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1 INTRODUCTION

Packet-level models are used to describe congestion phenomena in commu-

nication networks, particularly those related to relatively short time-scales.

On this time-scale (typically in the ms-range), the network element (switch,

router) has a (nearly) constant number of users, each transmitting packets

at a constant rate. This resulted in the canonical periodic traffic model: N

users transmit a packet every D units of time, in a purely periodic fashion.

When N is large, this is accurately approximated by a Poisson process with

rate λ ≡ N/D.

The above motivates the intensive examination of two generic packet-level

single-node queueing models: N ·D/D/1 (N periodic arrivals) and M/D/1

(Poisson arrivals), where the deterministic service is justified by the fact that

in communication networks packet service times are constant.

Single queue. The solution of the workload distribution in the N ·D/D/1 queue

goes back to Dempster [4], Pyke [12], and Takács [19], who independently

found elegant explicit expressions. Takacs’s approach is based on combina-

torial arguments, e.g., Ballot theorems; the translation of this result into the

N ·D/D/1 context is due to Humblet et al. [8], see also [2]. Eckberg [5], ap-

parently not aware of the explicit results, found a recursive algorithm for

computing the distribution function of the workload; see for another exact

derivation also [6]. Independently of [8] (and nearly simultaneously), Virtamo

and Roberts [14, 22] rederived Takács’ closed form solution; Norros et al. [11]

noted that the approach followed in [14, 22] can be viewed as an application

of the Beneš method [1]. In [7, 11, 16] Brownian-bridge approximations are

proposed, which are particularly accurate in a heavy-traffic environment. A

concise survey on the single N ·D/D/1 queue is found in [13, Section 15.2].

The M/D/1 waiting line being a special case of M/G/1, its history goes back

to the times of Erlang. The Laplace transform of the workload is obtained

directly from the Pollaczek-Khinchin formula. Explicit formulas for the dis-

tribution function are available as well, though some care is required to avoid

numerical instabilities. A short survey on this issue, including a number of

accurate approximations, is given in [13, Section 15.1].
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Beyond the single queue. The single-node model obviously gives valuable

insights, but is an oversimplification of reality. We mention two serious limi-

tations. First, traffic streams usually traverse concatenations of hops (rather

than just a single node). Secondly, it is envisaged that at the network nodes

service differentiation is implemented (for instance by using priority mecha-

nisms). This motivates the interest in performance evaluation for these more

complex queueing models.

It is noted that the traffic models (periodic and Poisson arrivals) described

above are of a generic nature, and consequently not limited to a specific net-

work technology. In [13] they are placed in the framework of performance

evaluation in ATM networks, but they are appropriate for delay assessments

in IP-based networks as well, see e.g. [9, 10, 23].

Two desirable extensions of the single-node model are the tandem and priority

queue. For the model with Poissonian input results have been available for a

long time, see e.g. Takagi [20]. For periodic input, however, results are less

satisfactory.

Virtamo [21] considers the distribution of the busy and idle periods of the

N ·D/D/1 queue. The main motivation of this study lies in describing the

output process of a node, to be able to analyze concatenations of nodes. Here

it is noted that the output of the queue is an on-off process; busy (idle) periods

of the queue correspond to on-times (off-times, respectively). However, remark

that consecutive busy (and idle) periods are not independent. Consider for

instance, in the situation of a queue with link rate c and sources with period

D, a busy period of length N/c; then necessarily the next idle period has

length D − N/c, etc. This implies that the (marginal) distributions of the

busy and idle periods do not describe unambiguously the output process.

A complete probabilistic description of the output process of the N ·D/D/1

queue is given by Boyer et al. [3]. This could, in principle, be used to analyze

the two-node tandem. However, the description is rather complex, and does

not lend itself to explicit analysis.

