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Abstract. Many activities related to software quality assessment and improvement, such as empirical model
construction, data flow analysis, testing or reengineering, rely on static source code analysis as the first and
fundamental step for gathering the necessary input information. In the past, two different strategies have been
adopted to develop tool suites. There are tools encompassing or implementing the source parse step, where the
parser is internal to the toolkit, and is developed and maintained with it. A different approach builds tools on the
top of external already-available components such as compilers that output the program abstract syntax tree, or
that make it available via an API.

This paper discusses techniques, issues and challenges linked to compiler patching or wrapping for analysis
purposes. In particular, different approaches for accessing the compiler parsing information are compared, and
the techniques used to decouple the parsing front end from the analysis modules are discussed.

Moreover, the paper presents an approach and a tool, XOgastan, developed exploiting the gcc/g++ ability to
save a representation of the intermediate abstract syntax tree. XOgastan translates the gcc/g++ dumped abstract
syntax tree format into a Graph eXchange Language representation, which makes it possible to take advantage of
currently available XML tools for any subsequent analysis step. The tool is illustrated and its design discussed,
showing its architecture and the main implementation choices made.
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1. Introduction

Source code analysis is an essential preliminary step for activities focused on assess-
ing, monitoring, and improving software quality. Activities such as reverse engineer-
ing, reengineering, testing, or building empirical models for software quality, require a
preliminary extraction of facts from the source code, or the building of Abstract Syntax
Tree (AST) to allow source code transformation.

Several types of languages and toolkits for source code analysis and transformation
have been developed during the last decade. Some of them are particularly suited to
program comprehension and transformation, such as the Design Maintenance Systems
(DMS) (Baxter, 1992), the TXL programming language (Cordy et al., 1988, 1996), Re-
fine (Reasoning Systems, 1993), and FermaT (Ward, 1989). These tools have power-
ful analysis capabilities, in that they provide pattern-matching languages and a way to
query and transform the AST produced by a parser. Other tools, such as Unravel (Lyle
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et al., 1995), CANTO/ART (Antoniol et al., 1997) or Datrix (Lague et al., 1998), are
more oriented towards static source code analysis and metrics computation than to
source code transformation. Developing a tool to assess, monitor or extract quality-
related features from source code requires the availability of some kind of parsing
technology.

In essence, one of the two following strategies has to be adopted: to develop a parser
for the language of interest (e.g., DMS, Unravel, Datrix, TXL, Rigi) or to rely on one
available parser (e.g., CANTO, ART). Redeveloping from scratch the entire infrastruc-
ture, including the parser, may have some advantages. For example, the parser devel-
opment and the parsing activities may be limited to a subset of the language features
of interest, and consequently to a subset of the grammar. This can be done adopting an
island parsing strategy (Moonen, 2001). Island parsing significantly eases the parsing
task; however, the resulting analyzer cannot be reused for different purposes.

The second alternative requires the availability of a parsing development infrastruc-
ture (e.g., lexer, parser generators, grammar plus semantic actions), or, at least, of a
grammar for the language to be analyzed. One common problem is that very often
the language implementation and the grammar do not perfectly correspond to one an-
other. Either the grammar is incomplete (e.g., missing templates in C++), or it may
not be fully compatible with the language dialect to be handled (e.g., GNU or Mi-
crosoft C and C++ extensions). Often the only acceptable solution is to extend and to
maintain existing grammars, or, in the worst case, to write a new language grammar
from scratch. Writing a new grammar can be extremely expensive; the result can be
incomplete, not very robust, or can even accept a super-set of the standard program-
ming language. However, the continuous evolution of programming language dialects
implies frequent updates to the developed grammars, and this is not a trivial task.

Fortunately, precise, robust, and up-to-date grammars and parsers are embedded
in compilers and thus are available. Indeed, the parsing front ends of all compilers
currently used to build applications may be customized to analyze and to extract in-
formation from the source code. However, compiler and analyzer goals conflict. The
compiler aims at producing efficiently executable code, whereas the analyzer goal is
essentially to recover high-level abstractions. Depending on the compiler and the com-
piler interfaces, two alternatives can be followed:

1. Patching the compiler source code, to permit the accessing of compiler internal
representation via an API (e.g., IBM Montana), or

2. Building a wrapper: when the compiler (e.g., GNU gcc) stores the AST as an
intermediate output format, it is possible to build the analyzer on top of such a rep-
resentation, without the need for any patching intervention. If such an intermediate
output is not directly available, a patching intervention is however required.

All the above mentioned approaches have pros and cons and, in general, there are
contrasting opinions on the use of a compiler parsing front end for analysis tasks. If, on
the one hand, it could appear appealing and effective, on the other it is worth discussing
the challenge of relying on an object developed (by a third part) for different purposes.

These problems will be extensively dealt with in this paper, whose main contribu-
tions can be summarized as follows:
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• It discusses challenges and approaches for patching or wrapping compilers to de-
velop front ends for source code analysis tools;

• It describes and discusses state of the art of methods and techniques to decouple the
parsing front end from analysis engines;

• It proposes an approach and a tool, XOgastan, which exploits the possibilities of-
fered by gcc/g++ interfaces to save the AST representation.

A companion paper (Antoniol et al., 2003) summarizes the XOgastan architecture.
Here a thorough analysis and discussion of the compiler patching approaches is pre-
sented, providing examples, suggestions and insights. The approaches to decouple
the front end from analyses are also detailed, and the overhead introduced by XML
representations better discussed and quantified.

