Skip to main content
Log in

Application of Functional Intervals to the Response Evaluation of Linear Time-Invariant Systems with Fuzzy Input

  • Published:
Reliable Computing

Abstract

Functional input uncertainty is investigated for linear time-invariant (LTI) systems. This kind of uncertainty arises, for instance, when actuator's reliability is taken into account. In this case, the system input u(t) can be considered as a fuzzy function, ũ(t), with α-cut interpreted as the set of functions between the given bounds. Based on the use of functional intervals and Aumann's integral from set-valued analysis, a method is presented to obtain an approximation of arbitrary precision of the output envelopes. Given a precision, an approximation with this exactly precision can be obtained. With this method, wrapping effect is avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackermann, J.: Robust Control. Systems with Uncertain Physical Parameters, Springer-Verlag, 1993.

  2. Aubin, J. P. and Cellina, A.: Differential Inclusions, Springer Verlag, 1984.

  3. Aubin, J. P. and Frankowska, H.: Set-Valued Analysis, Birkhauser, 1990.

  4. Barber, C., Dobkin, D., and Huhdanpaa, H.: The Quickhull Algorithm for Convex Hulls, Mathematical Software 22 (1997), pp. 469–483.

    Article  MathSciNet  Google Scholar 

  5. Barmish, B. R.: New Tools for Robustness of Linear Systems, Macmillan Publishing Company, 1994.

  6. Bauch, H. and Kimmel, W.: Solving Ordinary Initial Value Problems with Guaranteed Bounds, Z. angew. Math. Mec. 69 (1989).

  7. Bhattacharyya, S. P., Chapellat, H., and Keel, L. H.: Robust Control. The Parametric Approach, Prentice Hall, 1995.

  8. Bochev, P. and Markov, S.: A Self-Validating Numerical Method for the Matrix Exponential, Computing 43(1) (1989), pp. 59–72.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bonarini, A. and Bontempi, G.: A Qualitative Simulation Approach for Fuzzy Dynamical Models, Modeling and Computer Simulation 4(4) (1994), pp. 285–313.

    Article  MATH  Google Scholar 

  10. Bondia, J.: Sistemas con incertidumbre paramétrica borrosa: análisis y diseño de controladores, Dept. of Systems Engineering and Control, Valencia Technical University, 2002.

  11. Bondia, J. and Picó, J.: A Geometric Approach to Robust Performance of Parametric Uncertain Systems, International Journal of Robust and Nonlinear Control 13(14) (2003), pp. 1271–1283.

    Article  MATH  MathSciNet  Google Scholar 

  12. Bondia, J. and Picó, J.: Analysis of Linear Systems with Fuzzy Parametric Uncertainty, Fuzzy Sets and Systems 135 (2003), pp. 81–121.

    Article  MATH  MathSciNet  Google Scholar 

  13. Bondia, J. and Picó, J.: On the Robust Performance of Fuzzy Linear Systems: in: Proceedings of the IFAC Workshop on Advanced Fuzzy-Neural Control, Valencia, Spain, 2001.

  14. Buckley, J. J. and Feuring, T.: Fuzzy Differential Equations, Fuzzy Sets and Systems 110 (2000), pp. 43–54.

    Article  MATH  MathSciNet  Google Scholar 

  15. Cooper, G. F.: Probabilistic Inference Using Belief Networks Is NP-Hard, KSL-87-27, Medical Computer Science Group, Stanford University, 1987.

  16. Corliss, G. F.: Survey of Interval Algorithms for Ordinary Differential Equations, Appl. Math. Comput. 31 (1989).

  17. Diamond, P.: Time-Dependent Differential Inclusions, Cocycle Attractors and Fuzzy Differential Equations, IEEE Transactions on Fuzzy Systems 7(6) (1999), pp. 734–740.

    Article  Google Scholar 

  18. Dobner, H.-J.: Verified Solutions of Integral Equations with Applications, in: Adams, E. and Kulisch, U. (eds), Scientific Computing with Automatic Result Verification, Academic Press, San Diego, 1993, pp. 225–253.

    Google Scholar 

  19. Drakopoulos, J.: Probabilities, Possibilities, and Fuzzy Sets, KSL-94-40, Knowledge Systems Laboratory, Department of Computer Science, Stanford University, 1994.

  20. Dubois, D. and Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum Press, 1988.

  21. Eijgenraam, P.: The Solution of Initial Value Problems Using Interval Arithmetic, Mathematical Centre Tracts 144, Stichting Mathematisch Centrum, Amsterdam, 1981.

    Google Scholar 

  22. Fisher, H.: Acceptable Solutions of Linear Integral Equations, in: Nickel, K. (ed.), Interval Mathematics 1985: Proc. of the International Symposium, Freiburg, Springer-Verlag, Vienna, 1985, pp. 11–16.

    Google Scholar 

  23. Hüllermeier, E.: A Fuzzy Simulation Method, http://citeseer.nj.nec.com/64062.html.

  24. Hüllermeier, E.: An Approach to Modelling and Simulation of Uncertain Dynamical Systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(2) (1997), pp. 117–137.