Contribution & organization. In this paper we derive closed-form expressions

for the distribution function of the workload in the tandem and priority queue,
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both with periodic and Poisson arrivals. More specifically, the contributions

of our work include:

• An explicit solution of the joint distribution of the workloads of the

queues. This is done for both the two-node tandem queue (Section 2),

and the two-class priority queue (Section 3). To our best knowledge, for

periodic arrivals these expressions were not known so far. For Poisson

arrivals, a vast body of literature is available, but a considerable part of

it is in terms of Laplace transforms (see, e.g., [15, 17, 20]), whereas our

solution is explicit.

• Brownian-bridge approximations for both periodic and Poisson input

(Section 4). The use of these approximations is illustrated by a numerical

example.

2 TANDEM SYSTEM

This section is devoted to the exact analysis of tandem network, both for

periodic and Poisson arrivals. We start by presenting some preliminaries.

2.1 Preliminaries

In a tandem network, the output of a first queue is fed into a second queue.

We consider queues with constant service rates, say, c1 and c2, respectively.

To avoid trivialities, we assume that (i) c1 > c2 (otherwise the second queue

remains empty), (ii) the mean amount of traffic offered to the network per unit

of time is smaller than c2. Denoting by A(s, t) the amount of traffic generated

in the interval [s, t) (for s < t), Assumption (ii) reduces to EA(0, 1) =: ρ < c2.

Denote the steady-state content of queue i by Qi, and the steady-state content

of the entire network by Q̄. The classical Reich formula gives, for the single

queue, the relation between the steady-state buffer content and the arrival

process. Evidently, this formula applies to queue 1: Q1
d
= supt≥0(A(−t, 0) −

c1t). Little thought gives that, assuming that traffic leaves the first queue

as fluid, the total queue Q̄ behaves as a single queue emptied at rate c2.

Consequently we also have that Q̄
d
= supt≥0(A(−t, 0) − c2t).
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The goal of this paper is to analyze the workload distribution of the second

queue. Evidently, this probability can be derived from

P(Q1≤x1, Q̄≤x2) = P(∀t ≥ 0:A(−t, 0)≤min{x1 + c1t, x2 + c2t}), (1)

with x1 < x2, as follows:

P(Q2 ≤ y) =

∫ ∞

0

(
∂

∂x1
P(Q1 ≤ x1, Q̄ ≤ x2)

∣∣∣∣
x1:=x, x2:=x+y

)
dx.

Notice that, due to time-reversibility arguments, we can replace A(−t, 0) in

the above formulae by A(0, t).

2.2 Periodic arrivals

Consider the sequence T1, . . . , TN of i.i.d. random variables that are distributed

uniformly on [0, D). For ease, we set A(t) := A(0, t). Then A(t) is the number

of these events that has occurred before t, i.e.,

A(t) = #{i : Ti ≤ t}.
Define

p (x, c | N, D) := P(∀t ∈ [0, D) : A(t) ≤ x + ct).

For ease of notation, we also define binomial probabilities, as follows:

Bin(n | N, p) :=

(
N

n

)
pn(1 − p)N−n.

The following lemma is a direct consequence of earlier results. Observe that

it, in particular, implies that p (x, c | N, D) = 1 if x ≥ N , as desired.

Lemma 2.1 For x ∈ [0, N ] and N < x + c · D, it holds that

p (x, c | N, D) = 1 −
∑

n∈N: n∈(x,N ]

Bin

(
n

∣∣∣∣N,
n − x

c · D
)
· c · D − N + x

c · D − n + x
.

If N ≥ x + c · D, then p(x, c | N, D) = 0.
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Figure 1: Example for the proof of Proposition 2.2. The parameters used are

N = 10, D = 20; in this scenario A(tx) = 3.

Proof. This is proven in Humblet et al. [8, Section III.C], and Roberts and

Virtamo [14]. �

Now fix two intercepts x1, x2 and two slopes c1, c2. Define (tx, yx) as the inter-

section of the lines x1 + c1t and x2 + c2t, i.e.,

tx =
x2 − x1

c1 − c2
, yx =

c1x2 − c2x1

c1 − c2
.

