed bounds for the symmetric solution set of a square linear system with sym-
metric matrix A and independent interval vector b. For linear systems with symmetric matrix
and independent right hand side vector bp, involving dependencies in the elements, the function
SymmetricSolve[A, bp, parLst] can be used, where the list of transformation rules parLst
specifies the parameters and their interval values.

A general algorithm, that accounts for arbitrary affine-linear dependencies in the matrix
and the right hand side vector, is proposed by S. Rump in [15]. The Mathematica func-
tions ParametricNSolve[Ap, bp, parLst] and ParametricSSolve[Ap, bp, parLst] imple-
ment the parametric Rump’s method? and compute guaranteed bounds for the PSS (3) to
the linear system Ap.x = bp. The parameters and their interval values should be specified by
a list of rules parLst. The environment of Mathematica [16] allows a convenient mathematical
description of the parametric matrix and the right hand side vector.

In[2] :=m = {{3, p1}, {p1, 3}}; b = {p2, p2};
tr = {pl -> Intervall[{1l, 2}], p2 -> Interval[{10, 10.5}1};
ParametricNSolve[m, b, tr]

Out[4] = {Interval[{1.81481, 2.74074}], Intervall[{1.81481, 2.74074}]1}

All the iterative solvers can take options affecting the computational process and/or the out-
put of the particular function®. The three options, associated with each of the iterative solvers

Zshould be distinguished from the nonparametric Rump’s algorithm.

3Options in Mathematica are set by giving rules of the form name -> value. Each rule must appear after all
the other arguments of a function. Rules for different options can be given in any order. If no explicit rule is
given for a particular option, a default setting for that option is used.

are InnerEstimation, Refinement, and Statistics. InnerEstimation, when set to True,
specifies the computing of component-wise inner approximation of the solution set in addition
to the outer enclosure. Inner estimations allow to obtain the very important measure for the
degree of sharpness of an outer solution set enclosure [14]. Computing inner approximations by
the iterative solvers is based on generalized interval arithmetic (see [8]) and requires the package
IntervalComputations ‘GeneralizedIntervals‘ [10] which, if available, is loaded automati-
cally. Refinement is an option that, when set to True, implies the application of an iterative
refinement procedure for the outer solution set approximation. As mentioned in [13], [15], this
procedure usually brings quite little improvement on the solution set enclosure. Statistics
is an option that, when set to True, implies output of some intermediate results like the num-
ber of iterations and the relative improvement by the refinement procedure. The three options
InnerEstimation, Refinement, and Statistics are set to False by default.

In[5] := SymmetricSolve[m/. tr , b, tr, Refinement->True,
InnerEstimation->True, Statistics->Truel

SymmetricSolve::statl: Initial Iterations = 2.
SymmetricSolve::stat2: Refinement Iterations = 23;
Max relative improvement 2.7999999999762992°¢.
Out [6] = {{Interval[{1.87037, 2.68519}], Interval[{1.87037, 2.68519}]1},
{Interval[{1.05556, 3.5}], Interval[{1.05556, 3.5}]1}}

The two parametric solvers differ upon the way they minimize the number of parameter
occurrences. ParametricNSolve transforms the parametric input data into numerical n X n x
(k+1)-, n x (k+ 1)-matrices and does a fast numerical simplification. ParametricSSolve is
based on algebraic simplification of the parametric (symbolic) data.

The inclusion theory, developed in [15], can be applied directly even when A(p) and b(p)
involve nonlinear dependencies between parameters. The key issue is to obtain sharp
bounds for the difference between the true solution and the approximate solution, and sharp
bounds for the contracting matrix. While linear dependencies in A(p), b(p) allow easy compu-
tation of sharp enclosures, the nonlinear dependencies hamper the solution, reducing the overall
problem to a problem for sharp range estimation. Fortunately, the computer algebra environ-
ment of Mathematica provides tools for algebraic simplification of expressions, reducing thus
the number of parameter occurrences causing overestimation. All iterative solvers, based on
algebraic simplification (SymmetricSolve[A, bp, parLst] and ParametricSSolve[Ap, bp,
parLst]) can be applied to linear systems involving either affine-linear, or nonlinear depen-
dencies between parameters. An enhancement of the Mathematica interval tools by various
methods for sharp range estimation will provide a further improvement in the corresponding
parametric solvers towards sharper inclusion of the PSS in case of nonlinear dependencies.

The development of quality mathematical software for solving parametric linear systems, and
our functions in particular, involve several other specific issues, like rigorous interval bounding,
sharpness in contracting matrix enclosure, proper choice of epsilon inflation etc., that reflect the
state-of-the-art in the implementation of verification algorithms.

