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Abstract: The stationary workload Wf{ 4+ Of a queue with capacity ¢ loaded by two independent
processes A and B is investigated. When the probability of load deviation in process A decays slower
than both in B and e~ V%, we show that Wg 4 p is asymptotically equal to the reduced load queue
Wff_b, where b is the mean rate of B. This complements the known result that this property does
not hold when both processes have lighter than e~V? deviation decay rates. Furthermore, using the

same methodology, we show that under an equivalent set of conditions the results on sampling at
subexponential times hold.
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Charge réduite équivalente dans le cas sous-exponentiel

Résumé : La charge stationnaire Wf" 4 p Q’une file d’attente avec la capacité ¢ recevant deux processus
indépendants A et B est analysée. Sous des hypothéses faibles sur A et B, nous montrons que Wf{ B

est asymptotiquement égal & la charge équivalente de la file Wf"_b, ol b est le taux moyen de B. Ceci
compléte le résultat connu selon lequel cette propriété n’est pas vraie quand les deux processus ont une
queue de distribution plus faible que e~V?. De plus, en utilisant les mémes méthodes, nous montrons
que sous des hypothéses similaires, les résultats sont aussi vrais & un instant aléatoire.

Mots-clés : Grandes déviations. Charge équivalente. Distributions sous-exponentielles.
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1 Introduction

Statistical resource sharing provides a mechanism for improving operating efficiency in many areas of
business and engineering. This mechanism is particularly useful in communication networks, where
resources, such as link transmission capacity and buffer space, are shared among different user sessions.
This sharing creates potential workload backlogs that need to be addressed. A baseline model of the
backlog is represented by a workload Wf{ +p of a stationary queue of capacity ¢ and independent arrival
processes A and B. Processes A and B can be interpreted as independent demands for a generic resource
o.

Thus, it is of general interest to provide analytical tools for understanding the statistical behavior
of W +p- In the context of heavy tails, in Theorem 4.4 of [12] (see [6] and [17] for related studies) it
was shown that when process A has polynomial characteristics and B is exponentially bounded, then
as x — 00

PW4, > 2] = P[WS " > 2](1+o(1)), (1)

where b is the mean rate of process B and Wf:*b is the workload of a queue with reduced load A and
capacity ¢ —b. Hence, in [1] the preceding relatinship was termed reduced load equivalence. The results
of [1] provide more general conditions under which (1) holds. For related reduced load equivalence
results with polynomial tails see [18, 4, 13] and the references therein.

In this paper we further extend the results from [1]. Informally, we allow the tail of Wﬁfb to be
heavier than e~V?, but lighter than e_””l/s; this range was not covered by the results of [1]. Furthermore,
we allow process B to have heavier than exponential, but lighter than Wff*b tails. These points will
be discussed more specifically throughout the paper. Our results, in conjunction with the known result
that (1) fails when both processes have lighter than e~V? characteristics [9], provide a set of conditions
under which (1) is expected to hold.

Our main result on reduced load equivalence is stated in Theorem 2. The statement of this theorem
significantly simplifies when the distribution of deviations in process B has lighter than e~ V7 tail; this
is presented in Proposition 2. Informally, heuristic of our analysis can be briefly described with the
following steps (for large x)

PWi,p >a]~P tsglp{At —(1-0b)t}+ tsglp{Bt -bt} >z (2)
~PWL" + Zz > 1] 3)
~PWL > 2, 4)

where Z is a positive Gaussian random variable. The first step is justified by Lemma 7. Substantiating
approximation (3), i.e., providing a satisfactory bound on the second supremum in (2), represents the
main technical difficulty. This is facilitated by Theorem 3.2 of [11]; strengthened versions of this theorem
are presented in Lemma 5 and Proposition 1. Necessary and sufficient conditions for (4) to hold are
provided in Theorem 1.

Furthermore, using the same methodology, we show that under an equivalent set of conditions the
results on independent sampling (see [2]) at subexponential time T hold, i.e., as z — oo

P[Br > z] = P[Tb > z](1 + o(1)),

where T is independent of B. Our results are stated in Theorem 3 and Proposition 3.

RR n° 4444



4 Jelenkovié, Momdcilovié, Zwart

2 Preliminaries

2.1 Gaussian insensitivity

The purpose of this subsection is to provide a framework for rigorously justifying (4) of the introduction.
Necessary and sufficient condition for this to hold is provided when Wflfb is square-root insensitive as
in the following Definition 1. The square-root insensitivity appears in work of [2].