    Article  MathSciNet  Google Scholar 

  25. Janssen, M., Van Hentenryck, P., and Deville, Y.: A Constraint Satisfaction Approach to Parametric Differential Equations, in: Proc. of Joint International Conference on Artificial Intelligence (IJCAI-2001), Seattle, WA, 2001.

  26. Kaleva, O.: Fuzzy Differential Equations, Fuzzy Sets and Systems 24 (1987), pp. 301–317.

    Article  MATH  MathSciNet  Google Scholar 

  27. Keller, U.: Qualitative Model Reference Adaptive Control, Heriot-Watt University, Dept. of Computing & Electrical Engineering, 1999.

  28. Klir, G. J. and Wierman, M. J.: Uncertainty-Based Information, Physica Verlag, 1998.

  29. Kühn, W.: Rigorously Computed Orbits of Dynamical Systems without the Wrapping Effect, Computing 61(1) (1998), pp. 47–67.

    MATH  MathSciNet  Google Scholar 

  30. Lohner, R. J.: Einschlieβung der Lösung gewöhnlicher Anfangs-und Randwertaufgaben und Anwendungen, Universität Karlsruhe, 1988.

  31. Lohner, R. J.: Enclosing the Solutions of Ordinary Initial and Boundary Value Problems, in: Kaucher, E.W., Kulisch, U.W., and Ullrich, C. (eds), Computer Arithmetic: Scientific Computation and Programming, Wiley-Tubner Series in Computer Science, Stuttgart, 1987, pp. 255–286.

    Google Scholar 

  32. Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

    Google Scholar 

  33. Nedialkov, N. S. and Jackson, K. R.: A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations, in: Kulisch, U., Lohner, R., and Facius, A. (eds), Perspectives on Enclosure Methods, Springer-Verlag, 2001, pp. 219–264.

  34. Nedialkov, N. S., Jackson, K. R., and Corliss, G. F.: Validated Solutions of Initial Value Problems for Ordinary Differential Equations, Applied Mathematics and Computation 105(1) (1999), pp. 21–68.

    Article  MATH  MathSciNet  Google Scholar 

  35. Neumaier, A.: Global, Rigorous and Realistic Bounds for the Solution of Dissipative Differential Equations. Part I: Theory, Computing 52(4) (1994), pp. 315–336.

    Article  MATH  MathSciNet  Google Scholar 

  36. Neumaier, A.: The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions, Computing Supplementum 9 (1993), pp. 175–190.

    MATH  Google Scholar 

  37. Nickel, K.: Using Interval Methods for the Numerical Solution of ODE's, Z. angew. Math. Mec. 66 (1986).

  38. Oppenheimer, E. P. and Michel, A. N.: Application of Interval Analysis Techniques to Linear Systems (II). The Interval Matrix Exponential Function, IEEE Transactions on Circuits and Systems 35(10) (1988), pp. 1230–1242.

    Article  MathSciNet  Google Scholar 

  39. Pedrycz, W.: Fuzzy Control and Fuzzy Systems, Research Studies Press, 1993.

  40. Puri, M. L. and Ralescu, D. A.: Differential of Fuzzy Functions, Journal of Mathematical Analysis and Applications 91 (1983), pp. 552–558.

    Article  MATH  MathSciNet  Google Scholar 

  41. Rihm, R.: Interval Methods for Initial Value Problems in ODEs, in: Herzberger, J. (ed.), Topics in Validated Computations: Proceedings of the IMACS-GAMM International Workshop on Validated Computations, University of Oldenburg, Elsevier Studies in Computational Mathematics, Elsevier.

  42. Rihm, R.: On a Class of Enclosure Methods for Initial Value Problems, Computing 53 (1994), pp. 369–377.

    Article  MATH  MathSciNet  Google Scholar 

  43. Stauning, O.: Solving Integral Equations Using Interval Analysis, Department of Mathematical Modelling, Technical University of Denmark, 1995.

  44. Stetter, H. J.: Validated Solution of Initial Value Problems for ODEs, in: Ullrich, C. (ed.), Computer Arithmetic and Self-Validating Numerical Methods, Academic Press, New York, 1990, pp. 171–187.

    Google Scholar 

  45. Stewart, N.: A Heuristic to Reduce the Wrapping Effect in the Numerical Solution of x′ = f(t,x), BIT 11 (1971), pp. 328–337.

    Article  MATH  Google Scholar 

  46. Terano, T., Asai, K., and Sugeno, M.: Fuzzy Systems Theory and Its Applications, Academic Press, 1992.

  47. Yao, A. C.-C.: A Lower Bound to Finding Convex Hulls, J. ACM 28 (1981), pp. 780–787.

    Article  MATH  Google Scholar 

  48. Zadeh, L. A.: Fuzzy Sets, Inf. Control 8 (1965), pp. 338–353.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondia, J., Picó, J. Application of Functional Intervals to the Response Evaluation of Linear Time-Invariant Systems with Fuzzy Input. Reliable Computing 10, 369–387 (2004). https://doi.org/10.1023/B:REOM.0000032119.66122.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REOM.0000032119.66122.e5

Keywords

Navigation