Note that under x1 < x2 and c1 > c2, both tx and yx are positive.

Now define the ‘two-dimensional analog’ of p (x, c, | N, D):

pt(x, c | N, D) := P(∀t ∈ [0, D) : A(t) ≤ min{x1 + c1t, x2 + c2t}).
Notice that (reverse time!) this probability coincides with our target proba-

bility (1).

Proposition 2.2 Fix 0 < x1 < x2 and N < c2 · D (with c1 > c2). If tx > D,

then

pt(x, c | N, D) = p (x1, c1 | N, D).

If tx ≤ D, then

pt(x, c | N, D) =

min{�yx�, N}∑
n=0

Bin

(
n

∣∣∣∣N,
tx
D

)

· p (x1, c1 | n, tx) · p (yx − n, c2 | N − n, D − tx) . (2)
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Proof. The first claim is obvious, as the xi + cit do not intersect before D.

Now consider the second claim. Partition to the feasible values of A(tx), see

Figure 1. Clearly,

P(A(tx) = n) = Bin

(
n

∣∣∣∣N,
tx
D

)
.

Conditional on this event, we have, independently of each other, n i.i.d. ar-

rivals, distributed uniformly on [0, tx], and N − n i.i.d. arrivals, distributed

uniformly on [tx, D). It is now straightforward to derive (2). �

2.3 Poisson arrivals

Consider a sequence (Si)i∈N of i.i.d. random variables that are exponentially

distributed with mean λ−1. Define Ti :=
∑i

j=1 Sj. As before:

q (x, c | λ) := P(∀t ∈ [0,∞) : A(t) ≤ x + ct), and

qt(x, c | λ) := P(∀t ∈ [0,∞) : A(t) ≤ min{x1 + c1t, x2 + c2t});

here qt(x, c | λ) corresponds to our target probability (1). For ease of notation,

we also define Poisson probabilities, as follows:

Pois(n | λ) := e−λλn

n!
.

Lemma 2.3 is a standard result for the M/D/1 queue, see e.g. [13, Eq.

(5.1.13)]. The proof of Proposition 2.4 is along the same lines as the proof of

Proposition 2.2.

Lemma 2.3 For x > 0 and ρ := λ/c < 1, it holds that

q (x, c | λ) = 1 − (1 − ρ)
∞∑

n=	x

Pois(n | ρ(n − x)).

Proposition 2.4 Fix 0 < x1 < x2 and c1 > c2 > λ. Then

qt(x, c | λ) =

�yx �∑
n=0

Pois (n | λtx) · p (x1, c1 | n, tx) · q (yx − n, c2 | λ) . (3)
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3 PRIORITY SYSTEM

In this section we address the priority queue, both for periodic and Poisson

arrivals. The analysis is more involved than that of the tandem queue.

3.1 Prelimaries

Consider a (strict) priority system, fed by two traffic streams. Traffic of type

i is led into queue i, i = 1, 2. Stream 1 is served with priority, whereas

stream 2 is only served when queue 1 is empty. With notation analogously

to the tandem case, and Ā(s, t) := A1(s, t) + A2(s, t) for s < t, stability is

guaranteed if A1(0, 1) + A2(0, 1) < c.

Again, denote the steady state content of queue i by Qi, and the steady-state

content of the entire network by Q̄. Because class 1 does not ‘see’ class 2,

Q1
d
= supt≥0 A1(−t, 0) − ct. However, as the total system is work-conserving,

we also have Q̄ is distributed as supt≥0 Ā(−t, 0) − ct. This mean that, as

before, P(Q1 ≤ x1, Q̄ ≤ x2) can be rewritten as

P
(∀t ≥ 0 : {A1(−t, 0) ≤ x1 + ct} ∩ {Ā(−t, 0) ≤ x2 + ct}) , (4)

with x1 < x2.