Throughout the paper, for any two real functions f(z) and g(z), we use the standard notation
f(z) ~ g(z) as x— o0 to denote lim, o f(2)/g(z)=1.

Definition 1 Random variable X is called square-root insensitive if

PIX >z —+z] ~P[X >2] as z — .

Remark 1 By monotonicity it follows that if X is square-root insensitive then for any &

P[X >z — kVz] ~P[X >2] as z — oo.

In this paper C denotes a sufficiently large positive constant, while ¢ denotes a sufficiently small
positive constant. The values of C' and ¢ are generally different in different places. For example,
C/2=C,C?=C,C+1=0C, etc.

The hazard function @(z) of a random variable (r.v.) X is defined as Q(z) = —log P[X >z].

Lemma 1 If X is square-root insensitive, then its hazard function @) satisfies
Q(z) = o(v/z) asz — oo.

Proof: The assumption of the lemma implies that for any € > 0 there exists z., such that for all
z2>xe>1

P[X > z]
—P[X>x+\/;ﬂsl+€- (5)

Next, define recursively f(™ (u) = f(*D(u) 4+ /f(—D(u) for integers n > 1 with f(®) (u) = u. Then,

f(z)(we)zxe+\/'x_e+\/$e+\/~x_e

>z ++/z+1/4
= (Vzc +1/2)%
From the last inequality, it is easy to show by induction that
FEM (o) > (Vae +n/2)% (6)
Now, let n, be the smallest integer such that (/zc + n,/2)? > z, i.e.

ne < 2(Vo — V@) + 1. (7)

Next, due to (6), the choice of n, and the monotonicity of P[X > -]

P[X > me] < ]F[X > we] P[X > f(z) (xe)] . P[X > f(2nz—2) (me)]
PIX >z] = P[X > f®) (2] P[X > fW(z,)]  P[X > fCne)(z)]

INRIA



Reduced Load Equivalence under Subexponentiality 5

Observe that by (5) each of the ratios in the preceding inequality is upper bounded by (1 + €)? and,
hence, recalling (7) yields

P[X > z] 9 -
— < (14 < (1 TVE)R2
P> q SO sre
implying as € = 0
— Q)
$ll>n§o NG <4log(l+¢ — 0.

O

The following theorem represents the main technical result of this subsection. It provides us with a
tool to justify, in Section 3, step (4) of the outline in the introduction.

Theorem 1 Let Z be the absolute value of a standard normal random variable. Then X is square-root
insensitive if and only if
P[X >z — Z\/z] ~P[X > 2] asz — co.

Remark 2 By monotonicity it follows that if X is square-root insensitive then for any k

P[X >z — kZ/z] ~P[X >z] as z — oco.

Proof: (only if part) For k > 0 conditioning on Z results in

P[X > 2 — ZVz] <P[X >z — k/7] +C/ﬁ/2 eiélP’[X >z — 2y/x|dz + P[Z > Vx/2].  (8)
k

In order to estimate the integral term of (8) we choose z. > 1 such that (5) holds for all z > =z..
Observe that  — 24/ > z, for all z > 2z, and 2z < /z/2. Now, let n, be the smallest integer such

that (v/z — 2v/Z +1n./2)? >z, i.e.

nz<2<\/5— m—zﬁ)+1
<2z+1. 9)

Next, recall the difinition of f(™ from the proof of Lemma 1. Due to (6), the choice of n, and the
monotonicity of P[X > -] for all z < y/z/2 and z > 2z,

P[X >z — 2/7] < PX > fO(z — 2¢/x)] P[X > fCr="2(z — 2¢/x)]
PIX >zl  “PX>fO(a—2v)]  PX > fCr)(z—2a)]
< (14 €)*n=

S (1 +€)4z+2,

where the last inequality follows from (9). Therefore, the upper bound for the second term in (8) is as
follows

2

VR Ve
/ e  ZP[X >z — 2y/7]dz < CP[X > w]/ e~ Te %z
k k

_(z=0)?