The paper is organized as follows: Section 2 describes approaches and challenges
related to compiler patching. Then, the problem of decoupling the front end from
analyses is discussed in Section 3. Section 4 describes the XOgastan architecture,
detailing the source code analysis process, the tool internal representation, the analysis
capabilities and the types of output produced. Section 5 discusses the technology,
design and implementation choices made in the development of XOgastan, analyzing
their strength and weakness. Conclusions and work-in-progress are then outlined.

2. Compiler patching

Analyzing real-world C or C++ systems to extract useful and reliable information re-
quires industrial strength tools. Such tools need to deal with the full set of details,
subtleties, variants or dialects of programming languages encountered while parsing
the application source code. Given the wide range of available hardware and soft-
ware platforms, not only should the chosen tools be robust, but they should also be
either platform independent or retargetable. In other words, it should be possible to
easily port the tool set on a large variety of software and hardware environments (e.g.,
Sparc—Solaris vs. i486—Windows 2000). Finally, they should support customization
and extension; in other words, it should be possible to add new types of analysis.

For example, as for the Java programming language, the JavaCC parser genera-
tor (JavaCC home page, 2004) and the available Java grammar permit an easy develop-
ment of a platform independent, robust, extensible analyzer. Unfortunately, the same
development is more challenging in other programming languages, such as COBOL,
C and C++. These languages have often been extended creating dialects, only partially
conforming to ISO or ANSI standards. Sometimes, the compiler itself has its own set
of extended features such as types, different variable argument passing mechanisms or
predefined macros.

Macros and preprocessing features are likely to be the best known C and C++ night-
mares. There are basically two approaches for dealing with macros: to expand the
source code via a preliminary preprocessor step, or to analyze the source code as it is
with no expansion at all. At a first glance, the latter approach seems easier to imple-
ment. However, it may lead to the extraction of imprecise information, for example
because of the lack of knowledge about types (Aversano et al., 2002), or because of
the difficulties to execute symbolically preprocessor directives to identify the code to
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be included in the application (Hu et al., 2000). Furthermore, this approach promotes
verbose and fairly complex language grammars, in that grammar rules to handle pre-
processor directives must be interleaved with language rules.

The second approach stems from the consideration that all the required components
must be available to compile a system. This allows a preliminary preprocessing step
to be safely carried out, and a new set of preprocessed source files to be produced. An
example of this category of tools is the Refine C parser (Reasoning Systems, 1993);
C source files are instrumented via comment-like directives retained by the C pre-
processor. Preprocessed files are successively parsed, inserting hooks to map precisely
such information as type and function definition points.

Industrial-strength tools can be often classified in between these two extreme cate-
gories. For example, the DMS tool by Semantics Designs, an environment to analyze
and transform software systems, belongs mostly to the first family. However, it also
provides a switch to preprocess the source. A well known and fairly robust tool, the
Datrix Bell Canada C++ analyzer (Bell Canada, 1995), adopts a different strategy,
being able to recover from missing include files and missing types.

2.1. Approaches to develop a C or C++ software analyzer

Besides the two different philosophies for preprocessing, dealt with in the previous
subsection, a further strategic decision linked to the development of a C or C++ soft-
ware analyzer is concerned with the choice of reusing existing assets, or of developing
everything from scratch.

Re-developing from scratch a new environment on the basis, for example, of freely
available technologies, is likely to be a costly and risky decision, often leading to fail-
ure. There are many tools, grammars, environments no longer developed and main-
tained, or covering only a subset of what is really needed to be useful. For exam-
ple, there are several C and C++ public-domain grammars. However, in the authors’
knowledge, none of them is able to parse a sizable piece of real-world software.

In other words, if limited resources or effort are available, the first strategy is not
recommendable. Indeed, there are environments and tools of industrial strength avail-
able, which permit the development on the top of a reliable and robust source code
analyzer. For example, IBM made available a component named Montana (Karasick,
1998) for the C++ Visual AgeTM suite. This permits the accessing of the C++ com-
piler information at the different compilation stages via an API. It would be therefore
relatively easy to develop C++ code analysis on top of Montana. Unfortunately, the
IBM C++/Montana interface has never been made available on systems other than
Windows NT, even if there were rumors of a Linux release. However, other reliable
and robust tools are available. For example, in 2002, Sybase, Inc. released the Watcom
compiler (Open Watcom home page, 2004) source code; this was the largest industrial
project going open source. The compiler suite (C, C++ and Fortran) can be freely
downloaded under an Open Source license and thus, at least in theory, an analyzer
could be built on top of the Watcom compilers. On the other hand, starting from ver-
sion 2.9, the GNU C Compiler (gcc) development team added a new functionality to
the gcc/g++ compilers. This is a switch that permits storing in a file the ASCII repre-
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sentation of the AST for each compilation unit (i.e., for each file). This is a particularly
important point, as GNU Compilers are available for almost any available computing
system or architecture.

2.2. The case of gcc

The GNU C Compiler is actually a suite of compilers covering different programming
languages (i.e., C, C++, Fortran, Java, Objective C and Ada). It is a real compiler,
available on all widely adopted platforms and operating systems. The first release
dates back to 1987; the latest stable release at the time of writing is the 3.3.2. Another
freely available but less successful compiler dating back to the beginning of 90’s is the
lcc retargetable C compiler. The two compilers follow different approaches. lcc is a C
compiler, developed with a top-down parsing approach; the GNU compiler is a suite of
compilers, based on a bottom up strategy. lcc, even if less famous than its cousin gcc,
is extremely appealing (Hanson and Fraser, 1995), and considerably smaller. There is
extensive documentation and a book providing insight on lcc, information and details
on the compiler and compiler development decision choices. From a negative point
of view, lcc is limited to the C programming language. Clearly, the availability of the
source code makes it possible to patch the compiler to develop a source code analyzer.