3.2 Periodic arrivals

Now consider Ni ∈ N arrivals of type i in the interval [0, D), for i = 1, 2. It is

straightforward that probability (4) reads

pp(x, c |N, D) := P
(∀t ∈ [0, D) : {A1(t) ≤ x1 + ct}∩{Ā(t) ≤ x2 + ct}).

This probability is calculated in four steps.

• We first observe

pp(x, c | N, D) = p(x1, c | N1, D) − p̄p(x, c | N, D)

with p̄p(x, c | N, D) := P(E), with event E defined as{∀t ∈ [0, D) : A1(t) ≤ x1 + ct; ∃t ∈ [0, D) : Ā(t) > x2 + ct
}

.
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Figure 2: Example for the proof of Theorem 3.1. The parameters used are

N1 = 10, N2 = 5, D = 20; in this scenario Ā(tn,x) = 11.

• Partition E with respect to the last epoch before D at which Ā(t) ≥
x2 + ct. Let E(n) denote the event{

∀t ∈ [0, D) : A1(t) ≤ x1 + ct;

Ā(tn,x) = n, ∀t ∈ [tn,x, D) : Ā(tn,x, t) ≤ x2 − n + ct

}
,

with time epoch tn,x is defined as (n− x2)/c. Because the resulting ‘sub-

events’ E(n) are disjoint, we get the sum

p̄p(x, c | N, D) =
∑

n∈N: n∈(x2,N ]

P(E(n)).

Notice that this approach is essentially equivalent to Beneš’s, see [1]

and also Equation (2.4) in [11]. As {Ā(tn,x, t) ≤ x2 − n + ct} implies

{A1(tn,x, t) ≤ x2 − n + ct}, the event E(n) equals{
∀t ∈ [0, tn,x) : A1(t) ≤ x1 + ct;

Ā(tn,x) = n, ∀t ∈ [tn,x, D) : Ā(tn,x, t) ≤ x2 − n + ct

}
.

• Now notice that

P(Ā(tn,x) = n) = Bin

(
n

∣∣∣∣N1 + N2,
tn,x

D

)
.
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It is a straightforward exercise to show that

P(A1(tn,x) = i | Ā(tn,x) = n) = Hg(i | N1, N2, n),

for i ∈ {0, i�}, where i� := min{n, N1}, and the hypergeometric distribu-

tion is defined by

Hg(m | M, N, n) :=

(
M

m

)(
N

n − m

)/(
M + N

n

)
.

• It is evident that, conditional on {A1(tn,x) = i} ∩ {Ā(tn,x) = n}, there is

independence between the events

{∀t ∈ [0, tn,x) : A1(t) ≤ x1 + ct} and (5)

{∀t ∈ [tn,x, D) : Ā(tn,x, t) ≤ x2 − n + ct}. (6)

The corresponding conditional probabilities are p(x1, c | i, tn,x) and

p(0, c | N1 + N2 − n, D − tn,x) = 1 − N1 + N2 − n

c(D − tn,x)
,

respectively.

This results in the following theorem.

Theorem 3.1 Fix 0 < x1 < x2 and N < c · D. Then

pp(x | N, D) = p(x1, c | N1, D) −
∑

n∈N: n∈(x2,N ]

Bin

(
n

∣∣∣∣N1 + N2,
n − x2

c · D
)
·

i�∑
i=0

Hg(i | N1, N2, n) · p(x1, c | i, tn,x) ·
(

1 − N1 + N2 − n

c(D − tn,x)

)
.
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3.3 Poisson arrivals

Consider a Poisson stream of rate λi for class i, for i = 1, 2. Denote λ̄ := λ1+λ2.

Assume λ̄ < c, to ensure stability. Define

qp(x, c |λ) := P
(∀t ∈ [0,∞) : {A1(t) ≤ x1 + ct}∩{Ā(t) ≤ x2 + ct}).

