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Abstract. We study the stationary distribution of the number of busy servers in a GI/GI/∞ system in which
the service-time distribution is identical to the interarrival-time distribution, and obtain several representa-
tions for the variance. As a result we can verify an expression for the variance, conjectured by Rajaratnam
and Takawira (IEEE Trans. Vehicular Technol. 50 (2001) 954–970), when the common distribution of
interarrival and service times is a gamma distribution.
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1. Introduction

We are interested in the steady-state distribution – and in particular the first two moments
– of the number of busy servers in a GI/GI/∞ system in which the service time distrib-
ution is identical to the interarrival-time distribution. This particular model comes about
when an infinite pool of customers has to be served by a tandem service system consist-
ing of a finite group of servers (of size N , say) followed by an infinite-server group. If
service times at all servers are independent and identically distributed random variables,
then the arrival process at the second group is simply a superposition of N independent
renewal processes, each with an interarrival-time distribution equal to the service-time
distribution. The number of busy servers in the infinite-server system is therefore the
sum of N independent and identically distributed random variables, each representing
the number of busy servers in the infinite-server group when N = 1. It is the stationary
distribution of the latter random variable which is our concern in this note.

The model of a tandem system consisting of a finite-server group followed by an
infinite-server group, but with a Poisson arrival process to the first group, has been pro-
posed by Rajaratnam and Takawira in [6] and earlier papers (see the references in [6]) in
the performance analysis of cellular mobile networks. In this setting it is of interest to
know the stationary distribution – and in particular the mean and variance – of the num-
ber of busy servers in the infinite-server group, but this distribution seems difficult to
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obtain. Rajaratnam and Takawira [6] therefore resort to an approximate analysis which
involves the model studied in this note.

We reveal in the next section a remarkably simple expression for M(t), the time-
dependent mean number of busy servers in the GI/GI/∞ system, when interarrival and
service times are identically distributed. This result enables us to find V , the variance of
the stationary number of busy servers, by exploiting a classic result of Takács [7]. Some
special cases are considered in section 3. In particular, we will verify an expression for
V which was conjectured by Rajaratnam and Takawira [6] in the case that interarrival
and service times have identical gamma distributions.

We finally note that an interesting representation for V has been given by Ya-
mazaki et al. [8], but it does not seem to lead to the explicit expression of section 2.

2. The number of busy servers

We start off with some general notation and terminology. Let us consider a GI/GI/∞
system in which the interarrival times have a common distribution function F , and the
service times have a common distribution function H . Both F and H are supposed to
have a finite first moment, so that the arrival and service rates

λ ≡
(∫ ∞

0
t dF(t)

)−1

and µ ≡
(∫ ∞

0
t dH(t)

)−1

,

respectively, are positive. We assume that the system starts empty at time 0 and that
the time until the first arrival has distribution function G. By m we denote the renewal
function associated with F , that is,

m(t) ≡
∞∑

n=1

Fn∗(t), t � 0,

where Fn∗ stands for the n-fold convolution of F . By X(t) and X we denote the number
of busy servers at time t and in steady state, respectively, and we let Bn(t) and Bn be
their respective nth binomial moments, that is,

Bn(t) ≡
∞∑

k=n

(
k

n

)
Pr

{
X(t) = k

}
and Bn ≡

∞∑
k=n

(
k

n

)
Pr{X = k}, n � 1.

The next theorem summarizes some classic results of Takács’ [7] on these binomial
moments.

Theorem 1. (i) The binomial moments Bn(t) exist for all n and t � 0, and, if G = F ,
satisfy the recurrence relation

Bn(t) =
∫ t

0
Bn−1(t − u)

(
1 − H(t − u)

)
dm(u), t � 0, n = 1, 2, . . . , (1)

where B0(t) = 1.
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(ii) There exists a unique steady-state distribution with binomial moments Bn sat-
isfying

Bn = λ

∫ ∞

0
Bn−1(t)

(
1 − H(t)

)
dt, n = 1, 2, . . . , (2)

where Bn(t), n = 0, 1, . . . , are the time-dependent binomial moments in the case G =
F .

Takács requires F to be non-lattice for (2), but, as observed in [8], this condition
can be dropped. For generalizations of Takács’ findings and related results we refer to
Pakes and Kaplan [5], Kaplan [3], Liu et al. [4] and Ayhan et al. [2], and the references
there.

As announced, we wish to obtain the mean M and variance V of the stationary
number of busy servers in the case that F = H . To this end we first observe a surpris-
ingly simple corollary to theorem 1 concerning M(t), the mean number of busy servers
at time t .

Corollary 2. If G = F = H then M(t) = H(t) for all t � 0.

Proof. From theorem 1(i) we see that

M(t) = B1(t) =
∫ t

0

(
1 − H(t − u)

)
dm(u) = m(t) − H ∗ m(t).

