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Abstract. In recent years, network of workstations/PCs (so called NOW) are becoming appealing

vehicles for cost-effective parallel computing. Due to the commodity nature of workstations and

networking equipment, LAN environments are gradually becoming heterogeneous. The diverse sources of

heterogeneity in NOW systems pose a challenge on the design of efficient communication algorithms for

this class of systems.

In this paper, we propose efficient algorithms for multiple multicast on heterogeneous NOW systems,

focusing on heterogeneity in processing speeds of workstations/PCs. Multiple multicast is an important

operation in many scientific and industrial applications.

Multicast on heterogeneous systems has not been investigated until recently. Our work distinguishes

itself from others in two aspects: (1) In contrast to the blocking communication model used in prior works,

we model communication in a heterogeneous cluster more accurately by a non-blocking communication

model, and design multicast algorithms that can fully take advantage of non-blocking communication. (2)

While prior works focus on single multicast problem, we propose efficient algorithms for general, multiple

multicast (in which single multicast is a special case) on heterogeneous NOW systems. To our knowledge,

our work is the earliest effort that addresses multiple multicast for heterogeneous NOW systems.

These algorithms are evaluated using a network simulator for heterogeneous NOW systems. Our

experimental results on a system of up to 64 nodes show that some of the algorithms outperform others in

many cases. The best algorithm achieves completion time that is within 2.5 times of the lower bound.

Keywords: collective communication heterogeneous network of workstations, parallel processing,

multiple multicast, scheduling algorithms

1. Introduction

Due to the commodity nature of workstations and networking equipments, LAN
environments are gradually becoming heterogeneous. The heterogeneity could be
due to the difference in processing speed and communication capability of the
workstations, or coexistence of multiple network architectures or communication
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protocols. This trend is forcing network of workstations/PCs to be redefined as
heterogeneous network of workstations (HNOW).
Many research projects are currently in progress to provide efficient communica-

tion for NOW systems [2, 7, 11, 12, 15, 16, 21, 27, 30]. However, most of these
research projects focus on homogeneous NOWs, systems comprising of the same
type of PCs/workstations connected over a single network architecture. Commu-
nication algorithms designed for homogeneous clusters have been shown to be very
inefficient for heterogeneous clusters [3].
Collective communication, where all processors contribute data to a result that

may arrive at one or all processors, provides important functionality for many
applications, and thus efficient implementations of collective communication is
crucial for achieving maximum performance in message-passing systems. Typical
examples of collective communication include multicast, broadcast, multiple
multicast, gather, scatter, and all-to-all personalized communication.
In this paper, we study the multicast problem in HNOW systems. Multicast is an

important operation in many scientific, industrial, and commercial applications. In a
single multicast, the source node sends the same message to a subset of nodes in the
system. Multiple multicast is a general case in that multiple source nodes issue
multicast communication simultaneously. Multiple multicast is frequently used in
sparse matrix computation and many scientific simulation problems [19].
Multicast can be implemented at different levels: hardware-supported, network

interface firmware-supported, and software implementation based on point-to-point
messages. We focus on software implementation of multicast because it does not
require modification of hardware/firmware and therefore is portable to different
cluster environments.
Software-based multicast on heterogeneous systems has not been investigated

until very recently. In software-based approach, a multicast is implemented as p
sequences of send/receive tasks, where p is the number of processors involved in the
multicast. The fact that finding optimal sequences of tasks for multicast on
heterogeneus systems is NP-complete has led to a number of research works on
devising heuristic algorithms [3, 23, 25]. These works have two restrictions, however.
First, they all focus on single multicast. Although a multiple multicast operation can
be implemented by performing the single multicast operations individually, it may
not be the most efficient way to do it. Secondly, prior works all assume a blocking
communication model; that is, a node cannot send a message until the previously
sent message has been received by the destination node. However, many networks
and operating systems support non-blocking communication; that is, after an initial
start-up time, the sender can send the next message. The previously sent messages
can be completed by the network without intervention of the sender. Thus, a node
can send out several messages before the first message is received by the destination.
To optimize performance of multicast communication, it is extremely important to
take the factor of non-blocking communication into consideration when designing
algorithms, which is not possible under a blocking communication model.
In this paper, we design efficient algorithms for multiple multicast in

heterogeneous systems under a non-blocking communication model. Our commu-
nication model represents the communication latency between two processors Pi and
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Pj using three parameters: (1) Send overhead on sender Pi, (2) data transmission
time, and (3) receive overhead on Pj. Under this model, we formalize the multiple
multicast problem as finding for each processor a sequence of send/recv operations
(call it task schedule) that lead to minimum completion time of the multicast. Since
the problem of finding optimal task schedule for multicast is NP-complete, we have
developed several heuristic algorithms based on our communication model.
In this paper, we present the heuristic algorithms that we have implemented. Two

algorithms, the fastest edge first (FEF) and the earliest completion first (ECF) are
modified based on existing algorithms for single multicast. The algorithms earliest
available earliest completion first, round-robin (RR), and a randomized algorithm
are motivated by scheduling strategies in operating systems and parallel and
distributed computing systems. The algorithm work racing (WR) is new. The WR
algorithm proposes a notion of virtual time, which estimates the time a destination
node has spent in receiving messages. The algorithm selects receiving nodes based on
their virtual time. We show that the WR algorithm has low cost and generates the
best task schedule.
In addition to these algorithms, we have also proposed an optimization that can

fully take advantage of non-blocking communication. This optimization fills the
receiving node’s idle time frames with useful send operations as much as it allows.
With this optimization, the completion time of multiple multicast can be greatly
shortened.
These algorithms are evaluated using a network simulator for HNOW systems.

Our experimental results on a system of up to 64 nodes demonstrate performance
improvement of multiple multicast by 20% to 160% compared to existing algorithms.
The rest of the paper is organized as follows. Section 2 defines our communication

model for heterogeneous NOW systems. Section 3 formulates the multiple multicast
problem based on our communication model. Section 4 presents our heuristic
algorithms for multiple multicast. Section 5 describes the optimization for non-
blocking communication. Section 6 uses an example to illustrate the algorithms and
the optimization. Section 7 reports our simulation results for multiple multicast on a
heterogeneous NOW system. Section 8 reviews related works. Section 9 gives some
concluding remarks and outlines our future work.