SCIF’[X>3:]/ e 2 dz.
k

RR n° 4444



6 Jelenkovié, Momdcilovié, Zwart

Combining the the preceding bound and Lemma 1 with (8) easily yields the "only if" part of the
theorem.
(if part) Note that

P[X >z — Z+\/x] > P[Z > 1|P[X >z — x| + P[Z < 1|P[X > z],

which, in conjunction with the assumption, implies P[X > z — \/z] ~ P[X > z] as  — oo. O

2.2 Large deviation results

This subsection presents several large deviation bounds that will be used in proving our main results.
In this paper, we use the following two classes of heavy-tailed distributions:

Definition 2 ([7]) A nonnegative r.v. X is called subezponential (X €S)

_ 2%
lim L@ _ o
z—oo 1 — F(.CL')

where F?* denotes the 2-fold convolution of F with itself, i.e., F?*(x) = f[o 00) F(x —y)F(dy).

Definition 3 ([14]) A nonnegative r.v. X (or its hazard function) belongs to class SC if its hazard
function Q(x) is eventually concave, such that, as © — oo

Q(z)/logz — o0

and for x > xg, fr <u<uwm,

where 0 < a<1,0< < 1.

As pointed out in [11], r.v.s with hazard functions (logz)%, 1 < «, and 2%, 0 < a < 1, belong to
SC; see [11] for additional discussion on the class SC.

In analyzing renewal processes, residual random variables and distribution functions play an impor-
tant role. For a nonnegative random variable X with distribution F' and finite mean EX, the residual
distribution F, is defined by F.(z) = (EX)™! fogc(l — F(u))du, = > 0. A random variable X, with
distribution F;. is called the residual variable of X.

We now state two basic lemmas.

Lemma 2 If X € S and P[U > z] = o(P[X > z]), then as x — o0

PX+U >z, X <z]=0oP[X > z]).

Proof: Corollary 2 of [16] states P[X + U > z] ~ P[X > z] as # — oo, which in conjunction with
PX+U>z]=PX >2]+PX+U >z X <z] concludes the proof. O

Lemma 3 ([11]) (a) If Q@ € SC, then Q(z) < Q(u)(z/u)® for all zo < u < z. (b) If X € SC then
X, X, €S.

INRIA



Reduced Load Equivalence under Subexponentiality 7

In the remaining part of this subsection, we assume that {X, X, > 1} is a sequence of i.i.d. r.v.s.
The next sequence of lemmas will be used in Section 3 to estimate the deviations of process B.

Lemma 4 If EeQX) < 0o for some Q € SC, then for any ¢ > EX
lim e@EIP |gu X,—¢np,>x| =0.

Proof: The lemma follows from stochastic dominance, Lemma 3 and Pakes’ theorem [15]. i

Lemma 5 If EeQX) < 0o for some Q € SC, then for all z and u > 0

n
P Lrsnrzlx%cw {;X, —nEX} >y

<cC (e‘cﬁ + xe_%Q(“)) .

Proof: See the appendix.

Lemma 6 Let X >0 a.5. and 0 < EX < oo. If N, =max{n: Y. ; X; < z}, then there exists § > 0
such that for all z and 0 < u < 0z

P[N, — z/EX > u] < Ce=v'/z,

Proof: See the appendix.

3 Main results

In this section we present our main results on reduced load equivalence and independent sampling. As
mentioned in the introduction, these results extend work of [1] and [2]. It will become clear from our
analysis that the two problems are strongly related: the square-root insensitivity plays a central role in
both of them.

We assume that B is a regenerative process with By = 0. The length of the nth regenerative cycle
is denoted by v, > 0. Random variables {v,}22, are i.i.d. independent of a.s. finite vy and have
finite second moment, Ev? < oco. With each v,, n > 1, we associate random variables v, and ;. If
Tn =Y 1 ,vi then

Tn = BT’n - BTn—17

*
Tn sup Bt _BTn—la
To_1<t<T,

with 7o = By, and 7§ = supg<;<,, Bi- The random variables {7, }72; and {v;}52, are i.i.d. indepen-
dent of a.s. finite vy and v and have the finite first moment. Note that, by the SLLN, the mean rate
b = E’Yl /EI/l = hmt_mo Bt/t a.S.

The proofs of our main results use the following proposition that generalizes Theorem 3.2 of [11] to

regenerative processes.