We use the same steps as before:

P(Ā(tn,x) = n) = Pois
(
n | λ̄tn,x

)
;

P(A1(tn,x) = i | Ā(tn,x) = n) = Bin

(
i

∣∣∣∣n,
λ1

λ̄

)
.

Now consider the events (5) and (6), with the time interval in the latter

replaced by [tn,x,∞). Again, conditional on {A1(tn,x) = i} ∩ {Ā(tn,x) = n},
these events are independent, and their (conditional) probabilities are given

by p(x1, c | i, tn,x) and 1 − λ̄/c, respectively.

Proposition 3.2 Fix 0 < x1 < x2 and λ̄ < c. Then

qp(x, c | λ) = q(x1, c | λ1) −
∑

n∈N: n∈(x2,N ]

Pois
(
n | λ̄tn,x

)·
n∑

i=0

Bin

(
i

∣∣∣∣n,
λ1

λ̄

)
· p(x1, c | i, tn,x) ·

(
1 − λ̄

c

)
.

4 APPROXIMATIONS, NUMERICAL RESULTS

In this section we present explicit approximations of the formulae of Section 2;

a similar approach could be pursued for the priority case. We illustrate the

approximations with an example.

4.1 Approximations for the tandem queue with periodic arrivals

Let B̄(·) a Brownian bridge, i.e., a standard Brownian motion B(·) conditioned

on B(1) = 0. A classical result is that

pBB(x, c) := P(∀t ∈ [0, 1) : B̄(t) ≤ x + ct) = 1 − ¯pBB(x, c),
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with ¯pBB(x, c) := exp(−2x(x + c)),

under the proviso that x + c ≥ 0, see for instance [18, Eq. (2.2.8)]. It is

straightforward to derive that

P(∀t ∈ [0, T ) :B(t) ≤ x + ct | B(T ) = z) =

= P(∀s ∈ [0, 1) :B(sT ) ≤ x + csT | B(T ) = z)

= P(∀s ∈ [0, 1) :
√

T B(s) ≤ x + csT |
√

T B(1) = z)

= P

(
∀s ∈ [0, 1) :B(s) ≤ x√

T
+

(
c
√

T − z√
T

)
s

∣∣∣∣B(1) = 0

)

= pBB

(
x√
T

, c
√

T − z√
T

)
. (7)

In this subsection we concentrate on

pBB(x, c) := P(∀t ∈ [0, 1) : B̄(t) ≤ min{x1 + c1t, x2 + c2t}).
To compute pBB(x, c), condition on the state of the system at time tx, i.e.,

B̄(tx). This random variable is Normally distributed with mean 0 and variance

sx := tx(1 − tx). We get

pBB(x, c) =

∫ yx

−∞

1√
2πsx

exp

(
− z2

2sx

)
pBB

(
x1√
tx

, c1
√

tx − z√
tx

)

pBB

(
y − z√
1 − tx

, c2
√

1 − tx +
z√

1 − tx

)
dz

=

∫ yx

−∞

1√
2πsx

exp

(
− z2

2sx

)(
1−e−2f1(z,x)

)(
1−e−2f2(z,x)

)
dz,

with, by applying (7),

f1(z, x) :=
x2

1 − x1z

tx
+ c1x1; f2(z, x) := (yx − z)

(
yx

1 − tx
+ c2

)
.