2. Communication model for heterogeneous systems

We assume that a collective operation is implemented by a series of point-to-point
message passing. Since in this paper, we focus on the heterogeneity in processing
speeds of the processors, we make an assumption that there is a direct link between
every pair of processors, so each pair of processors can pass messages independent of
other processors. Under this assumption, we adopt the model for point-to-point
communication on heterogeneous network of workstations proposed by Banikazemi
et al. [4]. To make this paper self-contented, we give a brief overview of the
communication model.
The model measures the cost of a point-to-point message transfer between the

sender Pi and the receiver Pj using three parameters (1) the send overhead Sði;mÞ,
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which represents the message initialization cost on sender Pi for sending a message of
length m, (2) the network link transmission rate Xði; jÞ, which accounts for the unit
transmission time between Pi and Pj, and (3) receive overhead Rð j;mÞ, which
represents the software overhead on receiver Pj for receiving and copying the
message from the network buffer to the user space. Based on these three parameters,
the latency for transmitting a message of length m between the two nodes is given in
Equation (1).

Tði; j;mÞ ¼ Sði;mÞ þ Xði; jÞ �mþ Rð j;mÞ: ð1Þ

For a short message, the send overhead and receive overhead are nearly constant
and independent of the message size. However, for a long message, the message size-
dependent cost contributing to the software overhead dominates the overall software
cost. Let ScðiÞ and RcðiÞ be the constant factors of the send and receive costs of node
Pi, respectively, and Smi and Rmi be the message-dependent parts. The send
overhead Sði;mÞ and receive overhead Rði;mÞ of node Pi for a message of size m can
be further refined as the following. Each parameter in the equation can be measured
using the ping-pong scheme described in Banikazemi et al. [4].

Sði;mÞ ¼ ScðiÞ þ SmðiÞ �m; ð2Þ
Rði;mÞ ¼ RcðiÞ þ RmðiÞ �m: ð3Þ

Note that in HNOW systems these parameters may vary for different pairs of
nodes. Furthermore, in this paper we make the following assumptions.

. A send operation is non-blocking. In other words, after an initial start-up time
(i.e., the send overhead), the sender can execute its next send operation.

. A receive operation is blocking. That is, after issuing a receive operation the
receiving node can continue to execute its next operation only when the received
message arrives and is removed from the local network buffer to the local memory
of the receiving node. We consider this assumption reasonable as in most
applications, the computation following a receive operation is very likely to
require data in the received message and hence the computation cannot start until
the required data is ready in the local memory.

3. Multiple multicast problem

This section formulates the multiple multicast problem using the notion of task
schedule.

3.1. Definitions

A multiple multicast has multiple source nodes multicasting their messages to their
destination nodes simultaneously. Consider a HNOW system consisting of N nodes
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and let N ¼ fP1; P2; . . . ;PNg be the set of all nodes. Let S denote the set of the
multicast source nodes, and Di(N� fPig be the set of destination nodes for source
node Pi [ S. After the multiple multicast communication, each node in Di has a copy
of the message from source node Pi, denoted by mi. Both a single broadcast and an
all-to-all broadcast are special cases of multiple multicast. Figure 1(a) shows an
example of two multicast operations.
The multiple multicast is accomplished by a series of communication tasks. A

communication task ðop; i; j; kÞ is a send or receive operation that Pi is scheduled to
execute. For op ¼ send; Pi is scheduled to send mk to Pj, where Pi [Dk þ fPkg and
Pj [Dk. For op ¼ recv; Pi is scheduled to receive mk from Pj where Pi [Dk and
Pj [Dk þ fPkg. The task schedule of Pi, denoted by TaskListi, is an ordered list of
communication tasks ðop; i; j; kÞ. The tasks in the task schedule are executed in the
order they appear. Figure 1(b) illustrates a communication schedule for the multicast
with source P1.
The multiple multicast scheduling problem is to determine a task schedule for each

participating node so that the time to deliver all the messages is as short as possible.
In addition, for dynamic patterns of multicast, the scheduling needs to be done on-
line. Thus the scheduling algorithm must generate efficient task schedule within
reasonable amount of time.

3.2. A lower bound

We first derive a lower bound on the time to solve a multiple multicast problem as
the basis for evaluating our algorithms. Since it is too computationally expensive to

Figure 1. An example of multiple multicast.
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determine the optimal completion time of a multiple multicast, we idealize our model
and deduce an idealized optimal completion time as a lower bound. In this model, we
assume that a node is allowed to receive a message and, meanwhile, send multiple
messages in parallel. That is, a receive operation will not be delayed by any send
operation, and the messages from one node to different destinations can be
processed in parallel.
Since the completion time of a multiple multicast is determined by the maximum

of the task completion time of all the destination nodes, we can compute the lower
bound on the task completion time for each destination node, and select the
maximum as the lower bound on the overall completion time. First, we compute the
shortest path for each pair of source and destination in the idealized model. Let
L½Pj;Pi� denote the cost of the shortest path from source Pj to its destination Pi, that
is, L½Pj;Pi� represents the earliest-reach-time at which the message from Pj can reach
Pi. Thus, the lower bound on the task completion time of a destination node can be
defined as follows.

Definition 1 Assume that a node Pi needs to receive messages from ni source nodes.
Let IðkÞ denote the k-th source node from which Pi receives the message. Suppose
that Pi receives messages in the increasing order of the earliest reach times of the
messages, that is, L½IðkÞ;Pi� � L½Iðk� 1Þ;Pi� for 1 < k � ni, then we call this
receiving order the earliest-reach-first order.
Let lk be the message size of the k-th source node IðkÞ. The earliest receiving time

for Pi to complete receiving the message from the k-th source node IðkÞ, denoted by
Trði; kÞ, can be derived recursively as follows. Note that Equation (4) uses the fact
that the receive overhead from different source nodes cannot overlap, and the
earliest-reach-first order can minimize Trði; kÞ.