But since m(t) ≡ ∑∞
n=1 Fn∗(t) = ∑∞

n=1 Hn∗(t), the result follows immediately. �

Remark. A more direct (and perhaps more appealing) argument leads to a generalization
of corollary 2 in which we do not require G = F . Indeed, let Ti be the arrival time of
the ith customer, and Si his service time. Then we can write

X(t) =
∞∑
i=1

I[Ti,Ti+Si)(t), t � 0,

where IA denotes the indicator function of a set A. Taking expectations on both sides we
get

M(t) =
∞∑
i=1

Pr{Ti � t < Ti + Si} =
∞∑
i=1

Pr{Ti � t < Ti+1} = Pr{T1 � t},

since Ti+1 − Ti and Si are independent and identically distributed, and also independent
of Ti . So we actually have M(t) = G(t) for all t � 0.

If F = H then theorem 1(ii) (or Little’s formula) tells us M = B1 = 1, since λ−1 =
µ−1 = ∫ ∞

0 (1 − H(t)) dt . Moreover, corollary 2 tells us that B1(t) = M(t) = H(t),
which upon substitution in (2) gives us B2 and hence V = 2B2 + M − M2 = 2B2.
Summarizing we have the following.
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Theorem 3. If F = H then the mean M and variance V of the stationary number of
busy servers in the system GI/GI/∞ are given by

M = 1 and V = 2µ

∫ ∞

0
H(t)

(
1 − H(t)

)
dt. (3)

We easily see that changing the unit of time does not affect the value of V (which
is obvious also on physical grounds). We also note that

0 < V < 2µ

∫ ∞

0

(
1 − H(t)

)
dt = 2.

The special case of a gamma distribution (discussed in section 3.2) may be used to show
that both lower and upper bound can be approached arbitrarily close by choosing the
parameter c in (8) sufficiently large and small, respectively.

It is interesting to observe that V can be represented as

V = µ

∫ ∞

0

∫ ∞

0
|t1 − t2| dH(t1) dH(t2), (4)

so that V/µ may be interpreted as the expected absolute value of the difference of two
service times.

If H has a continuous density h on (0,∞), with h(t) = O(ta−1) for some a > 0
and t ↓ 0, and h(t) = O(t−b−2) for some b > 0 and t → ∞, we may also express V in
terms of the Mellin transform of h, given by

M(h, z) ≡
∫ ∞

0
tz−1h(t) dt, 1 − a < �(z) < 2 + b.

To do so we use the general Parseval relation for Mellin transforms (and integration by
parts), and end up with the contour-integral representation

V = µ

π i

∫ κ+i∞

κ−i∞
M(h, z + 1)M(h, 2 − z)

z(z − 1)
dz, − min(a, b) < κ < 0. (5)

3. Special cases

In this section we will look more closely at two special cases, namely H is a mixture of
a degenerate and an exponential distribution, and H is a gamma distribution. Since V is
independent of the unit of time it is no restriction of generality to assume µ = 1 in the
remainder of this section.
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3.1. Mixtures of degenerate and exponential distributions

Let us assume that the interarrival and service times in the GI/GI/∞ system are all
drawn from a mixture of a degenerate and an exponential distribution with means 1, that
is, for some p, 0 � p < 1,

H(t) = F(t) = pI[1,∞)(t) + (1 − p)
(
1 − e−t

)
, t � 0. (6)

Substitution of this distribution function in (3) readily yields

V ≡ V (p) = (1 − p)

(
1 +

(
4

e
− 1

)
p

)
. (7)

Rajaratnam and Takawira [6] observed that V (0) = 1 and V (1) = 0, and found
via simulation that V (1/2) ≈ 5/8 = 0.6250 (in reality, V (1/2) = 1/4+1/e ≈ 0.6179).
Hence, they proposed the quadratic interpolation formula

V (p) ≈ (1 − p)

(
1 + p

2

)
,

which is pretty close to (7) since 4/e − 1 ≈ 0.4715.

3.2. Gamma distributions

Now suppose that the interarrival and service times in the GI/GI/∞ system are drawn
from a common gamma distribution with mean 1, that is,

F(t) = H(t) = 1

�(c)

∫ t

0
c(cu)c−1e−cu du, t � 0, (8)

where c is some positive constant and � is the gamma function

�(a) ≡
∫ ∞

0
ua−1e−u du, a > 0.

Analysing the Ec/Ec/∞ queue by standard Markovian techniques, Rajaratnam and
Takawira [6] found that for small integral values of c the variance V of the stationary
number of busy servers is given by

V ≡ V (c) = 21−2c �(2c + 1)

�(c + 1)2
, (9)

and they conjectured the validity of this expression for arbitrary c > 0. Before prov-
ing this in two different ways, we note that by the duplication formula for the gamma
function (see [1], equation (6.1.18)) V (c) may also be written as

V (c) = 2√
π

�(c + 1/2)

�(c + 1)
. (10)
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As a consequence, by [1], equation (6.1.47),

V (c) ∼ 2√
πc

{
1 − 1

8
c−1 + · · ·

}
as c → ∞.