This perspective makes open source compilers and gcc a reasonable platform to rely
upon. Earliest gcc releases were inspired by an extreme parsimonious use of valuable
resources, such as CPU time and memory. A complete AST was not built while com-
piling a module, but only sub-trees were instantiated and immediately thrown away to
keep the process footprint small. However, starting from releases dating back to 1999
(i.e., 2.95) not only the complete AST was built, but also an API to navigate and to
save the tree was made available. This decision was probably the consequence of both
hardware cost reduction and the complete re-design of gcc. At the end of 90’s the gcc
complexity reached a non-return point, and the development team decided to re-design
and re-develop the compiler, thus creating gcc 3. In between gcc 2 and 3, “beasts” such
as egcc and kgcc appeared. Fortunately, these gcc variants are now extinct.

Evolution also influenced the gcc AST interface. 2.95 gcc switches permit the cor-
rect production of a complete and precise AST, in a GNU-defined encoding, of a C++
source. This encoding was indeed peculiar: for example, the for statement was defined
in the C grammar file, and it was impossible to obtain the AST of a C function defi-
nition via the C compiler. While the gcc with the switch -dump-translation-unit only
printed out a single non-informative node, the g++ with the same switch produced the
expected result. At this stage, two main difficulties arise:

1. Clearly gcc is not useful for analyzing the C code; however, nor can the g++ ac-
complish that task satisfactory. It is in fact well-known that not all the C code is also
C++ compliant (e.g., a declaration such as int class; is not C++ compliant);

2. The g++ dump is not complete for analyzing C++ code; it lacks, in fact, of infor-
mation regarding the class hierarchy relationships.

A first step forward was obtained during the development of the CPPX (Dean et al.,
2001), it was discovered that it was possible, activating a special define while boot-
strapping the compiler, to obtain a complete AST of a C module via the C compiler
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Table 1. gcc/g++ AST dump switches.

Switch Language Description

-fdump-translation-unit C/C++ Dumps the entire translation unit
-fdump-class-hierarchy C++ Dumps the class hierarchy and virtual function table
-fdump-tree-original C++ Dumps before any tree based optimization
-fdump-tree-optimized C++ Dumps after any tree based optimization
-fdump-tree-inlined C++ Dumps after function inlining

front end. Noticeably, the authors of the above-mentioned paper identified attributes
that such kind of tool should have, for instance to be open-source, to minimize main-
tenance, to adopt a standard software interchange format, to extract complete infor-
mation, to have good performance and to be able to support large-scale analyses. The
previously mentioned paper also presented an approach to convert the gcc schema to
other schemas (e.g., Datrix) using union schemas. To properly dump information,
CPPX requires the gcc compiler to be patched.

The gccXfront (Hennessy et al., 2003) authors followed a similar approach, and
equipped their tool with a parse tree browser. Differently from other tools, srcML (Col-
lard et al., 2003) is not devoted to producing a complete XML dump of the gcc model.
Instead, the target is the development of a robust, lightweight C++ fact extractor. Also
GCCXML (GCCXML home page, 2004) works on a patched version of the gcc, often
provided with the tool. At the time of writing, it only supports C analysis.

Meanwhile gcc underwent a major evolution including the AST production switches
between releases 2.9x and 3.2. It is worth noting that in the 2.9x releases some infor-
mation, such as the C++ class hierarchy structure, was difficult or even impossible to
be obtained.

From the source code analysis point of view, this evolution positively affected gcc.
The latest stable gcc release has a completely new set of switches, and accurate AST
representation of C and C++ modules are made available. First and foremost, the
gcc 3.2 dump, made using the switch -fdump-translation-unit, is basically consistent
when parsing with both g++ and gcc. The difference is that, of course, g++ also
considers all the C++ syntax (e.g., class declarations, etc.). This permitted the use of
the gcc to parse C files (with the past versions, the g++ was used, causing problems
with all the C code that was not compliant for a C++ parser, e.g., code containing a
variable named new or class, etc.). Secondly, for C++ files, useful information that
was previously missing can now be dumped. For instance, the -fdump-class-hierarchy
switch allows accessing inheritance relationships between classes. Other switches (see
Table 1) permit the dumping of the tree before and after optimization and function
inlining.

2.3. Pros and cons

At the end of 90’s, at the University of Sannio a project was started, whose goal was
to develop an analyzer to assess C and C++ quality metrics, reverse engineering as is
design and, in general, to obtain accurate analyses. Industrial tools were extremely
appealing, but either they were limited in the supported platforms (e.g., Refine C) or
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the source code was not available (e.g., Datrix). Freely available front ends such as
the Brown University CPPP (Reiss, 2004) only covered a subset of the language. At
that time, the Zephir project had not yet released its infrastructure. Compiler construc-
tion kits, such as the Siemens Cocktail compiler development tools, the PCCTS or the
more traditional Lex and Yacc were available. Having a very limited amount of avail-
able resources, it was decided the start from something existing, open source, robust,
reliable and retargetable.

In 1998, one of the authors was involved in a project whose goal was to patch the lcc
compiler, to extract C software metrics. gcc was far too complex and not sufficiently
documented to attempt a similar project. The lcc documentation was accurate enough
to allow University graduated students to modify the compiler. The project was carried
out at the University of Verona by four students of a software engineering course. The
lcc 4.0 source code was modified; the patched compiler was able to extract a suite
of software metrics at the file and function level, and to store metrics into files while
compiling the code. Compiler modification was organized into a patch, so that it could
be easily applied and disseminated. However, soon after the end of the project, a new
lcc version was released. Changes between the newest release and the previous 4.0
were not dramatic, but enough to cause the patch to fail and to require a restructuring
of the extra code that computed and saved metrics.