Trði; kÞ ¼
L½IðkÞ; i�; k ¼ 1
maxfTrði; k� 1Þ þ Rði; lkÞ;L½IðkÞ; i�g; 1 < k � ni:

�
ð4Þ

The lower bound on the completion time of the multiple multicast is the maximum of
all Trði; niÞ, for all i.

4. Scheduling algorithms for multiple multicast

In this section, we present the heuristic algorithms we have devised for implementing
multiple multicast on HNOW systems. The heuristics are FEF, ECF, earliest-
available-first (EAF), RR, receiver random selection (RRS) and WR. We first give
some definitions.

Available time. The available time of Pi, denoted as Availi, is the earliest time at
which Pi can execute a new task. Initially, the available time of the participating
nodes is zero.
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Arrival time. Assume that Pi is scheduled to send mk to Pj. Let lk be the size of mk,
then mk will arrive at the network buffer of Pj at time ArrivalTimeði; j; kÞ.

ArrivalTimeði; j; kÞ ¼ Availi þ Sði;mÞ þ Xði; jÞ � lk: ð5Þ

Completion time. The completion time, CompleteTimeði; j; kÞ of a task ðsend; i; j; kÞ is
defined as follows. If the destination node Pj is not available when mk arrives at its
network buffer, it will not be processed until Pj becomes available.

CompleteTimeði; j; kÞ ¼ maxðArrivalTimeði; j; kÞ;AvailjÞ þ Rð j; lkÞ: ð6Þ

4.1. Fastest-edge-first algorithm

The FEF heuristic algorithm was first proposed in Prasanna et al. [26] for
implementing single multicast on heterogeneous NOW systems. We extend the FEF
algorithm to solve the multiple multicast problem. We keep a sender set Ak and a
receiver set Bk for each source node Pk of the multiple multicast. A node in Ak can
relay the message it received to other destination nodes. Initially Ak ¼ fPkg and Bk

contains all the destination nodes of Pk.
In each iteration we select the ði; j; kÞ that has the smallest weight, where node Pi

belongs to Ak and node Pj belongs to Bk. We then move Pj from Bk to Ak. The same
steps repeat until all Bk become empty. The Weight of a tuple ði; j; kÞ is defined as the
point-to-point latency between the sender Pi and the receiver Pj as follows.

Weightði; j; kÞ ¼ Sði; lkÞ þ Xði; jÞ � lk þ Rð j; lkÞ: ð7Þ

Similar to Raghavendra et al. [25], we keep a sorted tuple list and a sorted sender
list according to their weights. The sorting process takes OðN3 logNÞ time steps
where N is the number of processing nodes in the network, and this process
dominates the total execution time of this algorithm. Therefore, the complexity of
this algorithm is OðN3 logNÞ.

Fastest-edge-first algorithm

Step 1: Select a ði; j; kÞ with minimum Weightði; j; kÞ, where Pi [Ak and Pj [Bk.
Step 2:

Ak /Ak þ fPjg
Bk /Bk � fPjg
AppendTaskðTaskListi; ðsend; i; j; kÞÞ
AppendTaskðTaskListj; ðrecv; j; i; kÞÞ

Step 3: Repeat Steps 1 and 2 until all Dk become empty.
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4.2. Earliest-completion-first algorithm

The ECF heuristic algorithm was also proposed in Prasanna et al. [26] for single
multicast. The ECF algorithm determines the schedule iteratively. In each
iteration the ECF algorithm selects the task (i.e., the sender and receiver pair)
that has the earliest completion time as defined in Equation (4) as the next task to
schedule. The same process repeats until all destination nodes have received the
message.
We extend the ECF algorithm to implement multiple multicast. We also modify

the definition of available time of a node to model non-blocking communication
more accurately. Since with non-blocking send, a sender can send a new message
right after the previous message is transmitted into the network, the available time
for the sender and the receiver is updated in different ways as shown in the following
pseudo code algorithm.
Similar to the FEF algorithm, for each source node Pk of the multiple multicast,

we keep a sender set Ak and a receiver set Bk. In each iteration, the algorithm selects
the earliest completing task for each source node which has not yet completed its
multicast operation. Then,among these earliest-completing tasks, it selects the task
with the minimum completion time as the next task to be scheduled. The receiver of
the selected task is then moved from the receiver set to the sender set. Note that the
tasks from different multicasts may interleave as a result of the ECF selection
process.
In Raghavendra et al. [25], a sorted sender list according to their minimum

completion time is maintained. Unfortunately, for multiple multicast problems this
is not possible because the completion time of a sender/receiver/message tuple also
depends on the available times of the sender and the reciever. Therefore, the
available time of a node needs be calculated dynamically during each iteration of the
algorithm. In each iteration, it requires OðN2Þ steps to compute the available times
of the senders and receivers. The algorithm iterates N2 times. Therefore, the total
time for the ECF algorithm is OðN4Þ.

Earliest-completion-first algorithm

Step 1: For all k that Bk is not empty, choose ði; j; kÞ with minimum Ck ¼
CompleteTimeði; j; kÞ where Pi [Ak and Pj [Bk.
Step 2: Choose k such that Ck is the minimum.

Ak /Ak þ fPjg
Bk /Bk � fPjg
AppendTaskðTaskListi; ðsend; i; j; kÞÞ
Availi /Availi þ Sði; lkÞ
AppendTaskðTaskListj; ðrecv; j; i; kÞÞ
Availj /CompleteTimeði; j; kÞ

Step 3: Repeat Steps 1 and 2 until all Bk become empty.
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Our experimental study shows that the ECF algorithm delivers good performance
in multiple multicast. However, the scheduling time of the ECF algorithm OðN4Þ is
substantially higher than that of the FEF algorithm OðN3 logNÞ in a large system
(up to 64 nodes), since it has to consider all the possible sender-receiver pairs per
iteration. This makes the ECF algorithm impractical for scheduling dynamic
multicast patterns. In the following subsections, we present several algorithms that
has lower scheduling complexity of OðN3Þ. The idea is to reduce the search space by
selecting the receiver node first and then select the sender and the message within the
source set of the receiver node. We propose four heuristics for this purpose, namely
WR, EAF, RR, and RRS.
Some of these algorithms generate task schedules that are competitive to the ECF

algorithm. In the following, we describe each of these algorithms.