2.3 Exploiting Monotonicity of the Parametric Solution.

It is well known that we can easily find the exact range of a function which is monotone w.r.t. all
parameters [7]. That is why, exploiting the monotonicity of the solution x(p) = A(p)~1b(p) to
(1) is favorable by some authors in finding the exact bounds of the parametric solution set [4],
[5]. To make use of this property, however, it should be rigorously proven.

Computer algebra environments possess facilities for analytic solution, symbolic differenti-
ation and algebraic simplification, that combined with interval arithmetic evaluation present

excellent tools for proving monotonicity of the parametric solution x(p) = A(p) ~'b(p). We have
developed a function Monotonicity[Ap, bp, parLst] which uses the computer algebra tools
and interval arithmetic of Mathematica to give the monotonicity of the solution to a square para-
metric linear system Ap.x = bp, where the parameters and their interval values are specified
by a list of transformation rules parLst. The output is an (n x k) matrix (n — number of the
solution components; k — number of parameters) with elements from the set {—1,0, 1} denoting
the sign of the corresponding partial derivative. 0 means that the monotonicity type cannot be
determined. This function can be applied to parametric linear systems involving either affine-
linear dependencies or nonlinear dependencies between parameters. For some problems, this
function finds the monotonicity faster than the numerical tools, presented below.

It seems that J. Rohn is the first who has tried to derive numerical proof for the monotonic-
ity of the parametric solution [12]. All published attempts to exploit the monotonicity of the
parametric solution components consider the special case when all the components are mono-
tone w.r.t. all the parameters [4], [5]. Some practical problems, however, may have solution
components that are monotone w.r.t. some of the parameters and non-monotone with respect
to others. Monotonicity properties of the parametric solution can be used to reduce the number
of parameters and thus to sharpen the solution set enclosure.

Consider the parametric system (1), factorized by the parameters

k q
<A0 + Z AVpV) x = by + Z prV7 Pv € [pl/] = [p;’pj] (4)
v=1

v=1

where A, = (N\jj,) € R**™ and b, = (bjy) € R", (v =0,...,k). The goal is prove monotonicity
of z;, 1 <i < n, with respect to every p,, 1 <v < k. For every fixed v € {1,...,k}, by taking

partial derivatives on both sides of (1), we come to the equation

Pv

or 0b(p) OA(p) | .
A(p)apy = o om - [z], (5)

where [2*] D ¥P is an enclosure of the parametric solution set. Solving (5) we can rigorously
enclose the corresponding partial derivative of the solution components, and thus, through their
signs, to prove the monotonicity type of the parametric solution components with respect to all
parameters. Let us suppose that for fixed 7,1 <i<mn

al'i
Opy

L_ = {v| Sign [=1}, L, = {v | Sign P‘”] = —1}.

Opy

If L_ULy ={1,...,k}, the exact bounds z;, x;r, 1 <i < n, of the PSS can be obtained as

:L'Z_ = (A0+ Z Ayp,j + Z Aup;r)_l : (b0+ Z bup; + Z bl/pj)

vel _ vel vel_ vel (6)
wh=(Ao+ Y A+ Y Awp)) Tt (bo+ Y bl + > bupy)
veL_ veLy veL_ vel4

IfL_ ULy #{1,...,k} and L_ U Ly # (), the monotonic parameters can be adjusted, so that
we should solve two parametric linear systems with reduced number of parameters for every ¢,
1 <4 < nin order to get a sharper enclosure for the parametric solution set.

To prove monotonicity properties of a parametric solution is often more difficult than find-
ing an enclosure to the PSS itself. Here we briefly discuss some implementation problems and
present our concept, based on some comparisons of the performance and cost-efficiency of vari-
ous techniques. The method for numerical proof of solution monotonicity requires an enclosure
of the parametric solution set (see (5)). The recommended, by now, method for finding such

an enclosure is the (preconditioned) Gaussian algorithm. Although the interval Gaussian elim-
ination is, may be, the fastest method, it has two drawbacks. First, the interval Gaussian
algorithm is not always feasible and collapses in double precision for almost any matrix of di-
mension greater than 70. The major drawback is that the enclosure that this method (and
every other non-parametric method) provides is too rough since it encloses the corresponding
nonparametric solution set. We propose to find enclosures of the PSS and of the derivatives
(5) by parametric residual iteration based on numerical simplification. Since we usually want
to prove solution monotonicity for problems involving comparatively large tolerances for the
parameters, the method will not succeed in finding the monotonicity type at once. The only
way to get L_ ULy # 0 (or L ULy = {1,...,k} for entirely monotone solutions) for large
intervals is by iterative subdivision of the intervals for the parameters.

We have developed the following functions for finding monotonicity type of the solution
components to a parametric linear system Ap.x = bp, where the parameters and their interval
values are specified by a list of transformation rules parLst.

