Skip to main content
Log in

Algebraic Aspects of Cut Elimination

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We will give here a purely algebraic proof of the cut elimination theorem for various sequent systems. Our basic idea is to introduce mathematical structures, called Gentzen structures, for a given sequent system without cut, and then to show the completeness of the sequent system without cut with respect to the class of algebras for the sequent system with cut, by using the quasi-completion of these Gentzen structures. It is shown that the quasi-completion is a generalization of the MacNeille completion. Moreover, the finite model property is obtained for many cases, by modifying our completeness proof. This is an algebraic presentation of the proof of the finite model property discussed by Lafont [12] and Okada-Terui [17].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avigad, J., \lsAlgebraic proofs of cut elimination\rs, Journal of Logic and Algorithmic Programming 49 (2001), 15–30.

    Article  Google Scholar 

  2. Belardinelli, F., Aspetti semantici delle logiche sottostrutturali, graduate thesis, University of Pisa, 2002.

  3. Blok, W. J., and C. J. van Alten, \lsThe finite embeddability property for residuated lattices, pocrims and BCK-algebras\rs, Algebra Universalis 48 (2002), 253–271.

    Article  Google Scholar 

  4. Fitting, M., \lsModel existence theorems for modal and intuitionistic logics\rs, Journal of Symbolic Logic 38 (1973), 613–627.

    Google Scholar 

  5. Gentzen, G., \lsUntersuchungen \:uber das logische Schliessen\rs, Mathematische Zeitschrift 39 (1934), 176–210, 405–413.

    Google Scholar 

  6. Girard, J.-Y., \lsLinear logic\rs, Theoretical Computer Science 50 (1987), 1–102.

    Article  Google Scholar 

  7. Girard, J.-Y., Proof Theory and Logical Complexity, vol. I, Studies in Proof Theory, Bibliopolis, 1987.

  8. Grishin, V. N., \lsPredicate and set-theoretic calculi based on logic without contraction\rs, Math. USSR Izvestiya 18 (1982), 41–59.

    Google Scholar 

  9. Jipsen, P., and C. Tsinakis, \lsA survey of residuated lattices\rs, in J. Martinez, (ed.), Ordered Algebraic Structures, Kluwer Academic Publishers, 2002, pp. 19–56.

  10. Komori, Y., \lsPredicate logics without the structural rules\rs, Studia Logica 45 (1986), 393–404.

    Google Scholar 

  11. Kowalski, T., and H. Ono, Residuated Lattices: An algebraic glimpse at logics without contraction, monograph, March, 2001.

  12. Lafont, Y., \lsThe finite model property for various fragments of linear logic\rs, Journal of Symbolic Logic 62 (1997), 1202–1208.

    Google Scholar 

  13. Maehara, S., \lsLattice-valued representation of the cut-elimination theorem, Tsukuba Journal of Mathematics 15 (1991), 509–521.

    Google Scholar 

  14. Meyer, R. K., Topics in modal and many-valued logic, Doctoral dissertation, University of Pittsburgh, 1966.

  15. R. K. Meyer, and H. Ono, \lsThe finite model property for BCK and BCIW\rs, Studia Logica 53 (1994), 107–118.

    Google Scholar 

  16. Okada, M., \lsPhase semantics for higher order completeness, cut-elimination and normalization proofs (extended abstract)\rs, Electronic Notes in Theoretical Computer Science 3 (1996).

  17. Okada, M., and K. Terui, \lsThe finite model property for various fragments of intuitionistic linear logic\rs, Journal of Symbolic Logic 64 (1999), 790–802.

    Google Scholar 

  18. Ono, H., \lsSemantics for substructural logics\rs, in: K. Do\<sen and P. Schroeder-Heister, (eds.), Substructural Logics, Oxford University Press, 1993, pp. 259–291.

  19. Ono, H., \lsDecidability and the finite model property of substructural logics\rs, in J. Ginzburg et. al., (eds.), Tbilisi Symposium on Logic, Language and Computation: Selected Papers (Studies in Logic, Language and Information), CSLI, 1998, pp. 263–274.

  20. Ono, H., \lsProof-theoretic methods for nonclassical logic \3-an introduction\rs, in M. Takahashi, M. Okada and M. Dezani-Ciancaglini, (eds.), Theories of Types and Proofs (MSJ Memoirs 2), Mathematical Society of Japan, 1998, pp. 207–254.

  21. Ono, H., \lsClosure operators and complete embeddings of residuated lattices\rs, Studia Logica 74 (2003), 427–440.

    Article  Google Scholar 

  22. Ono, H., \lsCompletions of algebras and completeness of modal and substructural logics\rs, in P. Balbiani et al, (eds.), Advances in Modal Logic 4, King's College Publications, 2003, pp. 335–353.

  23. Ono, H. and Y. Komori, \lsLogics without the contraction rule\rs, Journal of Symbolic Logic 50 (1985), 169–201.

    Google Scholar 

  24. Sch\:utte, K., \lsSyntactical and semantical properties of simple type theory\rs, Journal of Symbolic Logic 25 (1960), 305–325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belardinelli, F., Jipsen, P. & Ono, H. Algebraic Aspects of Cut Elimination. Studia Logica 77, 209–240 (2004). https://doi.org/10.1023/B:STUD.0000037127.15182.2a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STUD.0000037127.15182.2a

Navigation