4.3. Work racing algorithm

In our communication model, a receive operation is blocking, that is, if multiple
messages arrive at the receiving node, they will be queued in the buffer until the
receiving node has finished receiving previous message. The key idea in the WR
heuristic is that, if the chance of message built-up at the destination nodes is reduced,
then the messages can be delivered as early as possible, resulting in earlier completion
of the multicast. One way to implement this strategy is to allow faster destination
node to receive messages more often than slower nodes. However, the scheduling
should also be fair so that slower nodes will not be starved forever.
We define the notion of virtual time of a destination node, which estimates the

time this destination node has spent in receiving messages. WR selects the
destination node with the earliest virtual time as the receiver of the next message.
Then WR selects a message and a sender for this message based on the ECF
principle. The new send and receive tasks are then appended to the task schedules of
the sender and the receiver, respectively. After that, the virtual time of the receiver is
increased by the amount of work it has just accomplished. This mechanism ensures
that the faster destination node will be selected more often, and each destination
node will be scheduled fairly according to their communication capability. In the
following we elaborate on this algorithm.

. For each destinationPi, assumingPi has receivedmessages from k sources so far, the
WR algorithm keeps the record of the virtual time, denoted byWi;k, which indicates
the services that Pi has received from its sources. Initially, Wi;0 is set to zero.

. While scheduling a new task, the WR algorithm selects the destination node which
has the earliest virtual time. If there are multiple possibilities, it chooses the fastest
one.

. Each destination node Pi keeps a set of source nodes SRi of the multiple multicast
in which Pi is a destination. Each source node Pk keeps a set of sender nodes Ak

which contains the nodes that have received message mk. Nodes in Ak may relay
mk to other nodes. When a destination Pi is selected, the WR algorithm chooses a
source Pm from SRi and a sender Pj from Am such that the completion time of the
task ðsend; j; i;mÞ is the minimum.
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. The destination Pi will be scheduled a receive task ðreceive; i; j; kÞ. Assume that this
is the k-th receive task that Pi has been scheduled (and we will call the source node
of this message the k-th source node of Pi), the virtual timeWi;k of Pi is updated as
follows:

Wi;k ¼
Ar½k; i� þ Rði; lkÞ; k ¼ 1
maxfWi;k�1;Ar½k; i�g þ Rði; lkÞ; k > 1,

�
ð8Þ

where lk is the message length of this receive task and Ar½k; i� is the time at which
the message from the k-th source node arrives at Pi. Let the source node of the
message be the n-th source in sender Pj. Then, Ar½k; i� is calculated as follows:

Arðk; iÞ ¼
Ws;n þ Sðs; lkÞ þ Xðs; iÞ � lk; if Ps is not the source node

Sðs; lkÞ þ Xðs; iÞ � lk; otherwise.

�
ð9Þ

. Finally, the source node Pj is removed from the source set SRi of the destination
Pi, and the destination Pi is added to the sender set Ak of the source Pk of the
multicast.

In general, the completed work of a faster node advances more slowly than that of a
slower node. Thus, a faster destination node can be scheduled earlier than a slower
one. Consequently, a faster node has more chances to relay messages for the sources
to the slower nodes.

Work-racing scheduling algorithm

Let SRi be the set of source nodes for a receiving node Pi. Initially, SRi contains all
the source nodes of the multiple multicast which has Pi in their destination sets.
Similar to the FEF and the ECF algorithms, we define a sender set Ak for each
source Pk of the multiple multicast.

Step 1: Let Pi be the node with the minimum completed work whose source set SRi is
not empty. If there are multiple possibilities, choose the fastest one.
Step 2: Choose Pk [SRi and Pj [Ak such that the completion time of the task
ðsend; j; i; kÞ is the minimum. Assume the source of this task (i.e., Pk) is the m-th
source in Pi.

Ak /Ak þ fPig
SRi /SRi � fPkg
ComputeWi;m

AppendTaskðTaskListj; ðsend; j; i; kÞÞ
Availj /Availj þ Sð j; lkÞ
AppendTaskðTaskListi; ðrecv; i; j; kÞÞ
Availi /CompleteTimeð j; i; kÞ

Step 3: Repeat Steps 1 and 2 until all SRi become empty.
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For each destination node Pi, we sort its source nodes in increasing order of their
message lengths. In each iteration of the algorithm, when the destination node and
its message source and sender have been selected, those senders that are not selected
are marked and do not need be checked again. Therefore, for a selected receiver, it
only takes OðNÞ time steps to select the message source and the sender. The
algorithm iterates at most N2 times for multiple multicast. Therefore, the overall
complexity of the WR algorithm is OðN3Þ.

4.4. Summary

This section describes the heuristic algorithms that we have devised for implementing
multiple multicast on HNOW systems. The ECF algorithm has very high scheduling
overhead OðN4Þ. The receiver-based algorithms, including the EAF, RR, RRS, and
WR, reduce scheduling time to OðN3Þ. The performance comparison of the task
schedules generated by these algorithms will be reported in Section 7.

5. Optimization for non-blocking communication

Our communication model assumes that send operations are non-blocking and
receive operations are blocking. After issuing a non-blocking send operation, a
sender only has to wait until the message goes into the network, then it can start its
next communication. In contrast, a node performing a blocking receive operation
cannot issues another communication until the incoming message is received
completely (Equation (1)). For small messages, network transmission time is small
compared to the software overhead on the sender and the receiver. However, for
large messages, network transmission time dominates the communication latency,
therefore, the time a receiver spends in waiting for the messages to go through the
network can substantially degrade communication performance.
We illustrate this phenomenon by an example. In previous scheduling algorithms,

we always append the new task to the end of the task schedule. This can incur much
longer waiting time than necessary. In Figure 2(a), a receive operation recv½k� is
issued at time t1. However, the message will not arrive until time t4, making the
receiver idle waiting from t1 to t4.
To overcome this problem, we propose an optimization to preempt blocking

receive operation with non-blocking send operation, under the assumption that it
will not invalidate the original multicast schedule. As illustrated in Figure 2(b), if we
preempt the receive task, recv½k�, with the send tasks send½2� and send½3�, and issue
send½k� at t3 instead, the waiting time is reduced from ðt4� t1Þ to ðt4� t3Þ. The idea
is that if a new task can preempt a prescheduled receive task safely, we can reduce the
waiting time by delaying the preempted receive task.
To preempt a receiving task without invalidating the original schedule, we need to

observe the following rules.
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. The send tasks must be executed in the order as they appear in their schedule list.
As in Figure 3(a), the task send½k� must appear before send½kþ 1�.