LUMonotonicity[Ap, bp, parLst, Subdivision] LUMonotonicity[Ap, bp, parLst]
PMonotonicity[Ap, bp, parLst, Subdivision] PMonotonicity[Ap, bp, parLst]
NMonotonicity[Ap, bp, parLst, Subdivision] NMonotonicity[Ap, bp, parLst]

All the functions have the same output as the function Monotonicity described above. Function
LUMonotonicity is based on interval Gaussian elimination. By analogy with the iterative solvers,
PMonotonicity is based on symbolic differentiation, algebraic simplification and the parametric
Rump’s residual iteration to be applied to parametric linear systems involving either affine-
linear dependencies or nonlinear dependencies between parameters. Function NMonotonicity
does entirely numerical computations.

The symbol Subdivision, used as fourth argument of the functions LUMonotonicity,
PMonotonicity, and NMonotonicity, specifies finding the solution monotonicity of a parametric
linear system by successive subdivision of the input intervals for the parameters. Two options
are associated with these functions involving Subdivision argument. SubdivisionLimit spec-
ifies the maximum number of subdivisions, that can be applied to the input interval value for
each parameter, in finding solution monotonicity. Components specifies which of the solution
components to be considered. Components-value should be a nonempty list of numbers. The
default setting for these options is {SubdivisionLimit -> 100, Components -> All}.

2.4 A General Hybrid Approach

It was shown that the parametric Rump’s residual iteration possesses an excellent performance
for parameters with small tolerances and does not give very sharp enclosures for parameters
with large tolerances [8], [15]. On another side, some practical problems require very sharp
solution set enclosure. The latter is crucial for dynamical problems described by parametric
linear systems involving uncertainties. That is why we propose the following general hybrid
approach for sharp solution enclosures.

1. Try to prove monotonicity of the solution components w.r.t. each of the parameters.
1.1 If every x;, (1 <i <mn) is monotone w.r.t. all p,, (1 <v <k),

then find rigorously, and componentwise by (6)

e the exact [0 X? in exact arithmetic; or

e very sharp [Y] 2 O ¥P by non-parametric residual iterations in floating point
arithmetic;

Stop.

1.2 If 3 x4, (1 <i <n), which is monotone w.r.t. some p,, (1 <v <k), then
— adjust the monotone parameters componentwise; Goto 2.

1.3 If all z;, (1 <1 <n) are non-monotone w.r.t. all p,, (1 <v <k), then Goto 3.

2. Apply parametric residual iteration componentwise; Fix a global sharpness €, 0 < e < .99;
Use inner estimation to measure the component sharpness.

— If sharpness = ¢ for V x;, 1 <i <n, then Stop; else Goto 3.

3. Refinement by Subdivision. Fix a sharpness ¢, 0 < e < .99;

3.1 Subdivide the parameter box into subboxes with fixed tolerance, so that
[po] = Uj, [puj,] with tolerance([p,;,]) £ tD% (say tM) = 1%)

3.2 Compute new enclosure [Y ()] (with inner estimation) as union of the enclosures on
every subbox.

~If [Y®] C [Y=1] and sharpness([Y(?)]) > ¢, then Stop;
— elself IterationLimit, then Stop;
else Coto 3.1 with tolerance t(+1) < t1%,

The proposed hybrid approach provides sharp bounds for the solution set to parametric
systems whose solution is monotone w.r.t. some/all parameters. If the parametric solution is
monotone w.r.t. all the parameters, we practically compute the exact hull and the floating-point
enclosure has the sharpness of the verification procedures for the solution of the corresponding
point linear systems. The sharpness of the enclosure, provided by the parametric fixed-point
iteration, depends on the number of parameters and the value of the interval tolerances. If
the parametric solution is monotone w.r.t. only some of the parameters, adjusting the latter
provides sharper solution set enclosures. Subdivision of the parameter intervals is an universal
method for getting sharper enclosure for parametric solution which is not monotone w.r.t. the
parameters.

The first two steps of the general hybrid approach are implemented in a function MonotonicPI
Solve, which is part of the package under consideration. MonotonicPISolve[Ap, bp, parLst,
sgns] rigorously computes sharp bounds for the solution set of the parametric linear system Ap.x
= bp, where the parameters and their intervals are specified by the list of transformation rules
parLst, assuming that the solution is monotone w.r.t. some parameters and the type of mono-
tonicity is specified componentwise by the matrix sgns. Naturally, the monotonicity matrix sgns
can be the output of some of the functions NMonotonicity, PMonotonicity, LUMonotonicity,
or Monotonicity. The three options InnerEstimation, Refinement, and Statistics, associ-
ated to the iterative solvers, are associated to MonotonicPISolve too. One more option Method,
with values Verified (set by default) and Rational, is associated to MonotonicPISolve to guide
the computing method. Method -> Rational requires solving point linear systems by the kernel
function LinearSolve which does exact computations on exact data. If some of the input data
are not exact, the results will not be rigorous. By default, all point linear systems are solved
by the enclosure non-parametric ILinearSolve function. Even set to True, InnerEstimation
is active only if a parametric linear system has to be solved, that is sgns involves zero. The
monotonic solver acts as an expert system automatically choosing between the available linear
system solvers, basing on the monotonicity matrix sgns and the value of the option Method.
At present, the monotonic solver works on parametric linear systems involving only affine-linear
dependencies. An additional option, specifying the type of the dependencies, could be associated
to the monotonic solver.