Moreover, V (c) is a decreasing function of c by the log-convexity of the gamma function
on (0,∞). In fact, letting ψ(z) ≡ �′(z)/�(z) (the digamma function), we have

d

dc
log V (c) = ψ

(
c + 1

2

)
− ψ(c + 1) < 0,

since, by [1], equation (6.4.10),

ψ ′(z) =
∞∑

k=0

1

(z + k)2
> 0, z /∈ {0,−1,−2, . . .}.

Theorem 4. The variance of the stationary number of busy servers in the system
GI/GI/∞ when interarrival and service times have a common distribution function (8)
is given by (9), or (10), for all c > 0.

Proof. Elementary substitution of (8) in (3), followed by appropriate changes of vari-
ables and a change in the order of integration, leads to

V (c) = 2

(�(c))2

∫ ∞

0

(∫ t

0
c(cu)c−1e−cu du

)(∫ ∞

t

c(cv)c−1e−cv dv

)
dt

= 2

(�(c))2

∫ ∞

0

(∫ 1

0
(ct)cxc−1e−cxt dx

)(∫ ∞

1
(ct)cyc−1e−cyt dy

)
dt

= 2

(�(c))2

∫ 1

0

∫ ∞

1
(xy)c−1

∫ ∞

0
(ct)2ce−c(x+y)t dt dy dx

= 2

c(�(c))2

∫ 1

0

∫ ∞

1

(xy)c−1

(x + y)2c+1

∫ ∞

0
u2ce−u du dy dx

= 2�(2c + 1)

(�(c + 1))2

∫ 1

0

∫ ∞

1

c(xy)c−1

(x + y)2c+1
dy dx,

where we have used �(c + 1) = c�(c). Finally, substitution of y = u/v and x = 1/v

and another change in the order of integration gives us
∫ 1

0

∫ ∞

1

c(xy)c−1

(x + y)2c+1
dy dx =

∫ ∞

1

∫ ∞

v

c uc−1

(1 + u)2c+1
du dv

=
∫ ∞

1

∫ u

1

c uc−1

(1 + u)2c+1
dv du
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=
∫ ∞

1

c uc−1(u − 1)

(1 + u)2c+1
du

=
∫ ∞

1
d

( −uc

(1 + u)2c

)
= 1

22c
, (11)

as required. �

Remark. The integral in (11) is closely related to a particular value of a hypergeometric
function. In fact, by [1], equations (15.3.1) and (15.1.21), we have∫ ∞

1

c uc−1(u − 1)

(1 + u)2c+1
du =

∫ 1

0

ctc−1(t − 1)

(1 + t)2c+1
dt

= �(c + 1)�(2)

�(c + 2)
F (2c + 1, c; c + 2;−1) = 2−2c,

as before.

Second proof of theorem 4. We apply (5) with h(t) = cctc−1e−ct / �(c) and b = ∞ to
obtain

M(h, z) = cc

�(c)

∫ ∞

0
tz+c−2e−ct dt = c1−z �(z + c − 1)

�(c)
, �(z) > 1 − c,

and

V (c) = c−1

�(c)2π i

∫ κ+i∞

κ−i∞
�(z + c)�(1 − z + c)

z(z − 1)
dz, −c < κ < 0.

By replacing z(z − 1) with �(2 − z)/�(−z), followed by a substitution of z = −c − s,
we get (up to a factor) a Mellin–Barnes integral for the hypergeometric function value
mentioned in the above remark. Actually, by [1], equations (15.3.2) and (15.1.21), it
follows that

V (c) = c−1

�(c)2π i

∫ κ+i∞

κ−i∞
�(s + 2c + 1)�(s + c)�(−s)

�(s + c + 2)
ds

= 2
�(2c + 1)

�(c + 2)�(c + 1)
F (2c + 1, c; c + 2;−1) = 21−2c �(2c + 1)

�(c + 1)2
,

as before. �

We finally note that for integral values of c a third proof of (9) may be based on the
interpretation (4) of V (c) as the expected absolute value of the difference of two service
times. Namely, imagine two service times S1 and S2, each consisting of c exponentially
distributed phases of mean 1/c, starting at time 0, and a counter going up (or down) one
unit each time a phase of S1 (or S2) elapses, until one of the service times ends. If we
denote the state of the counter after the nth count by Xn, and let

N ≡ min
{
n: |Xc+n| = c − n

}
,
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then, for n = 1, 2, . . . , N , Xn is distributed as
∑n

k=1 Yk, where Y1, Y2, . . . are indepen-
dent random variables taking the values +1 and −1 with equal probabilities. Moreover,
at the time of the N th count either S1 or S2 has ended, and the remaining part of the
surviving service time consists of c − N exponentially distributed phases with means
1/c. Consequently,

V (c) = E|S1 − S2| = c − EN

c
. (12)

A combinatorial argument shows that N has a truncated negative binomial distribution

Pr{N = n} = 2

(
c + n − 1

n

)(
1

2

)c+n

, n = 0, 1, . . . , c − 1,

with first moment

EN = c − c

(
2c

c

)(
1

2

)2c−1

,

which, together with (12), gives us (9) again.
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