. If the sender of a task is not the source node of the message, the new send task
must be scheduled after the sender has received the message. This is to ensure that
a sender will not relay a message that it has not yet received. Figure 3(b) shows
that only after the task recv½hþ u� in which the sender of send½kþ 1� receives the
message will it relay to the receiver of send½kþ 1�.

. The preempting send tasks cannot delay the completion time of the preempted
receiving task. To avoid interfering the execution of the preempted receive task½k�
in Figure 3(c), the completion time of the preempting send task must be earlier
than the arrival time of the message that task½k� is waiting for. Let lk and lt be the
message sizes in task½k� and the new send task, respectively, and task½ j� be the task
preceding task½k� in the task schedule before the new task is scheduled. The
following condition must hold for the new send task to preempt task½k�.

ðCompletionTimeðtask½k�Þ � Rði; lkÞÞ � CompletionTimeðtask½ j�Þ

� Sði; ltÞ: ð10Þ

Figure 2. Preemptive scheduling of send tasks.

Figure 3. Examples of preemption rules.
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To facilitate the implementation of this optimization, we classify the available time
of a node into two: The receive available time and the send available time. The
receive available time of Pi is the earliest time that Pi can issue a receive, which is
defined as the maximum between the completion time of the last send task and the
last receive task. The send available time of Pi for Pk is defined as the earliest time
that Pi can send out mk that satisfies all three rules listed above. The send available
time should be later than both the completion time of the last send task by Pi and the
completion time of the receive task in which Pi receives mk. In the optimized
algorithm, the sender and the receiver will update their completion time of a
communication task with new definitions of available times.
Figures 15 and 16 illustrate the details of finding the location to insert a new send

task. The procedureUpdateSenderState (Figure 13) deals with the preempting process
of a new send task in the sender. The procedureUpdateReceiverState (Figure 14) deals
with the process of appending the new receive task to the task schedule of the receiver.
We improve our previous algorithms including ECF, WR, EAF, RR and RRS

algorithms by this preemption optimization. The optimized versions of these
algorithms are named as ECFP, WRP, EAFP, RRP and RRSP algorithms. All these
algorithms have the same structure of updating available time and task schedules.
The ECFP algorithm is listed below as an example.
Let SRi be the set of source nodes for a receiving node Pi. Initially, SRi contains

all the source nodes of the multiple multicast which has Pi in their destination sets.
Also, we define a sender set Ak for each source Pk of the multiple multicast.

Earliest-completion-first preemptive algorithm (ECFP)

Step 1: For all k that Bk is not empty, choose ði; j; kÞ with minimum Ck ¼
CompleteTimeði; j; kÞ where Pi [Ak and Pj [Bk.
Step 2: Choose k such that Ck is the minimum.

Ak /Ak þ fPjg
Bk /Bk � fPjg
UpdateReceiverStateð j; i; k;CompleteTimeði; j; kÞÞ
UpdateSenderStateði; j; kÞ

Step 3: Repeat Steps 1 and 2 until all Bk become empty.

Since the preemption optimization does not change the structure of the
unoptimized algorithms, the optimized algorithms also generate communication
schedule in OðN3Þ time steps.

6. An example

In this section, we use an example to illustrate these non-preemptive and preemptive
algorithms. The communication involves three multicast patterns, with P0; P1 and
P2 as the sources respectively as shown in Figures 4 and 5.
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Figure 4. An example of task schedules generated by the non-preemptive algorithms.
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Figure 5. An example of task schedules generated by the preemptive algorithms.
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Let ði; j; kÞ be a communication task where Pi sends the message to the receiver Pj

for source Pk. In Figure 4(a), the sequence of the tasks selected by the FEF algorithm
is (0, 1, 0), (2, 0, 2), (0, 1, 2), (0, 2, 0), (1, 2, 1), (0, 3, 2), and (1, 3, 1), where i denotes
the sender, j denotes the receiver and k denotes the message source. In Figure 4(b),
the sequence of the tasks ði; j; kÞ selected by the ECF algorithm is (0, 1, 0), (2, 0, 2),
(2, 1, 2), (0, 2, 0), (0, 3, 2), (1, 2, 1) and (1, 3, 1). The completion times corresponding
to these tasks are 4, 5, 7, 12, 13, 18, and 19.
In Figure 4(c), the WR algorithm selects task schedules according to the receiving

nodes’ completed work. In the first step node P0 is chosen as the receiver and then
the source P2 from its source set is selected. This task is denoted by (2, 0, 2). After
task (2, 0, 2) is scheduled, the completed work for this first receive task in P0, denoted
by W0;1, is updated as W0;1 ¼ Sð2Þ þ Rð0Þ ¼ 2þ 3 ¼ 5, and so on. At the fourth
step, the task (0, 3, 2) is scheduled and it is the first receive task of P3. Since for this
task P0 relays the message for source P2, the completed work for this task, denoted
by W3;1, should be updated as follows.