The lesson learned was that if you do not have the control of the evolution process of
an application, and if the goal of the application and your product are different, there
is no guarantee that your product will be forward compatible with future application
releases. This consideration, plus the complexity of the gcc source code, led to the
decision to avoid patching the compiler. Besides, the above experience showed clearly
that gcc was undergoing an evolution, and that it would have been too risky to attempt
for another lcc-like project.

A second key decision was related to the AST representation. The aim was to ob-
tain software quality, design and, in general, reverse engineering information from the
source code. This is a fairly different task from the production of object code. Such
details, as the maximum integer size that can fit in a variable, or the number of bits of a
mask, are likely to be irrelevant for the majority of quality evaluation or reverse engi-
neering tools. A compiler must expand and handle all the code; an analyzer should be
focused only on the limited fraction of code developed or modified by programmers.
System include files, for example, are of no interest. gcc AST information accounts
for all the details needed to produce an executable. Preliminary evaluation of the gcc
information, stored in ASCII files corresponding to compilation units (i.e., source code
files), led to the conclusion that a substantial pruning was necessary to reduce the size
(considered excessive), by removing information useful for a compiler and not likely
to be of any use for an analyzer.

3. Decoupling the parser from analyses

A fundamental task when developing a source code analysis tool is the choice (or
the design) of a good representation for the extracted information. This has multiple
effects:
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Table 2. Some AST representation schemas.

Schema Description

Datrix (Bell Canada, 1995) Two implementations: Bell Canada and CPPX
Columbus (Ferenc et al., 2001) C/C++ schema
Bauhaus (Koschke et al., 1998) Models C and a subset of Ada
Stanford University Intermediate Format (SUIF) Works on C and Fortran
(Aigner et al., 1999)
CIA (Chen et al., 1998) Stores facts according to the ACACIA database
Semantic Designs (Baxter, 1992) Different schemas for different languages
Visual Age C++ (Karasick, 1998) C/C++ schema
cppML (Mamas and Kontogiannis, 2000) C/C++ schema

1. Decoupling the parsing front end from analysis/transformation features, thus mak-
ing it possible to change/add them transparently;

2. Permitting the export of the front end output in a format that can be understood by
other tools; and

3. Filtering out, especially when exploiting a compiler’s front end, any information
that is useless for the prefixed analysis purposes.

A first possible approach is to have an object-based representation of the AST, and
then use API and above all, visitors (Gamma et al., 1995), for accessing it and perform-
ing the required analyses. Examples of this approach have been followed by JavaCC
and, recently, by the Eclipse project (Shavor et al., 1995) (the Eclipse Java Develop-
ment Toolkit is provided with documented API for accessing, via a visitor object, the
source code AST). This approach does not rely on a temporary representation, and thus
it is very efficient in terms of performance and space required to store the AST. How-
ever, this approach prevents accessibility from external tools. The only possibility is
to make the API public. This requires that other tools should rely/understand a custom
AST representation. This implies that, in order to allow different people exchanging
ASTs or, in general, facts extracted parsing source code, it is necessary to agree on a
common representation, (i.e., a schema) to represent such information. The schema
defines the form, in terms of entities with attributes and relationships, which the data
will have.

Ferenc et al. (2001) compared existing schemas for C/C++, discussing the issues
for developing a common schema. As discussed in the paper, a schema can be auto-
matically generated from the AST, or manually created (i.e., deciding what is worth
storing). Some of the most well-known schemas are reported in Table 2.

As stated in Section 2.2, Dean et al. (2001) proposed to use union schemas as an
approach for identifying a common schema. Once the schema for data representation
has been identified, there is still a detail to be handled, i.e. how to store information
according to that schema and to ensure interoperability. XML is de facto a new emerg-
ing standard for information representation and exchange. It permits the exploitation
of available parsers (e.g., Xerces) and transformation tools (e.g., Xalan) to build source
code analyzers and to implement pretty printing or source code transformations.

Thus, it is necessary to encode schemas (i.e., graphs) in XML. To this end, Holt et al.
have proposed the Graph eXchange Language (GXL). GXL is an XML based graph
representation, widely adopted in the software maintenance and evolution community.
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Figure 1. XOgastan analysis process.

At the time of writing, it has been adopted by several software engineering tools, such
as Rigi, Columbus/CAN, Source Navigator, GUPRO, the Nokia source code analyzers
and many others (GXL tools, 2004).

When choosing to rely on an XML representation, however, some considerations
should be made regarding performance. Performing analyses from ASTs stored
in XML files requires an additional parsing task. This is undoubtedly more time-
consuming than, for example, to access directly the AST data structure via an API.
Secondly, it is worth considering the (sometimes enormous) overhead introduced by
XML encoding: even a simple “hello world” C program could cause the dumping of
hundreds of XML lines. In Section 5.5 we will try to quantify these aspects.

4. XOgastan

This section describes XOgastan, the gcc wrapping tool developed at the University of
Sannio. Different from many other tools, XOgastan does not require the application
of any patch to the compiler, but it only relies on the information dumped by means
of the command line switches described in Table 1. At the time of development, this
approach had suffered several weaknesses: C++ dumped information which lacked
of hierarchical relationships among classes, and it was necessary to use the g++ for
analyzing C programs. However, now this has turned out to be a winning choice,
since the switches available with the current C++ compiler permit the dumping of all
the required information, and the C compiler produces a consistent dump, usable for
analysis purposes.