RR n° 4444



8 Jelenkovié, Momdcilovié, Zwart

Proposition 1 If Ee®") < 00, i = 0,1 for some Q € SC, then for all z and u > 0

u2
P | sup {B; — bt} > u] <C (e‘cT +e T+ :ce_CQ(”)) .
o<tz

Proof: Let N, =max{n: > .

i=

1 Vi < z}. Since for all t > 0

Ni_yg Ni—yg
Bi—bt <+ W1+ D Vi b Y Vi (10)
i=1 i=1

one concludes

u

4

u

] +P [’h > 4] +PF 1<n<N,

i=1

]P’{sup {Bt—bt}>u] §]P[76‘>
0<t<z

max (7i—bu,~)>g]. (11)

Lemma 6 provides a bound on N, for all § small enough
P[N, — z/Ev; > dx] < Ce™**
and, hence, the third term in (11) can be upper bound as follows
n
P l max (y; = by;) > %1 <Ce 4P

0<n<N, 4
=TT =1

n
u
b)) > —
ogngglﬁc/mn)wz(% vi) > 2]

i=1

<Ce “+C (e*c% + we’%Q(”ﬁ)) ,
where the last inequality is due to Lemma 5. Substituting the preceding bound in (11) leads to

u2
P [ sup {B; — bt} > u] < Ce QWY L e 4 ¢ (e_CT + ;ve_%Q(“/z))
0<t<lz

and the statement follows by Lemma 3. O

3.1 Reduced load equivalence

In this subsection we investigate the tail behavior of the stationary workload of a stable queue. The
stationary workload Wfr of a queue with service rate ¢ fed by a process X with stationary increments,
is know to satisfy

W £ sup{X, — ¢t},
t>0

where £ denotes equality in distribution and X; represents the amount of work that arrives to the queue
in (—t,0); throughout the paper X will be considered equal to A, B or A+ B. In the queueing context,
a natural assumption on B is that sample paths are a.s. increasing, i.e., in this subsection v; = v} for
i > 0. For convenience, we put Wx = Wx.

The following theorem is the first main result of this paper. Let a denote the mean rate of process A.

Theorem 2 Let Ee?0¢) < o0, i = 0,1 for some Q € SC and Ev} < co. If W}‘_b € § is square-root
insensitive, PIW5 " > z] = e °(@=) and for somea < ¢ <1—b
— PWS>k
lim lim [I/fol?m] =
k—00 —00 ]}D[WA > .’L’]

’

INRIA



Reduced Load Equivalence under Subexponentiality 9

then as T — 00
P[Ways > 2] ~ PW;7" > ]

When the regenerative increments of B do not have tails heavier than e~VT 0 > 0, the conditions
of the preceding theorem can be weakened. In particular, the assumptions W}‘_b € S and P[Wj_b >
z] = e Q=) are not needed.

Proposition 2 Let Ee’V7 < oo, i = 0,1 for some § > 0 and Bv} < oo. If W, is square-root
insensitive and for some a < $<1—1>
— PW$>k
lim lim [vaf[?x] =
k—o00 T—00 ]}D[WA > .’L’]
then as x — oo
P[Ways > 2] ~ PW; " > z].

Remark 3 The double limit condition in the statements of Theorem 2 and Proposition 2 is implied by
z°P[X > z] being eventually monotonically decreasing in z for some € > 0.

These results extend Propositions 8.2 and 8.3 of [1], where A is assumed to be an On-Off process
with a specific form of the distribution of On periods and B is exponentially bounded. In particular,
Proposition 8.3 in [1] assumes that the tail of the residual distribution of On periods is of the form
e~ with B < 1/3.

Possible choices of A include, for instance, an On-Off process with subexponential On periods and
a Gaussian process exhibiting long-range dependence, cf. [5]. Next, we specialize our result to the case
where A is a stationary On-Off process. For the exact construction of such a process see [10]. Let On
periods be equal in distribution to 7. Denote by r and a the peak and average rate, respectively.

Corollary 1 Let EeQ) < o0, i = 0,1 for some Q € SC and Fv} < oo. If 1, € S is square-root
insensitive, P[r, > 7] = e °@®) r >1—-b>a and
lim fm o> kel

k—00 T—>00 ]P[Tr > m] ’

then as T — o0
PWayp > z] ~ PW;70 > z].

Proof: Follows from Theorem 2 and the asymptotics for W} (see Theorem 4.3 of [12]). O

Before we turn to the proofs of Theorem 2 and Proposition 2, we state an additional preliminary
result.

Lemma 7 Let FeQ) < 0o, i = 0,1 for some Q € SC. If IP’[WI}(b > 1] = e=2(Q@) gnd for some
a<p<1l-b0
— PW?
lim lim M —
l—o00 z—00 ]P[WA_ > .73]
then
lim Tim Plsupysi{At + By — t} > ] _

15 0.