W3;1 ¼ W0;1 þ Sð0Þ þ Rð3Þ ¼ 5þ 1þ 6 ¼ 12:

The resulting task schedule is (2, 0, 2), (2, 1, 2), (0, 2, 0), (0, 3, 2), (0, 1, 0), (1, 2, 1)
and (1, 3, 1).
In Figure 4(d), the EAF algorithm selects the destination with the minimum

available time as the receiver of a new task. Thus, the sequence of tasks selected by
the EAF algorithm is (2, 0, 2), (2, 1, 2), (2, 3, 2), (0, 2, 0), (0, 1, 0), (1, 2, 1) and (1, 3, 1).
In Figure 4(e), the task schedule derived by the RR algorithm is (2, 0, 2), (2, 1, 2),
(0, 2, 0), (0, 3, 2), (0, 1, 0), (1, 2, 1) and (1, 3, 1). From the previous sequence, it can be
observed that the destination nodes take turn to be the receivers of the tasks. In
Figure 4(f), the RRS algorithm selects the receiver randomly for a new task. The
resulting sequence of tasks is (0, 1, 0), (2, 1, 2), (2, 0, 2), (2, 3, 2), (0, 2, 0), (1, 3, 1) and
(1, 2, 1).
For the preemptive scheduling algorithms, the results are illustrated in Figure 5. In

Figure 5(a), the sequence of tasks derived by the earliest completion first preemptive
(ECFP) algorithm is (0, 1, 0), (2, 0, 2), (2, 1, 2), (1, 3, 1), (0, 2, 0), (0, 3, 2) and (1, 2, 1).
Compared with the sequence in the ECF scheme, for example, at the fourth step the
ECFP scheme schedules the task (1, 3, 1) instead of the task (0, 2, 0) in the ECF
scheme. The trick in this difference is that the ECFP scheme preempts the receive
task (0, 1, 0) and utilizes the waiting time to schedule the send task (1, 3, 1).
In Figure 5(b), by preempting receive operations with non-blocking send

operations, the work racing preemptive (WRP) algorithm generates the following
task schedule: (2, 0, 2), (0, 1, 0), (0, 2, 0), (1, 3, 1), (0, 1, 2), (1, 2, 1), and (0, 3, 2). In
Figure 5(c), the resulting sequence of tasks generated by the earliest available first
preemptive (EAFP) scheme is (2, 0, 2), (0, 1, 0), (1, 3, 1), (0, 2, 0), (0, 1, 2), (0, 3, 2) and
(1, 2, 1). In Figure 5(d), the round robin preemptive (RRSP) algorithm derives the
following sequence of tasks: (2, 0, 2), (0, 1, 0), (0, 2, 0), (1, 3, 1), (0, 1, 2), (1, 2, 1) and
(0, 3, 2). In Figure 5(e), the sequence of tasks generated by the receiver random
selection preemptive (RRSP) algorithm is (0, 1, 0), (2, 1, 2), (2, 0, 2), (1, 3, 1), (0, 2, 0),
(0, 3, 2) and (1, 2, 1).
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7. Experimental results

To evaluate the performance of the scheduling algorithms, we developed a software
simulator for heterogeneous networks. The simulation is modeled by the number of
nodes, the processing speeds of the nodes, the network bandwidth, and the multicast
patterns. Since in this paper we do not consider the effect of network contention, we
assume the processors in the network are fully connected (each pair of processors can
communicate independent of others).
Recall the point-to-point latency between two nodes given in Equations (2) and (3)

in Section 2. The send/receive overheads of each processor are chosen randomly
from an interval as described below. The constant parts (Sc and Rc) are in the range
of 80 to 400 ms, and the length-dependent parts (Sm and Rm) are in the range of
0:0001 to 0.01 ms/byte. The network bandwidth between a pair of processors is
randomly chosen as either 155Mbps (slow links) or 1Gbps (fast links). For each
data point, the multicast performance was averaged over 100 different system
configurations.
We consider three sets of message lengths in our experiments—all small messages

ð� 1 kbytesÞ, all large messages (1 and 1.5Mbytes), and a mixture of small and
large messages. In the following, we present and discuss the results for three
multicast patterns: single broadcast, all-to-all broadcast, and general multiple
multicast.

7.1. Single broadcast

The broadcast time on a N-node system is measured as follows. We repeat the
broadcast for N times and each time a different processor is chosen as the source.
The time is measured as the average of the completion time from the N broadcasts.
Figure 6 shows the single broadcast time on different numbers of nodes. We note

that the completion time of the FEF algorithm is significantly higher than those of
the others. The reason is that FEF only considers the latency of a communication
task instead of the completion time of a task.

Figure 6. Broadcast completion time on a HNOW system: (a) non-preemptive schemes: from left to

right, the results of FEF, ECF, WR, EAF, RR, and RRS are shown. (b) preemptive schemes: from left to

right, the results of ECFP, WRP, EAFP, RRP, and RRSP are shown.
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For single broadcast, all the algorithms generate almost identical schedules,
resulting in similar completion time of multiple multicast. Randomized selection (the
RRS algorithm) does not perform as well as others, but still outperforms the FEF
algorithm.

7.2. All-to-all broadcast

For the all-to-all broadcast problem, we compare the timing results of the non-
preemptive and preemptive algorithms, with different number of nodes (up to 80
nodes), two message sizes (1 kbytes and 1Mbytes), and two network transmission
rates (155Mbps and 1Gbps). Figures 7 and 8 compare the performance of these
algorithms in a fast network (1Gbps) and a slow network (155Mbps) respectively.
In a fast network as shown in Figure 7, for short messages we note that the

completion times of the non-preemptive and preemptive versions of ECF, WR,
EAF, and RR algorithms are comparable to each other and are all within twice the
lower bound. Also shown in Figure 7(a), although the performance of the RRS
algorithm is not as good as the others, its completion times are still acceptable
compared to the FEF algorithm. For large messages, as shown in Figure 7(c), the
EAF and RR algorithms perform much worse than the ECF, WR and RRS
algorithms.