Tedious calculations (essentially just isolating the square) yield, after having

defined ux := yxtx + c2sx, and vx := 2c2
2sx + 4x1yx + 4c2x1(1 − tx) + 4c2yxtx,

and denoting by N (µ, σ2) a Normally distributed random variable with mean

µ and variance σ2,∫ yx

−∞

1√
2πsx

exp

(
− z2

2sx

)
dz = P(N (0, sx) ≤ yx).
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∫ yx

−∞

1√
2πsx

exp

(
− z2

2sx
− 2f1(z, x)

)
dz =

P(N (2x1(1 − tx), sx) ≤ yx) ¯pBB(x1, c1).∫ yx

−∞

1√
2πsx

exp

(
− z2

2sx
− 2f2(z, x)

)
dz =

P(N (2ux, sx) ≤ yx) ¯pBB(yx, c2) exp(2c2ux).∫ yx

−∞

1√
2πsx

exp

(
− z2

2sx
− 2f1(z, x) − 2f2(z, x)

)
dz =

P(N (2(x1(1 − tx) + ux), sx) ≤ yx) ¯pBB(x1, c1) ¯pBB(yx, c2) exp(vx).

We have proved the following proposition.

Proposition 4.1 If tx ≥ 1 then pBB(x, c) = pBB(x1, c1). If tx < 1, then

pBB(x, c) equals

P(N (0, sx) ≤ yx) − P(N (2x1(1 − tx), sx) ≤ yx) ¯pBB(x1, c1)−

P(N (2ux, sx) ≤ yx) ¯pBB(yx, c2) exp(2c2ux) +

P(N (2(x1(1 − tx) + ux), sx) ≤ yx) ¯pBB(x1, c1) ¯pBB(yx, c2) exp(vx).

It has been argued, see e.g. Roberts et al. [13, Section 15.2.2] and [11, Section

III.D], that if N arrivals are distributed uniformly on [0, D), then A(tD)− tN

is close to
√

NB̄(t), for t ∈ [0, 1). This leads to the following approximation,

which is particularly accurate under heavy-traffic conditions:

Approximation 4.2 With pBB(·, ·) as above,

pt(x, c | N, D) ≈ pBB

((
x1√
N

,
x2√
N

)
,

(
c1

D√
N

−
√

N, c2
D√
N

−
√

N

))
.
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4.2 Approximations for the tandem queue with Poisson arrivals

A standard result from the theory of Brownian motions is that, for x, c ≥ 0,

qBM(x, c) := P(∀t ∈ [0,∞) : B(t) ≤ x + ct) = 1 − ¯qBM(x, c),

with ¯qBM(x, c) := exp(−2xc), see [13, Eq. (15.1.4)]. Now define

qBM(x, c) := P(∀t ∈ [0,∞) : B(t) ≤ min{x1 + c1t, x2 + c2t}).
To compute qBM(x, c), again condition on the state of the system at time tx,

i.e., B(tx). This random variable is Normally distributed with mean 0 and

variance tx. We get

qBM(x, c) =

∫ yx

−∞

1√
2πtx

exp

(
− z2

2tx

)
pBB

(
x1√
tx

, c1
√

tx − z√
tx

)
qBM (yx − z, c2) dz

This eventually leads to the following result.

Proposition 4.3 qBM(x, c) equals

P(N (0, tx) ≤ yx) − P(N (x1, tx) ≤ yx) ¯qBM(x1, c1)−

P(N (2c2tx, tx) ≤ yx) ¯qBM(yx, c2) exp(2c2
2tx) +

P(N (x1 + 2c2tx, tx) ≤ yx) ¯qBM(x1, c1) ¯qBM(yx, c2) exp(2c2
2tx + 4c2x1).

Now look at the tandem system with arrivals according to a Poisson process

of rate λ. With A(t) − λt being close to
√

λB(t), we propose the following

approximation.