This section describes the overall design architecture of XOgastan, and also gives
details regarding/relative to some important implementation issues. The XOgastan
analysis process can be described as shown in Figure 1, and it is composed of the
following phases:

1. The AST is dumped by gcc, compiling the source file (foo.c for C, bar.cpp for
C++ in our example) using the option -fdump-translation-unit, and also the -fdump-
class-hierarchy switch is enabled to recover class hierarchy information. For C++,
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the g++ compiler is used. From this point onwards, for simplicity sake, both com-
pilers will be referred to as gcc. g++ will be used only to refer explicitly to the
C++ compiler.

2. The dump produced by gcc (file foo.c.tu for C, bar.cpp.tu and bar.cpp.class for
C++) is translated into GXL format by means of a Perl script supplied with XOgas-
tan, gcc2gxl. As will be described in detail later, the translation relies on translation
maps;

3. Finally, the GXL output is analyzed by XOgastan, producing outputs in HTML,
XML and other formats.

Overall, XOgastan has a hybrid pipe/filter and object-oriented architecture. In par-
ticular, the sequence of pipes is represented in Figure 1, while the package structure of
the last filter is shown in Figure 9.

4.1. From gcc AST dump to XML

XOgastan is an XML-oriented application, in that it performs analyses/transformations
of an XML input, producing an XML output. On the other hand, the gcc AST dump
(i.e., the XOgastan input) is not represented in XML. Hence, the first step is to obtain
its XML representation.

A widely adopted XML-based representation of ASTs (and, more in general, of
graphs) is the already mentioned GXL format. Basically, the purpose of GXL is to
permit the exchange of graphs between different tools, such as those performing pro-
gram analysis. As previously stated, the transformation from gcc dump to GXL is
carried out by a Perl script. This script relies on transformation maps, supplied in files
named respectively c.map and c++.map (from here onwards, both files will be referred
to as c.map). The AST of gcc can contain several different node types. Every node is
characterized by a code (describing its purpose), a list of attributes, and a list of possi-
ble linked nodes. The file c.map describes all the nodes that an AST may contain (also
C++ and Pascal ones); for each type of node, a set of translation rules is specified.
A translation rule transforms the information contained in the foo.c.tu file in a GXL
element. The process can be readily understood by examining the following example:

1. To represent a function declaration, gcc uses a special node, whose code is func-
tion_decl. This node contains information about the status of the function declara-
tion: static or extern memory class, the name of the source file where it is declared,
the line number in the source file where the declaration is located. Moreover, this
node is linked to the node containing the function name (an identifier_node node),
to the first node of the body (compound_stmt node), and to the next declaration in
the same scope (this may be any type of declaration node).

2. The following lines are an example of the information dumped by gcc for a func-
tion_decl node:

@15 function_decl
name: @29 mngl: @30
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case FUNCTION_DECL:
name:*%<edge from="index" to="*"><type xlink:href="gccast.xml#name"/><edge>
type:*%<edge from="index" to="*"><type xlink:href="gccast.xml#type"/><edge>
scpe:*%<edge from="index" to="*"><type xlink:href="gccast.xml#scope"/><edge>
srcf:*%,attr name="source_file"><string>*</string></attr>
srcl:*%,attr name="source_line"><int>*</int></attr>
artificial %<attr name="flag"><string>artificial</string></attr>
chan:*%<edge from="index" to="*"><type xlink:href="gccast.xml#next-decl"/><edge>
args:*%<edge from="index" to="*"><type xlink:href="gccast.xml#arguments"/><edge>
undefined %<attr name="flag"><string>undefined</string></attr>
extern %<attr name="flag"><string>extern</string></attr>
static %<attr name="flag"><string>static</string></attr>
body:* %<edge from="index" to="*"><type xlink:href="gccast.xml#body"></edge>
fn:*%<edge from="index" to="*"><type xlink:href="gccast.xml#body"/></edge>

Figure 2. function_decl translation rules.

type: @31 srcp: div.c:101
chan: @32 args: @33
static body: @34

In the above example, 15 is the index (unique in the dumped unit file) of the func-
tion_decl, 29 is the index of the node containing the function name, etc.

3. Some of the translation rules for function_decl nodes are shown in Figure 2. Rules
may have two different formats (the interested reader can refer, for further details,
to the on-line documentation of the tool (XOgastan home page, 2004)):

• field: * % <gxl element>: in this case any occurrence of the se-
quence field is translated with the corresponding <gxl element>. Then,
any occurrence of the ‘*’ symbol inside the <gxl element> is replaced by
any string appearing on the right of field. An example if this type of rule is
the name rule in Figure 2;

• field % <gxl element>: this is similar to the previous case, however no
substitution is made in the <gxl element>. An example is the artificial
rule in Figure 2.

4. At the end of the translation process, the AST (in this case, the function_decl node)
will be represented in XML as shown in Figure 3.

The transformation rules contained in the file c.map were written after gaining in-
sight on gcc AST by studying the gcc functions devoted to producing/handling the
AST. After a thorough examination of the source code and of the available documen-
tation, a comprehensive set of translation rules was produced. In particular, the gcc
AST structure (and therefore the translation rules) was deduced by analyzing the gcc
source files tree.def, tree.h, c-common.def, cptree.def, cptree.h, dump.h, dump.c and
cpdump.c.

