Skip to main content
Log in

Weak Regeneration in Modeling of Queueing Processes

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

A survey of recent results on weak regeneration in queueing processes is given in which an embedded process of regeneration points is renewal, but unlike classical regeneration, a dependence between adjacent cycles is allowed. We develop a unified two-step approach to stability analysis based on a characterization of the limit behavior of the forward renewal time. This employs an extended construction (initially proposed by Foss and Kalashnikov [13]), which is widely used to transform an original one-dependent regenerative process into weakly regenerative one. It is shown that the approach simplifies stability analysis of many queuing processes. (The tightness of the queueing processes plays an important role in the proofs.) In particular, we consider both well-known classical queues and multi-server queues with regenerative input and non-identical servers. Included is a stability analysis of a feed-forward network with regenerative input and non-identical servers in the nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Asmussen, Applied Probability and Queues (Wiley, New York, 1987).

    Google Scholar 

  2. S. Asmussen and S. Foss, Renovation, regeneration, and coupling in multiple-server queues in continuous time, Frontiers Pure Appl. Probab. 1 (1993) 1–6.

    Google Scholar 

  3. F. Baccelli and P. Bremaund, Elements of Queueing Theory (Springer, Berlin, 1994).

    Google Scholar 

  4. F. Baccelli and S. Foss, Stability of Jackson-type queueing networks, Queuing Systems 17 (1994) 5–72.

    Google Scholar 

  5. A. Borovkov, Asymptotic Methods in Queueing Theory (Wiley, New York, 1984).

    Google Scholar 

  6. A. Borovkov, Limit theorems for queueing networks I, Theory Probab. Appl. 31 (1986) 474–490.

    Google Scholar 

  7. C.-S. Chang, J.A. Thomas and S.-H. Kiang, On the stability of open networks: a unified approach by stochastic dominance, Queueing Systems 15 (1994) 239–260.

    Google Scholar 

  8. D. Dai, On positive Harris recurrence of multiclass queuing networks: A unified approach via limit models, Ann. Appl. Probab. 5 (1995) 49–77.

    Google Scholar 

  9. D.J. Daley, The serial correlation coefficients of waiting times in a stationary single server queue, J. Austral. Math. Soc. 8 (1968) 683–699.

    Google Scholar 

  10. D.J. Daley, The Hurst index of long-range dependent renewal process, Ann. Probab. 27 (1999) 2035–2041.

    Google Scholar 

  11. D.J. Daley, T. Rolski and R. Vesilo, Long-range dependent point processes and their Palm-Khinchin distributions, Adv. in Appl. Probab. 34 (2000) 1051–1063.

    Google Scholar 

  12. W. Feller, An Introduction to Probability Theory, Vol. 2 (Wiley, New York, 1971).

    Google Scholar 

  13. S. Foss and V. Kalashnikov, Regeneration and renovation in queues, Queueing Systems 8 (1991) 211–224.

    Google Scholar 

  14. S. Ghahramani and R.W. Wolff, A new proof of finite moment conditions for GI/G/1 busy periods, Queueing Systems 4 (1989) 171–178.

    Google Scholar 

  15. P. Glynn, Some topics in regenerative steady-state simulation, Acta Appl. Math. 34 (1994) 225–236.

    Google Scholar 

  16. P. Glynn and D. Iglehart, Conditions for the applicability of the regenerative method, Managm. Sci. 39 (1993) 1108–1111.

    Google Scholar 

  17. P. Glynn and K. Sigman, Uniform Chesaro limit theorems for synchronous processes with applications to queues, Stochastic Process. Appl. 40 (1992) 29–43.

    Google Scholar 

  18. P. Glynn and W. Whitt, Limit theorems for cumulative processes, Stochastic Process. Appl. 47 (1992) 299–314.

    Google Scholar 

  19. V. Kalashnikov, Topics on Regenerative Processes (CRC Press, Roca Baton, FL, 1994).

    Google Scholar 

  20. J. Kiefer and J. Wolfowitz, On the theory of queues with many servers, Trans. Amer. Math. Soc. 78 (1955) 1–18.

    Google Scholar 

  21. S. Meyn and D. Down, Stability of generalized Jackson networks, Ann. Appl. Probab. 4 (1994) 124–148.

    Google Scholar 

  22. E. Morozov, A comparison theorem for queueing system with non-identical channels, in: Stability Problems for Stochastic Models (Springer, New York, 1993) pp. 130–133.

    Google Scholar 

  23. E. Morozov, Regeneration of a closed queueing network, J. Math. Sci. 69 (1994) 1186–1192.

    Google Scholar 

  24. E. Morozov, Wide sense regenerative processes with applications to multi-channel queues and networks, Acta Appl. Math. 34 (1994) 189–212.

    Google Scholar 

  25. E. Morozov, The stability of non-homogeneous queueing system with regenerative input, J. Math. Sci. 89 (1997) 407–421.

    Google Scholar 

  26. E. Morozov, The tightness in the ergodic analysis of regenerative queueing processes, Queueing Systems 27 (1997) 179–203.

    Google Scholar 

  27. E. Morozov, Queueing network stability: An unified approach via renewal technique, in: Proc. of the Internat. Conf. on Probabilistic Analysis of Rare Events, Riga, 1999, pp. 125–135.

  28. E. Morozov, Instability of nonhomogeneous queueing networks, J. Math. Sci. 112 (2002) 4155–4167.

    Google Scholar 

  29. E. Morozov and I. Aminova, Steady-state simulation of some weak regenerative networks, European Trans. Telecommunications 13(4) (2002) 409–418.

    Google Scholar 

  30. E. Nummelin, Regeneration in tandem queues, Adv. in Appl. Probab. 13 (1981) 221–230.

    Google Scholar 

  31. R. Serfozo, Semi-stationary processes, Z. Wahrscheinlichkeitsth. 23 (1972) 125–132.

    Google Scholar 

  32. R. Serfozo, Applications of the key renewal theorem: Crudely regnerative processes, J. Appl. Probab. 29 (1992) 384–395.

    Google Scholar 

  33. K. Sigman, Regeneration in tandem queues with multiserver stations, J. Appl. Probab. 25 (1988) 391–403.

    Google Scholar 

  34. K. Sigman, Queues as Harris recurrent Markov chains, Queueing Systems 3 (1988) 179–198.

    Google Scholar 

  35. K. Sigman, One-dependent regenerative processes and queues in continuous time, Math. Oper. Res. 15 (1990) 175–189.

    Google Scholar 

  36. K. Sigman, The stability of open queueing networks, Stochastic Process. Appl. 35 (1990) 11–25.

    Google Scholar 

  37. K. Sigman, H. Thorisson, and R.W. Wolff, A note on the existence of regeneration times, J. Appl. Probab. 31 (1994) 1116–1122.

    Google Scholar 

  38. K. Sigman and R.W. Wolff, A review of regenerative processes, SIAM Rev. 35 (1993) 269–288.

    Google Scholar 

  39. W.L. Smith, Regenerative stochastic processes, Proc. Roy. Soc. Ser. A 232 (1955) 6–31.

    Google Scholar 

  40. D. Stoyan, Comparison Methods for Queues and Other Stochastic Models (Wiley, Chichester, 1983).

    Google Scholar 

  41. H. Thorisson, Coupling, Stationarity, and Regeneration (Springer, New York, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, E. Weak Regeneration in Modeling of Queueing Processes. Queueing Systems 46, 295–315 (2004). https://doi.org/10.1023/B:QUES.0000027988.38058.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:QUES.0000027988.38058.8d

Navigation