Figure 7. Completion time of all-to-all broadcast in a fast network.
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In Figure 7(b) and (d), the results of the preemptive schemes in a fast network for
short and large messages are shown respectively. It can be observed that the
completion times of all the five algorithms are comparable with each other.
Especially for the EAFP and RRP algorithms with large messages, the preemption
optimization provides great improvement over their unoptimized counterparts.
In a slow network, as shown in Figure 8, the performance advantage of the

preemptive algorithm is more significant since the network transmission latency
becomes more substantial. We also note that the EAF and RR schemes perform
more worse with large messages in a slow network. The completion time of the WRP
algorithm is within 2.5 times of the lower bound. The WR algorithm is competitive
to the ECF algorithm and outperforms ECF in many cases.
The computation (scheduling) times of all these algorithms are measured and

listed in Table 1. The WR, EAF, RR and RRS algorithms all have lower scheduling
overhead, and the ECF algorithm has the highest, making ECF impractical for
dynamic multicast patterns with short messages. The computation times of the
preemptive algorithms are about three to five times as much as those of their non-
preemptive counterparts.

7.3. Multiple multicast

For multiple multicast we consider a 64-node HNOW system, with three different
combinations of message lengths. Given the set of source nodes, we randomly choose

Figure 8. Completion time of all-to-all broadcast in a slow network.
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the destination nodes for each source node. The completion time is taken from the
average of 1,000 runs of simulation with random configuration of source and
destination nodes.
Figures 9 and 10 show the completion times in a fast network and a slow network

respectively. Similar to the results of the all-to-all broadcast, the ECF and the WR
algorithms perform the best among all non-preemptive algorithms, especially for
large messages (Figures 9(c) and 10(c)). The preemptive algorithms all have
comparable performances and significant improvement over the non-preemptive
ones. Figures 11 and 12 show the competitive ratio of the non-preemptive and
preemptive algorithms. The competitive ratio of an algorithm is defined as the ratio
of its completion time against the lower bound (defined in Section 2). It can be
observed that the completion times of the WRP algorithm are within 2.5 times of the
lower bounds in large systems.
Table 2 shows the computation time of the algorithms on a 64-node HNOW

system with different number of source nodes. Compared with the computation
times of ECF and ECFP, the non-preemptive and preemptive versions of WR, EAF,
RR and RRS algorithms have much lower scheduling time. The overhead is
negligible compared to the completion time of the multicast.

8. Related work

Collective communication for NOW has been studied in a number of research
projects [1, 5, 7–9, 12, 15, 16, 21, 27, 29]. Most of them are for homogeneous clusters.
The study on collective communication for heterogeneous networks of work-

stations was initiated by the ECO project [23]. ECO proposed heuristic algorithms to
partition the workstations participating in a collective communication into subnet-
works based on pair-wise round-trip latencies between workstations. It then
decomposes the collective communication into two phases: inter-subnetwork and
intra-subnetwork. ECO automatically chooses a suitable tree algorithm for each of
these phases. The network partitioning approach based on pair-wise round-trip
latencies was shown to be effective in implementing collective communication on

Table 1. The computation times (in �s) of the scheduling algorithms for all-to-all broadcast

Non-preemptive schemes Preemptive schemes

# of nodes FEF ECF WR EAF RR RRS ECFP WRP EAFP RRP RRSP

8 0.4 0.6 0.2 0.2 0.15 0.22 2 0.3 0.28 0.26 0.29

16 5 17 1 1 1 1 47 2 2 2 3

24 32 121 5 3 4 5 423 14 11 10 13

32 127 504 17 9 9 15 2,072 44 29 28 42

40 304 1,514 39 17 22 32 7,634 117 72 68 103

48 602 3,714 58 35 38 66 19,585 158 139 130 242

56 810 8,168 85 59 67 89 46,323 315 250 233 356

64 1,033 15,871 136 97 104 150 88,053 633 426 451 716

72 1,494 29,026 189 143 160 240 140,020 786 672 619 827

80 2,568 45,597 296 210 243 364 232,947 1,345 1,043 1,031 1,575
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heterogeneous networks (i.e., systems where multiple network architectures coexist).
However, it does not consider other types of heterogeneity, such as the
communication capabilities of individual workstations.
Banikazemi et al. [3] proposed two new algorithms to optimize multicast

communication for NOW with heterogeneity in communication capability of
workstations. The sped-partitioned ordered chain (SPOC) algorithm ordered the
participating nodes of a collective communication based on their communication
capabilities (measured by round-trip latency between different types of work-
stations), and then assigns the nodes to the binomial trees for broadcast/multicast
based on the ordering. The authors show that SPOC may not be efficient for general
cases and then proposed a greedy algorithm called fastest node first (FNF). In each

Figure 9. Completion time of multiple multicast in a fast network.
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iteration of the algorithm, the fastest node which has not received the message is
added to the tree. Their simulation results show that the FNF algorithm approaches
near optimal solution for multicast communication.
Although FNF can also be used for implementing multiple multicast by

constructing one tree for each multicast operation, it may not be the most efficient
way to do it. In this paper we take on this challenge and design efficient Cluster-
Agent based algorithms for all-to-all communication (all-to-all broadcast, complete
exchange, and multiple multicast) for NOW/HNOW.
Raghavendra et al. [25] proposed a communication framework that characterizes

heterogeneity of both processing nodes and networks. A cost function is constructed

Figure 10. Completion time of multiple multicast in a slow network.
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for each pair of nodes, which represents the communication cost between the two
nodes. Based on the communication framework, the authors designed three heuristic
algorithms FEF, ECF, and Look-ahead (LA) for multicast and broadcast on
distributed networks. The experimental results show that FEF, ECF and LA
outperform the FNF approach significantly on distributed heterogeneous networks.
The same group also developed a greedy algorithm (call it Openshop) for all-to-all
personalized communication on heterogeneous systems [26]. The algorithm is based
on the openshop scheduling problem and schedules the messages according to the
earliest available time of the processing node.
Jacunski et al. [17] studied all-to-all broadcast on clusters of workstations based

on commodity switch-based networks. A new algorithm called link scheduling,

Figure 11. Competitive ratio for the multiple multicast in a fast network.
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which is an enhancement to the simultaneous broadcast algorithm, was proposed to
avoid link contention problem between switches. The basic idea is that use of the
interconnecting link is scheduled among nodes in a way that permits every node to
remain busy with useful work. Since the link scheduling algorithm employs a
homogeneous scheduling algorithm for all-to-all broadcast between the nodes
connected to the same switch, it may not be efficient for heterogeneous NOW.
Kielmann et al. [20] design efficient algorithms for collective communication

operations (barrier, broadcast, reduction, personalized communication) on wide
area networks with heterogeneous network speeds. The algorithms are wide area