The .def files contain code definitions related to gcc AST nodes, accompanied with
detailed comments describing each of them. The analysis of these files gave a great
help in understanding the gcc AST, as well as the format of the gcc dump. Figure 4
reports an excerpt of the tree.def file.
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<node id="15">
<type xlink:href="gccast.xml#function_decl"/>
<attr name="source_file"><string>div.c</string></attr>
<attr name="source_line"><int>101</int></attr>
<attr name="flag"><string>static</string></attr>

</node>

<edge from="15" to="29"><type xlink:href="gccast.xml#name"/></edge>
<edge from="15" to="31"><type xlink:href="gccast.xml#type"/></edge>
<edge from="15" to="32"><type xlink:href="gccast.xml#next_decl"/></edge>
<edge from="15" to="33"><type xlink:href="gccast.xml#arguments"/></edge>
<edge from="15" to="34"><type xlink:href="gccast.xml#body"/></edge>

Figure 3. Result produced by the translation.

DEFTREECODE (IDENTIFIER_NODE, "identifier_node", ‘x’, -1)
DEFTREECODE (OP_IDENTIFIER, "op_identifier", ‘x’, 2)
DEFTREECODE (BLOCK, "block", ‘b’, 0)
DEFTREECODE (INTEGER_TYPE, "integer_type", ‘t’, 0)
DEFTREECODE (FUNCTION_DECL, "function_decl", ‘d’, 0)
DEFTREECODE (LABEL_DECL, "label_decl", ‘d’, 0)
DEFTREECODE (CONST_DECL, "const_decl", ‘d’, 0)
DEFTREECODE (COND_EXPR, "cond_expr", ‘e’, 3)

Figure 4. Excerpt of the tree.def file.

4.2. XOgastan AST internal representation

XOgastan is written in C++. The AST is represented using the hierarchy of classes
NAST (New Abstract Syntax Tree). The NAST hierarchy is similar to the one pro-
posed in the Appel’s book (Appel, 1998), to the JavaCC AST and to the AST object
model proposed in (Antoniol et al., 2003). The NAST is quite different from the gcc
AST, in that some parts of the AST are not present at all in the NAST. In particular,
the NAST is composed of three types of nodes:

1. The NAST root node;
2. The nodes representing the set of different language constructs: declarations, con-

stants, expressions, statements, etc.; and
3. The NAST leaves i.e., identifiers, predefined types, literals, etc.

In the following, the acronym AST is used to refer to the “original” gcc AST, and
NAST to refer to the XML-based XOgastan AST.

Figure 6(a) reports the NAST representation corresponding to the simple C function
shown in Figure 5. The next subsection will explain XOgastan features by showing
outputs obtained analyzing the same function.

4.3. XOgastan analysis capabilities

The analysis performed by XOgastan is function-oriented, in that XOgastan searches
the NAST for function declarations. For each function declaration, it performs further
analyses, as follows:
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void leggiNumero(struct nodo **n)
{ char c;

while ((c = getchar()) != ‘\n’)
inserisciCifra(n,c-‘0’);

return;
}

Figure 5. C function to be analyzed.

(a) (b)

Figure 6. (a) Function body NAST and (b) control flow graph and statement statistics.

• It gets the name, the type returned, the parameter list of the function. Figure 7(a)
reports an hyperlinked list of all the functions contained in the source code analyzed,
while Figure 7(b) reports detailed information for a particular function.

• It gets some information regarding the statements in the function body: produces
statistics of the statements used, builds a Control Flow Graph (CFG), etc. The table
shown in the bottom part of Figure 6(b) counts, for each category, the number of
statements a function body includes. The function CFG is represented at the top of
the figure.
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(a)

(b)

Figure 7. (a) List of analyzed functions and (b) function parameters.

• It builds the list of declarations in the function body: variable declarations, type
declarations, etc.

• It produces statistics regarding the number of expressions and operators used.
• It builds a list of the variables used inside expressions: variables with local scope,

variables with global scope, and parameters. Figure 8(a) describes function pa-
rameters and variables, and lists statistics on the different expressions used in the
function.

• It builds a call-graph of the analyzed function. Figure 8(b) depicts the call-graph for
the function shown in Figure 5, as well as the number of call sites for each called
function.

XOgastan also produces statistical information regarding the given NAST (total
number of nodes, frequency of a node, etc.). Analyses are performed using a visi-
tor design pattern (see Section 5.3 for details).
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(a)

(b)

Figure 8. (a) Variable and expression statistics and (b) call graph.

The detailed description of the analyses that can be performed using the XOgastan
output is out of the scope of this paper. This is also due to the fact that XOgastan was
not designed to obtain a strong source analyzer, but simply to interface a strong parser
(the gcc one) with other analysis tools/plugins relying on XOgastan XML fact repre-
sentation. Exploiting directly compiler analysis capabilities is theoretically feasible,
but in practice turns out to be very difficult (Hendren et al., 1992).

4.4. XOgastan output

The output produced by XOgastan is available in several formats:
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• HTML pages, containing browseable CFGs and statistics produced analyzing the
NAST;

• XML files, that can be read by other XML-oriented applications (see Section 5.4)
or browsed using an XML browser;

• DOT representations of body graphs, CFGs and call graphs, to be visualized using
the Dotty tool (Koutsofios, 1994);

• ASCII representations of the CFG; and
• Graphic Interchange Format (GIF) plots of the CFG.

4.5. XOgastan design

XOgastan is composed of the following packages:

• The NAST Factory, which loads the NAST from the GXL generated by the gcc2gxl
utility, and creates the NAST internal representation described below.

• The NAST internal representation, composed of classes for representing the data
structure of the NAST (see Sections 4.2 and 5.2).

• The visitor package, composed of an abstract visitor class and some concrete vis-
itor classes for implementing the different analyses performed on the NAST. The
analysis features currently implemented include statistics regarding:

1. Declared functions;
2. Call graph;
3. Used variables;
4. Expressions contained inside functions;
5. Statements contained inside functions; and
6. General NAST statistics.