Miscellaneous. Two functions Sharpness and Overestimation are provided for an user
convenience. Sharpness[int;, into] is used to measure the quality of an outer interval approx-
imation intg, provided that int; is a corresponding inner approximation. 0 < Sharpness[inty,
inty] < 1, for int; C ints, and Indeterminate otherwise. Overestimation[int;, intso]
gives the percentage by which the interval ints, overestimates the interval int;, provided that
inty C intg, and Indeterminate otherwise. ParametricToNumeric [expr, parLst] is a func-
tion that converts the symbolic representation of a parametric matrix/vector expr, whoose
elements are affine-linear functions of some parameters, specified by parLst, into correspond-
ing numerical matrices to be exported to and used by other environments and programming
languages.

3 Conclusion

A Mathematica package supporting tools for solving parametric and non-parametric linear sys-
tems involving uncertainties is presented. It includes a variety of functions, implementing differ-
ent interval techniques, that help in producing sharp and rigorous results in validated interval
arithmetic. The package provides a necessary background for further exploration, comparisons
and prototyping, and gives the application scientists some indispensable tools for solving para-
metric interval linear systems.

Our next efforts are directed towards further expanding the functionality of the package,
improving the performance of some functions and deploying the available functionality over
the Web. A parametric solver already can be accessed via the webComputing service at
http://cose.math.bas.bg/webComputing/.

References

[1] G. Alefeld, V. Kreinovich, G. Mayer, The shape of the solution set for systems of interval
linear equations with dependent coefficients, Math. Nachr. 192 (1998), 23-36.

[2] O. Dessombz et al., Analysis of mechanical systems using interval computations applied to
finite element methods, Journal of Sound and Vibration 239 (2001) 5, 949-968.

[3] C. Jansson, Interval linear systems with symmetric matrices, skew-symmetric matrices and
dependencies in the right hand side, Computing 46 (1991), 265-274.

[4] M. Jasiriski and A. Pownuk, Modelling of heat transfer in biological tissue by interval FEM,
CAMES 7 (2000), 551-558.

[5] L. Kolev, Outer solution of linear systems whose elements are affine functions of interval
parameters, Reliable Computing 8 (2002) 6, 493-501.

[6] R. L. Muhanna and R. L. Mullen, Uncertainty in mechanics problems — interval-based
approach, Journal of Engineering Mechanics 127 (2001) 6, 557-566.

[7] A. Neumaier, Interval Methods for Systems of Equations. Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1990.

[8] E. D. Popova, On the solution of parametrised linear systems, in: Scientific Computing,
Validated Numerics, Interval Methods, eds. W. Kraemer and J. Wolff von Gudenberg,
Kluwer Acad. Pub., 2001, pp. 127-138.

[9] E. D. Popova, Quality of the solution sets of parameter-dependent interval linear systems,
ZAMM 82 (2002) 10, 723-727.

[10] E. D. Popova; Ch. Ullrich, Directed interval arithmetic in Mathematica: Implementation
and applications, TR 96-3, U. Basel, 1996. (www.math.bas.bg/ epopova/papers/tr96-3.ps)

[11] J. Rohn, Systems of Linear Interval Equations, LAA 126 (1989), 39-78.

[12] J. Rohn, Interval linear equations with dependent coefficients, Reliable Computing mailing
list, March 2002; personal communication, April 1999.
(http://www.ms.mff.cuni.cz/ rohn/letter/letter.ps)

[13] S. Rump, Solving algebraic problems with high accuracy, in: A New Approach in Scientific
Computation, eds. U. Kulisch and W. Miranker, Academic Press, 1983, pp. 51-120.

[14] S. Rump, Rigorous sensitivity analysis for systems of linear and nonlinear equations, Math-
ematics of Computation 54 (1990) 190, 721-736.

[15] S. Rump, Verification methods for dense and sparse systems of equations, in: Topics in
Validated Computations, ed. J. Herzberger, Elsevier Science B. V., 1994, pp. 63-135.

[16] S. Wolfram, The Mathematica Book, 4th ed., Wolfram Media/Cambridge U. Press, 1999.

10

