Skip to main content
Log in

Free Łukasiewicz and Hoop Residuation Algebras

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Hoop residuation algebras are the {→, 1}-subreducts of hoops; they include Hilbert algebras and the {→, 1}-reducts of MV-algebras (also known as Wajsberg algebras). The paper investigates the structure and cardinality of finitely generated free algebras in varieties of k-potent hoop residuation algebras. The assumption of k-potency guarantees local finiteness of the varieties considered. It is shown that the free algebra on n generators in any of these varieties can be represented as a union of n subalgebras, each of which is a copy of the {→, 1}-reduct of the same finite MV-algebra, i.e., of the same finite product of linearly ordered (simple) algebras. The cardinality of the product can be determined in principle, and an inclusion-exclusion type argument yields the cardinality of the free algebra. The methods are illustrated by applying them to various cases, both known (varieties generated by a finite linearly ordered Hilbert algebra) and new (residuation reducts of MV-algebras and of hoops).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, J. C., \lsImplicational algebras\rs, Bull. Math. R. S. Roumaine 11 (1967), 3–23.

    Google Scholar 

  2. Birkhoff, G., Lattice Theory, Amer. Math. Soc., Providence, 1967.

    Google Scholar 

  3. Berman, J. and W. J. Blok, \lsAlgebras defined from ordered sets and the varieties they generate\rs, manuscript.

  4. Blok, W. J., and D. Pigozzi, \lsOn the structure of varieties with equationally definable principla congruences I\rs, Algebra Universalis 15 (1982), 195–227.

    Google Scholar 

  5. Blok, W. J., and D. Pigozzi, \lsOn the structure of varieties with equationally definable principal congruences III\rs, Algebra Universalis 32 (1994), 545–608.

    Google Scholar 

  6. Blok, W. J., and J. G. Raftery, \lsVarieties of commutative residuated integral pomonoids and their residuation subreducts\rs, J. Algebra 190 (1997), 280–328.

    Article  Google Scholar 

  7. Blok, W. J., and I. M. A. Ferreirim, \lsHoops and their implicational reducts (abstract)\rs, Algebraic Methods in Logic and in Computer Science (Warsaw, 1991), 219–230, Banach Center Publ. 28, Polish Acad. Sci., Warsaw, 1993.

    Google Scholar 

  8. Blok, W. J., and I. M. A. Ferreirim, \lsOn the structure of hoops\rs, Algebra Universalis 43 (2000), 233–257.

    Article  Google Scholar 

  9. Bosbach, B., \lsKomplement\:are Halbgruppen. Axiomatik und Arithmetik\rs, Fund. Math. 64 (1969), 257–287.

    Google Scholar 

  10. Bruijn, N. G. de, \lsThe use of partially ordered sets for the study of nonclassical propositional logics\rs, Probl\`emes combinatoires et th\'eorie des graphes, Colloq. Internat. CNRS 260 (1978), 67–70.

    Google Scholar 

  11. B\:uchi, J. R, and T. M. Owens, \lsComplemented monoids and hoops\rs, unpublished manuscript.

  12. Cignoli, R., D. Mundici, and I. M. L. D'Ottaviano, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.

    Google Scholar 

  13. Cornish, W. H., \lsA large variety of BCK-algebras\rs, Math. Japon. 26 (1981), 339–342.

    Google Scholar 

  14. Diego, A., Sur les alg\`ebres d'Hilbert, Collection de Logique Math\'ematique, Sr. A, Fasc. XXI Gauthier-Villars, Paris; E. Nauwelaerts, Louvain 1966.

    Google Scholar 

  15. Ferreirim, I. M. A., On varieties and quasivarieties of hoops and their reducts, Ph. D. thesis, University of Illinois at Chicago, 1992.

    Google Scholar 

  16. Ferreirim, I. M. A., \lsOn a conjecture by Andrzej Wro\'nski for BCK-algebras and subreducts of hoops\rs, Sci. Math. Jpn. 53 (2001), 119–132.

    Google Scholar 

  17. Font J. M., A. J. Rodr\'iguez, and A. Torrens, \lsWajsberg algebras\rs, Stochastica 8 (1984), 5–31.

    Google Scholar 

  18. Guzm\'an, F., and C. Lynch, \lsVarieties of positive implicative BCK-algebras\3-subdirectly irreducible and free algebras\rs, Math. Japon. 37 (1992), 27–39.

    Google Scholar 

  19. Hendriks, A., Computations in propositional logic, Ph. D. thesis, University of Amsterdam, ILLC Dissertation Series, 1996.

  20. Jankov, V. A., \lsOn the relation between deducibility in intuitionistic propositional calculus and finite implicative structures\rs (Russian) Dokl. Akad. Nauk SSSR 151 (1963), 1293–1294.

    Google Scholar 

  21. K\:ohler, P., \lsBrouwerian semilattices\rs, Trans. Amer. Math. Soc. 268 (1981), 103–126.

    Google Scholar 

  22. Komori, Y., \lsSuper-\kLukasiewicz implicational logics\rs, Nagoya Math. J. 72 (1978), 127–133.

    Google Scholar 

  23. \kLukasiewicz, J., and A. Tarski, \lsUntersuchungen \:uber den Aussagenkalk\:ul\rs, C. R. S\'eances Soc. Sci. Lettres Varsovie, Cl. 3, 23 (1930), 30–50. English Translation in [25]: \lsInvestigations into the sentential calculus\rs.

    Google Scholar 

  24. Monteiro, A., and L. Iturrioz, \lsLes alg\`ebres de Tarski avec un nombre fini de g\'en\'erateurs libres\rs. In A. Monteiro. Unpublished papers. 1. Notas de L\'ogica Matem\'atica, 40, Universidad Nacional del Sur, Bah\'ia Blanca, 1996.

    Google Scholar 

  25. Tarski, A., Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Hackett Pub. Co., Indianapolis, Indiana, second, revised edition, 1981. Edited by J. Corcoran.

    Google Scholar 

  26. Urquhart, A., \lsImplicational formulas in intuitionistic logic\rs, J. Symbolic Logic 39 (1974), 661–664.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berman, J., Blok, W.J. Free Łukasiewicz and Hoop Residuation Algebras. Studia Logica 77, 153–180 (2004). https://doi.org/10.1023/B:STUD.0000037125.49866.50

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STUD.0000037125.49866.50

Navigation