• The data package, containing the data structure representing the results obtained
from the different analyses performed by the visitors.

• The HTMLWriter package, composed of a hierarchy of classes for producing the
HTML output. In particular, the hierarchy is composed of a base class for generating
the main elements of the output pages, classes for generating the statistics pages of
the analyzed functions and for performing queries on the AST.

• The XML Manager package, which generates different XOgastan XML outputs.
This package is composed of an XMLBuilder, i.e., a builder design pattern (Gamma
et al., 1995) that isolates the internal NAST representation from the output genera-
tion, delegated to the concrete builder classes.

The UML package diagram of XOgastan is shown in Figure 9.

5. Discussion

This section discusses the design, the technological choices and the features of the
main XOgastan components, analyzing their strength and weakness and considering
possible improvements and evolutions.
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Figure 9. XOgastan UML package diagram.

5.1. From gcc to GXL

The translation of the gcc AST dump in a GXL format is a fundamental point in the
XOgastan architecture, for the following reasons:

• GXL is actually XML, and therefore XOgastan can rely on a Simple API for XML
(SAX) parser such as Xerces for parsing its input.

• As the compiler evolves, its AST representation may change; the use of an inter-
mediate representation avoids the possibility that this could eventually affect the
whole tool structure. If the information dumped by the compiler changes, one sim-
ply needs to update the translation map c.map and the gcc2GXL script. Compared
to tools where the AST is dumped by patching the compiler, this approach permits
an easier and cheaper upgrade. In fact, re-patching a new compiler version could
be difficult, especially if its internal structure has been radically changed/refactored.
On the contrary, changes on the translation map are usually straight-forward, taking
also into account that the syntactic structure of the source language (C/C++) is fairly
stable.

• Performing analyses from ASTs produced by other compilers, or even extending the
tool to further programming languages, turns out to be relatively simple.

• GXL tends to be widely adopted in the source code analysis, program comprehen-
sion and reverse engineering community: producing intermediate results and out-
puts in this format permits tool interoperability. In the authors’ opinion, this should
be an important target for the entire community, allowing every research team to
concentrate its effort on some specific tasks, relying on analysis produced by others,
and permitting at the same time other teams to take advantage of their “services.”
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5.2. XOgastan AST representation

As shown in Section 4.2, XOgastan relies on an object-oriented representation of the
AST. This gives several advantages, in particular:

• The possibility of using visitor design patterns to visit the AST for performing any
kind of analysis, transformation or pretty-printing operation. This permits the sepa-
ration of the operations performed from the data structure on which these operations
are carried out (Gamma et al., 1995).

• An object-oriented AST model, properly extended, may permit the use of the Object
Constraint Language (OCL) (Object Management Group, 2001) to perform analysis
on the AST. OCL is a de-facto standard language for defining constraints on UML
object models, and its power to navigate object models and to manipulate collection
types makes the query composition very simple. Given an AST, one can query it by
sending a SQL query to a relational DBMS, obtaining, as a result set, a piece of the
original AST, a scalar value, a collection of values or, in general, any kind of object
(refer to the work of Antoniol et al. (2003) for additional details).

As regards the AST structure, it is a three-level tree, where the main families of
nodes are represented as subtypes of the root node, while further distinctions are made
by means of attributes. This may appear as a counterintuitive choice, but it significantly
simplifies the AST navigation. Where needed, the model can be easily detailed using
a Decorator design pattern, thus avoiding the browsing/navigation of useless details.

5.3. XOgastan analysis package

As previously mentioned, the analyses are separated from the AST internal represen-
tation using the well-known visitor design pattern. This solution is almost the same
as the one implemented in the JavaCC tool, which automatically generates the visitor
abstract class to be implemented by the concrete visitors that perform different tasks,
such as pretty printing, computing metrics, instrumenting code, performing transfor-
mations, etc.

The main problem of the visitor structure is that a visitor has a method for visiting
each class of the data structure hierarchy (i.e., each class of the AST). This means
that the AST hierarchy should be as stable as possible, otherwise the entire visitor
hierarchy needs to be frequently updated. However, most of the methods of a visitor
are often very similar to each other (e.g., a pretty-printing visitor, or an instrumenting
visitor, etc.), and therefore even the skeleton of a concrete visitor may be automatically
generated (and updated). The results of the analysis performed by visitors (metrics,
statistics, etc.) are stored in a suitable data structure. This permits the separation of
the analysis from output generation.

5.4. XOgastan output capabilities

The XOgastan output is handled by two different packages, the HTMLWriter package
and the XML Manager package. The former produces a browseable HTML output of
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XOgastan analysis. It is kept separate from the XML Manager package, which pro-
duces any other kind of output. Since the HTML output constitutes the user interface
of the tool, more interactive features are needed.

It is worth pointing out the design structure of the XML Manager package, whose
objective is to produce any kind of output: the builder design pattern, as mentioned
above, keeps the internal representation of data separate from all possible outputs,
making it very easy to add new export features for different formats.

The possibility to generate a DOT representation of the outputs should be welcome
in any kind of tool generating graph outputs. In fact, DOT is widely used, it is simple to
understand, and permits the generation of graphs with a large variety of shapes, labels,
options, etc. Moreover, visualization and layouting are straightforward, through both
interactive tools (e.g., Dotty) or libraries (e.g., Grappa) that allow the construction of
easily graphical tools to interact with the graph itself.