RR n° 4444



10 Jelenkovié, Momdcilovié, Zwart

Proof: See the appendix. O
We are now ready to present a proof of Theorem 2.

Proof of Theorem 2: The proof consists of deriving upper and lower bounds.
Upper bound. Observe that for [ > 0

PWayp > z] <P [ sup {A; + By —t} > m] +P [sup{At + By —t} > w] . (12)
0<t<lx t>lx

The second term is negligible by Lemma 7 as £ — oo for large I. To estimate the first term, we proceed
as follows. By using sup,{f(t) + g(t)} < sup, f(t) + sup, g(t) for any two functions f(z) and g(z) one
obtains for k > 0

P | sup {At+Bt—t}>w] SJP’[ sup {A; — (1 —b)t} + sup {Bt—bt}>w]

o<t<lz 0<t<lz 0<t<lz
SPWit>z—kva|+PWL P+ Y, >z, Wi <z— k7]
£ fi+ fo, (13)

where Y, £ SUPg<;< 1Bt — bt}. Proposition 1 yields an upper bound on f,

z—kVT
b < / PlYia > o — uldP[WE < u]
0

z—k\/z (m w
< C/ (e‘ T L “)> dPW5 " < u]
0

£ for + fa2 + fos. (14)

Integration by parts and change of variables (z = (z — u)/1/Z) result in

for < Ce T + l\/_/ a:—u e w PW}™" > u] du
= Ce ¢t +Cl/ *CI}P’WI "> 2 — 27 dz
< Ce™°t +C’71P’[WA7 +Z\x >z, Z > K],

where r.v. Z is the absolute value of a normal random variable. Combining the preceding bound with
Lemma 3 and Theorem 1 we obtain

T f21

lim

k
—— < (= .
I s SOTHE> K

It easy follows that the upper bound for the second term in (14) is fao < Ce~ 2. To handle fo3, define
r.v. U such that P[U > z] = e~ °?(®) for > 2. Then,

z—kvT
faz < Clze c@kV) / e~ Q=W gP[Wi=bt < u]
0

= Clze™C@EVIPU + Wi > 2, Wi <z — kv/z);

INRIA



Reduced Load Equivalence under Subexponentiality 11

thus, by Lemmas 2 and 3 (b) one obtains faz = o(P[W ;™" > 2]) as  — oo.
Combining the bounds on fa1, foo and faz with (14), (13) and square-root insensitivity of W3 ~°
results, after passing k — oo, in
1__ ]P [SUPOStglz{At + Bt - t} > ZU]

1m 15 =
T—00 PW,° > 2]

Therefore, the proof of the upper bound is concluded recalling (12) and Lemma 7.
Lower bound. As usual, the lower bound is somewhat easier:

PWarp >z >P| sup {4+ By —t} > =
lo<t<iz

>P _Oglgz{At —(1-bt}t+ Osl?gflz{Bt — bt} > x]

=P | sup {A4; — (1 —0b)t} — sup {bt — B} > w] .
lo<t<ia 0<t<la

Hence, for any k,1 > 0,

PWarg > x| >P| sup {A;—(1=-b)t} >z + kﬁ] P [ sup {bt — B;} < k\/E] . (15)
0<t<lz 0<t<lz
Note that for t > 0
Ni—uy
bt — By < buo +bun,_,,, + D (bvi — )
i=1

and, thus, by Lemma 6 and the CLT for maximums [8, Ch. 7] one obtains

lim lim ]P’[ sup {bt — B} Skﬁ] =1.

k—ooz—00  |0<i<ig

The proof is now completed by diving both sides of (15) by P[W}™° > z + kv/z], letting  — oo, using
the square-root insensitivity of W}(", setting first k— oo, then [ — 0o and applying Lemma 7. O

Proof of Proposition 2: The proof is identical to the proof of Theorem 2 with Q(z) = 6+/z except

the derivation of the upper bound for foz. In the following we show that faz = o(P[W}~" > z]) as
x — oo. For any 0 < § < 1 integration by parts yields

z—k\/T
fas < C’la:/ e_CVw_“dJP’[W}fb < u]
0

z—k\/T

< Clze™ V" + Clm/ e VETUIPW T < u]
oz
z—kvT
< Clze™V? + Clm/ e VETUPW AT > u]du. (16)
oz