Approximation 4.4 With qBM(·, ·) as above,

qt(x, c | λ) ≈ qBM

((
x1√
λ
,

x2√
λ

)
,

(
c1√
λ
−
√

λ,
c1√
λ
−
√

λ

))
.
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Figure 3: Probability pt(x, c | N,D), as a function of (x1, x2), for N = 100.
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(x1, x2) pt(x, c | N,D) BB pt(x, c | N,D) BB

c1 = 110; c2 = 105 c1 = 105; c2 = 102

(10,12) 2.2 · 10−2 2.0 · 10−2 5.0 · 10−2 5.0 · 10−2

(12,14) 6.6 · 10−3 5.4 · 10−3 1.7 · 10−2 1.7 · 10−2

(14,16) 1.7 · 10−3 1.2 · 10−3 5.0 · 10−3 4.9 · 10−3

(16,18) 3.5 · 10−4 2.4 · 10−4 1.3 · 10−3 1.2 · 10−3

(18,20) 6.5 · 10−5 3.8 · 10−5 2.7 · 10−4 2.5 · 10−4

(20,22) 1.0 · 10−6 5.3 · 10−6 4.9 · 10−5 4.5 · 10−5

(22,24) 1.3 · 10−6 6.1 · 10−7 7.5 · 10−6 6.9 · 10−6

(24,26) 1.5 · 10−7 6.0 · 10−8 9.7 · 10−7 9.0 · 10−7

Table 1: Exact results vs. Brownian bridge, N = 100

(x1, x2) pt(x, c | N,D) BB pt(x, c | N,D) BB

c1 = 550; c2 = 525 c1 = 525; c2 = 510

(25,30) 1.7 · 10−3 7.2 · 10−4 9.6 · 10−3 8.2 · 10−3

(30,35) 2.8 · 10−4 1.0 · 10−4 2.1 · 10−3 1.6 · 10−3

(35,40) 3.9 · 10−5 1.3 · 10−5 3.8 · 10−4 2.4 · 10−4

(40,45) 4.5 · 10−6 1.2 · 10−6 5.7 · 10−5 3.0 · 10−5

(45,50) 4.3 · 10−7 1.0 · 10−7 7.0 · 10−6 3.3 · 10−6

Table 2: Exact results vs. Brownian bridge, N = 500

4.3 Numerical experiments

In this subsection we compare the exact results for the tandem fed by peri-

odic input with the Brownian bridge approximation of Section 4.1. In our

example we choose D = 1. The examples are chosen such that we are in the

(interesting) regime tx < D.

The results given in Tables 1-2 and Figures 3-4 illustrate the accuracy of

the Brownian bridge approximation. As argued before, the approximation

becomes more accurate when the load increases, as is clear from the table –

this was already known for the single queue, see [13, Table 15.2.1]. In the

numerical experiments we performed, it turned out that the Brownian bridge

estimate was usually slightly optimistic.
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5 CONCLUDING REMARKS

In this section we give a number of comments on the analysis, and identify

directions for further research.

• In our analysis of the tandem queue, we ‘do as if traffic leaves the first

queue as fluid ’ – as a consequence Q̄ behaves as a single queue emptied

at rate c2. In reality however, a packet moves to the second queue only

when its service is completed. We expect that this effect is of minor im-

pact (particularly in situations with many sources, such as the scenarios

evaluated in the numerical experiments). It is, however, possible to adapt

out formulas to incorporate the ‘packet nature’ of the output stream of

the first queue, by adding an additional term to Q̄; it turns out that there

is a 1-to-1 mapping between the system with fluid output and the system

with packet output, that provides this correction term directly.

A similar remark applies to the priority system. There we tacitly assumed

that the service of a low-priority packet can be interrupted.

• There are many interesting directions for further research. Suppose for

instance that queue 1 has N inputs, of which i leave the system after the

first queue, and suppose that these are replaced at the second queue by

i new i.i.d. periodic streams (or perhaps j �= i new streams). This model

is more realistic in a network setting, but much harder to analyze.

Another interesting extension could incorporate a flow level on top of the

packet level. One could for instance consider the queue with periodic

arrivals (N ·D/D/1 type), but with the number of flows fluctuating ac-

cording to the Erlang loss model. In the model with a fixed number of

flows there is no jitter: the output streams are purely periodical; however,

the model with a fluctuating number of flows does incur jitter: during its

duration, a flow sees a variable queueing delay.
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