Finally, one of the most important features of XOgastan is the possibility to generate
an XML output:

• The XML Query Language (XQL) can be used to query the AST, in order to col-
lect nodes or subtrees having a given property, to compute metrics, etc. The idea is
quite similar to the one proposed by Antoniol et al. (2003) for OCL. In this case, the
representation is standard (XML) and, given a DTD, even a simple Perl script (rely-
ing on the XML::XQL package) is sufficient to perform complex analyses. Further
work is currently in progress to investigate the scalability and performance issues,
as well as to compare this approach with others (e.g., OCL, Refine, etc.).

• For simple transformation operations, an XML Stylesheet Language (XSL) proces-
sor is sufficient and very easy to apply. One possible application of XSL transforma-
tions (XSLT) is pretty printing such as, for example, the production of browseable
representations of the source code to improve program comprehension and main-
tenance. Another application is source code instrumentation: once the XSLT for
generating the source code from the XML representation is available, it can be eas-
ily extended, adding a few rules, to instrument the source code. However, XSLTs
are not as powerful as a source code transformation engine could be, in general. For
example, handling complex data structures while performing transformations is not
possible.

• When XSLT is not sufficient, a combination of Document Object Model (DOM) or
SAX parsers and XSLT processors permits more complex transformations. How-
ever, in some cases, the STX (Streaming Transformations for XML) (Cimprich,
2002) can constitute a valid alternative to XSLT.

• Finally, as is widely recognized (Holt et al., 2000; Winter, 2001; Ferenc et al., 2001),
XML outputs constitute a fundamental step for tool interoperability and data ex-
change.

5.5. Dealing with XML overhead

The advantage of XML is essentially the possibility to perform rapid development
relying on already available tools. On the other hand, XML-based representations
turn out to be fairly verbose if compared to other custom representations. Storing the
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Table 3. File sizes and compression rates for
different compressors.

File type Total size % of the GXL
[Kbytes] file

GXL 6,201,268 —
Zip 457,757 7.38
Gzip 457,725 7.38
Bzip2 270,342 4.36
XMLppm 302,970 4.89
Xmill 250,268 4.04
Xbmill 218,929 3.53
C sources 7,905 0.13

representation is not generally a problem, due to the abundance of disk space available
in modern computers. However, it is worth noting that the compiler-level information
(i.e., all the included files and included structures), along with the corresponding XML
representation, may lead to a remarkably large file even for a small compilation unit
(i.e., for a small input source file). Just to give some figures, the .tu file generated
by g++ is, on average, 1000 times longer than the source file, and the GXL file is five
times longer than the latter (even if its size is about one-half, since useless information
is discarded). This representation may be even too large to be processed as a whole in
main memory. This problem can be tackled in two different ways. A first solution is
to adopt an event-based parser (instead of the SAX parser adopted by XOgastan), in
such a way that the AST is not built into the memory. The second solution (the one
adopted for XOgastan) is to filter the gathered information to get rid of information
not actually essential to the task to be carried out.

When XML-encoded ASTs have to simply be stored on disk to be analyzed after-
wards, a possible solution to that overhead is the compression. This can be performed
using traditional compressors (e.g., zip, gzip, bzip2). However, specific compressors
have also been developed for XML files; these compressors do a very good job on tree
representations. Examples are XMLPPM (Cheney, 2004) or XMill (Liefke and Suciu,
2000).

To give some figures about the compression capabilities of the above mentioned
tools, and of the size of the GXL files, we extracted the AST from Samba 3.0.1 (an
open source file sharing system) .c files. Samba sources consist of 713 .c files, 140
.h files, for a total of 320 KLOC. GXL, C and compressed file sizes (in Kbytes
and as a ratio of the GXL file size) are reported in Table 3. Figure 10 reports boxplots
of the compression rates obtained, for each source file, by the different compressors.
Clearly, GXL representations are expensive (8 MBytes of C source lead to 6 GBytes of
GXL). However, even common compressors are effective to reduce its size (in partic-
ular, bzip2). The Xmill compressor proved to be even more efficient, especially when
combined with bzip (Xbmill).
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Figure 10. XML compression rate boxplots.

6. Conclusions and work-in-progress

The diffusion of many different programming languages and the significant increment
of dialects continuously require the development of new parsers, and the updating
of existing ones. The alternative is to rely on compiler parsing capabilities. To this
end, the strategies that can be followed are multiple, as for example patching the
compiler’s source code, or relying on dumps produced by the activation of suitable
compiler switches. The former requires a significant effort and suffers from a lack of
portability to future compiler releases; the latter can be easier, provided that the com-
piler permits the dumping of all required information. In both cases, it is necessary to
deal with a tool, the compiler, that was built for fairly different purposes than source
code analysis. This, even in the most benign cases, requires pruning lots of useless
information.

This paper has proposed a tool, XOgastan, which generates HTML, XML and other
format representations of information gathered from the AST dumped by the gcc com-
piler. This approach, as well as the design structure of the tool itself, permits a sep-
aration of the different activities of the analysis process: parsing, AST analysis and
transformation, and output generation. Moreover, XML outputs can be easily ana-
lyzed and transformed using consolidated languages (such as XQL and XSL) or tools
(Xerces, Xalan, etc.).
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Approaches similar to the one followed for XOgastan can be, in the authors’ opin-
ion, adopted for other programming languages, if compilers made the AST dump avail-
able. This could be a possible way to handle the 500-Language problem (Lämmel and
Verhoef, 2001). However, at the time of writing, we do not know of compilers other
than gcc, making the AST available by means of a command-line switch, or something
similar.

Finally, the GXL AST representation allows interoperability with a wide variety of
tools. However, this produces a significant overhead both in terms of disk space and of
time required to perform the analyses. For the former, XML compression techniques
can be therefore adopted.
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