Next, square-root insensitivity yields (see the proof of Lemma 1 for details) that for any ¢ > 0 there
exists . > 1 such that for all z. < u <z — ky/z

]P 1-b
1[2@1 > u] < QW)
PW, ™" >z — k/x]

RR n° 4444



12 Jelenkovié, Momdcilovié, Zwart

By using the preceding bound in (16) and recalling the concavity of @) one obtains for dz > x.

kvm

faz < Clze™V" 4 ClaP[WL™° > z — ky/7] e~ eVe—ute(Va—vu) gy,
Sz

< Clze™V® + Clz*PWh~° > © — k2] (e_cV kVate(Va—va—kve) 4 e_ﬁ(cm_e(l_ﬁ))) )
Clearly, we can chose € and § in the preceding inequality to obtain
fos < Clze™V® + Clz’P[W; " > o — k\/ﬂe_cwl/4,

which by Lemma 1 and square-root insensitivity yields foz = o(P[W} °* > 2]) as  — oo. O

3.2 Independent sampling

Our second result is investigating the problem of independent sampling at subexponential times that
was recently studied in [2]. We provide an alternative set of conditions, that appear easier to verify,
under which Theorem 3.6 of [2] holds. In addition, our Proposition 3 fully generalizes Proposition 3.1
of [2]. The proofs below use the regenerative structure of B only to apply the CLT and Proposition 1.
Hence, any process B satisfying the CLT and Proposition 1 is admissible, e.g. certain Gaussian processes
as considered in [5].

Define the maximum M; = supy<,<; Bs. Note that M; inherits the regenerative structure of By,
but has the additional property that its sample paths are non-decreasing. Since B; has positive drift,
heuristically, B; is not expected to be much smaller than M;. Our theorem below shows that Mt and
Br have similar tail behavior. For convenience, we assume that mean rate b = 1.

Theorem 3 Let EeQ0) < 00, i = 0,1 for some Q € SC and Bv} < oo. If T € S is square-root
insensitive and P[T > z] = e~°@®@) | then as z — oo

P[Br > z] ~P[Mr > 2] ~ P[T > z].

Proof: Since By < My, it suffices to provide an upper bound for P[Mr > z] and a lower bound for
P[BT > .’L‘]
Upper bound. Write for § < 1
P[Mr > 2] <P[T >z — kx| + P [Mr >z, 0z < T <z — k/z| + P[Mj;, > z]. (17)

One needs to show that the last two terms are o(P[T' > z]) as © — oco. Note that, by Proposition 1 and
Lemma 3,

P[Ms, > 2] < C (e_cm + xe_CQ(m))
< Cze @@ = o(P[T > z]).

INRIA
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To deal with the second term in (17), note that, in view of Proposition 1,
z—k\/T
]I’[MT>m,(5x<T§w—k\/§]=/ P[M, > z]dP[T < u]
ox

z—k\/T
5/ H”[sup {Bs—s}>x—u] dP[T < u]
ox 0<s<u

v—kvz (e—uw)?
<C (e‘c e M4 ue_"Q(z_“)> dP[T < u]
oz
z—k\/T (o)
<C (e_c = e 0 4 a:e_cQ(”“'_“)> dP[T < u].
oz

Now, proceed exactly as in bounding f5 in the proof of the upper bound of Theorem 2.
Lower bound. Following the steps of [2] we write

P[Br > 2] > / P[B, > 2]dP[T < u]
z+kVT

> inf P[B,>az] PT >z +kyal.
u>z+k\T

Note that due to the monotonicity of (z — u)/y/u in u one obtains for z > k?

B, —u —k
inf  P[B,>2z]> inf P d >
u>z+k\/T [ v ]_u>z+k\/5 \/17 \/1+k/ﬁ]
B,—u k
> inf P[|= >——1.
> e e[ Bt ]

Therefore, the square-root insensitivity results in, for an appropriate o > 0,

. P[Br > 1] —k
| — = >1-® | —
i PT>a] = (20)’

where ®(+) is the distribution function of the standard normal r.v. Letting ¥ — oo concludes the proof. O

Proposition 3 If BV < o0, i = 0,1 for some § > 0, Ev? < oo and T is square-root insensitive,

then as T — 0o
P[By > z| ~ P[My > 2] ~ P[T > z].

Remark 4 This result shows that Theorems 3.8, 3.10 and 3.11 of [2] hold under less restrictive condi-

tions.