Figure 12. Competitive ratio for the multiple multicast in a slow network.
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optimal in that an operation incurs only a single wide area latency, and every data
item is sent at most once across each wide area link.
Another line of works focus on irregular all-to-all communication on distributed-

memory systems [13, 22, 28]. Unlike the works described above, this line of works
study heterogeneity in the length of messages, rather than that of machine
characteristics. Typically, these algorithm reduce communication latency using
several strategies, including reducing total number of messages, reducing the
variance of message length, as well as overlapping communication with computa-
tion, by decomposing the all-to-all communication among all processors into several
stages of all-to-all communication among subsets of processors. All these works
focus on the management of heterogeneity resulted from different length of messages
transmitted between processors, but lack of support for managing other types of
heterogeneity.

9. Conclusion and future work

In this paper, we have presented six algorithms for software message-passing based
implementation of multiple multicast on heterogeneous NOW systems. Our
implementations exploit several advantages over existing works: (1) They are
portable to different HNOW systems because they are implemented based on the
message-passing primitives provided at the application layer of interconnection
networks, (2) they are efficient for both general multiple multicast and their
degenerate cases (single multicast, broadcast, all-to-all broadcast), and (3) they are
developed based on a more realistic, non-blocking communication model, and are
optimized to take advantage of non-blocking communication that are available in
current networks and operating systems.
Collective communication on heterogeneous systems is a challenging research

issue. There is a lot of ground to be covered. In the following we outline some of our
future works.

Table 2. The computation times (in �s) of the scheduling algorithms for multiple multicast

Non-preemptive schemes Preemptive schemes

# of nodes FEF ECF WR EAF RR RRS ECFP WRP EAFP RRP RRSP

4 1.35 2.13 0.3 0.27 0.14 0.26 4.25 0.41 0.4 0.27 0.41

8 23.7 50.58 2.15 2.01 1.29 2.15 124.6 3.97 3.72 3.23 3.83

16 44.6 86.2 3.25 3.11 1.98 3.18 226 6.34 6.4 5.2 6.1

24 136 429 10.7 8.8 7.3 10.9 1,344 24.8 21.9 20.1 23.8

32 368 836 16.7 12.5 11.1 17.7 2,823 39.5 30.7 31.8 42.8

48 639 1,611 27.9 20.2 19.8 32.1 6,427 76.9 55.5 63.8 72.3

56 973 1,956 32.1 23 22.1 39.3 8,136 87.4 67.7 73.3 98.7

64 1,558 3,000 47.2 31.1 29.1 56.4 12,548 134.9 102.5 112 157
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9.1. Minimizing contention in multicast

The communication model and the scheduling algorithms make an assumption that
all the processors in the network are fully connected, so the impact of message
contention is neglegible. In today’s cluster environments, switches (such as Myrinet
[6], Autonet [10], ServerNet [14], and GigaNet) are a common choice for building a
cost-effective cluster. A switch usually has eight to thirty-two ports that can
interconnect with workstations/PCs or other switches. The processors (workstations
and PCs) within a switch are fully connected so each pair of processors can pass
messages independent of others. However, message passing between processors
residing in different switches will have to travel through the links connecting the
switches. If multiple messages travel through a link simultaneously, contention will
occur. The contention problem is crucial to the performance of collective
communication.
Kesavan et al. [18] a number of research effort has devoted to multicasting with

reduced contention on irregular switch-based wormhole networks with unicast
message passing [24]. The idea was to find appropriate ordering of the procesing
nodes so as to reduce contention. In this line of work, Kesavan et al. [18] proposed
the chain concatenation ordering heuristic for irregular networks with up-down
routing. This algorithm was shown to be the best among three algorithms to
implement multicast with reduced contention and minumum latency. Fan and King
[11] proposed a two-level multicast algorithm based on the Eulerian Trail of
processing nodes in the network. Contention is reduced by finding and reducing a
subtrail containing the switches involved in the multicast. However, both works only
focus on single multicast on homogeneous stwitching networks. Algorithms for
reducing contention in multiple multicast have been reported in existing literatures
[19, 31, 32]. All of them only focus on homogeneous systems with uniform network
topologies, therefore they may not be efficient for heterogeneous systems.
Minimizing contention in multiple multicast on heterogeneous systems is much

more complicated. We plan to extend our communication model and scheduling
algorithms to implement multiple multicast with reduced contention and minimum
completion time. The communication model maybe extended by incorporating a
parameter measuring the delay caused by message contention. The scheduling
algorithms will update the available time of selected sender and receiver according to
the new communication model.

9.2. Incremental scheduling

Although the OðN3Þ algorithms and the preemption optimization that we have
proposed can determine efficient communication schedules with negligible overhead
for multicast of long messages, there is room for improvement for short messages.
We are considering an incremental optimization for dynamic multiple multicast
patterns. That is, given a multiple multicast pattern P and a good schedule S for it,
our goal is to derive a good schedule for a similar pattern P0 from S instead of
recompute the schedule from scratch.

84 WU ET AL.



9.3. Collective communication in wide area networks

We are also investigating the possibility of extending this work to handle collective
communication over wide-area-networks (WAN). The first step toward WAN
communication is to enhance our communication model with the ability to predict
the behavior of communication in WAN. In order to do so, we need to statistically
analyze the effect of the cross-traffics from other sessions and the traffic pattern of a
communication in order to measure the network transmission time more accurately.

9.4. Scheduling with QoS or constraints

In this paper, the goal of the scheduling algorithms has been to minimize the
completion time of multiple multicast. In the future, we will study the possibility of
revising these algorithms for collective communication on heterogeneous systems
that have quality of service requirement or resource constraints.

Appendix

Figure 13. UpdateSenderState procedure.
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Figure 14. UpdateReceiverState procedure.

Figure 15. SendAvailable function.

Figure 16. ReceiveAvailable function.
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