Proof: We follow the same steps as in the proof of Theorem 3. The only difference is that a bound on

C [ ;;_kﬁ ze~ VT UJP[T < u] is obtained using the same arguments as in bounding f23 in the proof of

Proposition 2.

RR n° 4444
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Appendix
Proof of Lemma 5: Let V; = X;1{X; < u} and
1/u < s < Qu)/u (18)

Then

+ zP[X > u]

n n
P < A
P Lrsnr?%cz{;X, nEX} > u] <P Lrsngécm{;Y, nEYl} >u

n
<P [ max exp {
1<n<lz —

Next, note that exp{} i, s(Y; — EY})} is a submartingale. Therefore, applying a submartingale in-
equality (e.g. see Theorem 9.4.1 in [8] or Theorem 35.3 in [3]) in the preceding equation leads to

s(Y;—]EYl)} > e | + 2P[X > ul.

i=1

P

1<n<z

n xz
max {ZXz - nEX} > u] <e *E [eS(Yr]Eyl)] + zP[X > u]

i=1

< e—su—sz]EYl (]EesY1 ):c + C:L'e_Q(u); (19)

the last bound is due to Markov’s inequality. By repeating exactly the same steps of the proof of
Theorem 3.2 in [11] one can show that there exists a constant C* such that for all s in the given
range (18)
Ee®*Yt <1+ sEY; + C*s>.

Substituting the preceding bound in (19) yields

n
P X; — nEX

The rest of the proof is exactly the same as in Theorem 3.2 of [11]: choose s = Q(u)/u if z <

< e—su+s2xC’* + C.’L'C_Q(u)

u?/(2C*Q(u)) and s = u/(2xC*) otherwise. See the proof in [11] for the details. O
Proof of Lemma 6: The statement follows from
lutz/EX | lu+z/EX |
PN, —z/EX >u]=P| > X;<z|<P| Y (EX -X;)>(u—1)EX
i=1 i=1
and the following lemma. O

Lemma 8 If Ee’X < co for some 6 > 0, then there exists § > 0 such that for all z and 0 < u < éx

X
P [ZXZ —2EX >u| < Ce=c¥’/=,

i=1

INRIA
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Proof: Markov’s inequality yields for 0 < s < 6/2

xz
P lz X; — 2EX > u] < e s(uteEX) (EesX)® (20)
i=1

Next,

Ee*X =E[e*¥1{sX < 1}] +E[e*¥1{sX > 1}]
<1+ sEX + s’EX” +E [e*¥1{sX > 1}], (21)

since e® < 1+x + 22 for z < 1. A bound on the last term in (21) follows from integration by parts and
Markov’s inequality
o«
E[e*X1{sX > 1}] = eP[sX > 1] + S/ e”P[X > u]du

1/s
sEe’X 61—9/3
0—s
< Cs?, (22)

< s2eEX? +

where in the last inequality we used e”* < 1/z for > 0 and the range of s. Substituting (22) in (21)
and then (21) in (20) results in

T
P [Z Xi —zEX >u S efs(u-{-wIEX) e® 10g(1+sIEX+ng)

i=1

< e—su+z520

— )

which after setting s = u/(2Cz) < §/(2C) < /2 yields the statement of the lemma. O

Proof of Lemma 7: Let 0 < 3§ <1 —a —b. Then

P (sup{A; + By — t} > w] <P [Alz + By — lz + sup{(As — Aiz) + (Bt — Biz) — (t = lz)} >z
t>lz t>lx

<P[Aip + By > (1= 8)la] + P[Wayp > (1 +16)z]
<P W% > 6lz] + P[Wayp > dla]
< 2P (Wi, % > élz]

olz

< 2P [Wg” > 7] 2P [W};”‘a > %’3] )

where we repeatedly used the fact that for any two functions f(t), g(t), sup,{f(t) + g(t)} < sup, f(t) +
sup, 9(t). Now, since 1 — 3§ — a > b, the second term in the preceding equation is O(P[Wj_b > z]) as
z — oo by (10) and Lemmas 4, 3. Hence,

— P[sup;s;,{A¢ + By — t} > 2] P [Wff”; > ‘”%] )

lim T < 2 lim T ;
z—00 PW,~" > z] oo PW, ™" > z]
passing | — oo and using the assumption yield the statement of the lemma. O

RR n° 4444
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