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Abstract. Future mobile communication systems have to be flexible while adapting to environmental conditions
and user demands. These systems also have to be energy-efficient as they are used in battery-operated terminals.
We expect that heterogeneous reconfigurable hardware can overcome the contradicting requirements in flexibility,
energy-efficiency and performance. A coarse-grain reconfigurable processor, called MONTIUM, is presented. An
overview of a wireless LAN communication system, HiperLAN/2, and a Bluetooth communication system will
be given. Possible implementations of these systems in heterogeneous reconfigurable hardware are discussed.
Performance figures of the implemented HiperLAN/2 baseband processing in the MONTIUM architecture are
presented. The required performance can be obtained at low clock frequencies with small configuration overhead.
The flexibility of the MONTIUM is shown, as the baseband processing of both HiperLAN/2 and Bluetooth is
implemented on the same architecture.
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1. Introduction

Traditionally, computations are either implemented in hardware or in software running
on processors. More recently, new alternatives are introduced, which mix properties of the
traditional hardware and software alternatives. The class of these new alternatives is denoted
as reconfigurable computing. This class of architectures is important because it allows the
computational capacity of the architecture to be highly customized to the instantaneous
needs of an application, while allowing the computational capacity to be reused in time.

Systems that have to support future mobile communication systems have to be adap-
tive. These systems have to adapt to changing environmental conditions (e.g. more or less
users in a cell or varying noise figures due to reflections or user movements) as well as
to changing user demands (QoS). Furthermore, these architectures have to be extremely
efficient as these are used in battery-operated terminals and cost effective as they are used in
consumer products. Although energy-efficiency is a major issue in terminals as they draw
their energy from small batteries, energy consumption is also an issue in base stations from
both a technical (costly cooling of chips and power supplies) and an environmental point of
view.

The Adaptive Wireless Networking (AWGN ) project [19] aims at implementation of
(adaptive) multi-standard communication systems in reconfigurable embedded systems.
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One of the tasks in the project is to map the algorithms found in these communication
systems on a platform of heterogeneous reconfigurable architectures. The platform is het-
erogeneous in the sense that processing is performed in general purpose processors (GPPs),
bit-level reconfigurable hardware or in word-level reconfigurable hardware. It is expected
that performance and power gains will be achieved by applying dynamically reconfigurable
heterogeneous architectures [18].

In this article an introduction to the Adaptive Wireless Networking project is given.
Research, related to our project, is briefly described in Section 2. An overview of a particular
reconfigurable heterogeneous architecture is given in Section 3. In Section 4, some basics
of the HiperLAN/2 and Bluetooth communication system are discussed. These systems are
currently under investigation in our project. Possible implementations of these systems in
reconfigurable hardware are given in Section 5. In Section 6, experiments are done to verify
the performance of the implemented HiperLAN/2 receiver. The obtained results of these
implementations are shown in Section 7. Further directions of research are given in Section
8 and finally some conclusions are presented in Section 9.

2. Related work

Recently, there have been several announcements of heterogeneous reconfigurable archi-
tectures on a single chip [1, 26]. For example, Xilinx delivers a combination of Virtex II
FPGA technology and one or more PowerPC(s) 405 on a single chip: the Virtex-II Pro.
But conventional reconfigurable processors are bit-level reconfigurable and are far from
energy-efficient. Both academy and industry show interest in coarse-grained reconfigurable
architectures. The Pleiades project at UC Berkeley [2, 17] focuses on an architectural tem-
plate for ultra low-power high-performance multimedia computing. In the Pleiades archi-
tecture template a general-purpose microprocessor is surrounded by a heterogeneous array
of autonomous, special-purpose satellite processors. The Pleiades SoC design methodology
assumes a (very) specific algorithm domain. A processor for speech coding applications,
called Maia, was designed using the Pleiades architecture template. Quicksilver’s adaptive
computing machine (ACM) [11] technology is intended for low-power mobile devices.
Their key observation is that algorithms are heterogeneous by nature. The architecture of
the ACM comprises heterogeneous nodes of different granularities. The extreme proces-
sor platform (XPP) of PACT [3] is based on clusters of coarse-grained processing array
elements (PAEs), which is either an ALU or a memory. Actual PAEs are tailored to the
algorithm domain of a particular XPP processor. Silicon Hive [24] offers course-grained
reconfigurable block accelerators (e.g. Avispa and Moustique) and stream accelerators (e.g.
Bresca) for high performance and low power applications. The architecture is comprised of
VLIW-like datapath elements called process storage elements (PSEs).

Much work has been done on Software Defined Radio in the SDR forum context [22].
However this forum mainly focuses on general-purpose processors and they do not con-
centrate on reconfigurable platforms and energy-efficiency. The Software Defined Radio
project [20, 23] at the University of Twente in the Netherlands aims to develop a receiver
front-end capable of receiving all WLAN standards. In the Information Society Technolo-
gies (IST) EASY project [8] the objective is to develop a cost/power efficient heterogeneous
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Figure 1. The CHAMELEON heterogeneous SoC architecture.

SoC processor, which handles the baseband processing of 5 GHz WLAN systems. Their
heterogeneous SoC consists of embedded FPGA and an ARM processor.

3. Reconfigurable heterogeneous architecture

In the Chameleon project [6] at the University of Twente a dynamically reconfigurable
heterogeneous System-on-Chip (SoC) is being defined. The SoC contains a general pur-
pose processor, a fine-grained reconfigurable part (consisting of FPGA tiles) and a coarse-
grained reconfigurable part. The latter comprises several MONTIUM processor tiles. The
proposed SoC is shown in Figure 1. The algorithm domain of the MONTIUM com-
prises 16-bit digital signal processing (DSP) algorithms that contain multiply accumu-
late (MAC) operations. A MONTIUM tile is proposed to execute highly regular compu-
tational intensive DSP kernels. The irregular parts of the algorithms run on the gen-
eral purpose processor. The SoC yields a combination of performance, flexibility and
energy-efficiency.

3.1. Target architecture: MONTIUM

In this section we give a brief overview of the MONTIUM architecture, because in this
article the architecture is used for mapping DSP algorithms of wireless communication
systems. More details can be found in [6, 12–14]. Figure 2 depicts a single MONTIUM

processor tile. The hardware organisation within a tile is very regular and resembles a
very long instruction word (VLIW) architecture. The five identical arithmetic and logic
units (ALU1. . .ALU5) in a tile can exploit spatial concurrency to enhance performance.
This parallelism demands a very high memory bandwidth, which is obtained by having
10 local memories (M01· · ·M10) in parallel. The small local memories are also motivated
by the locality of reference principle. The ALU input registers provide an even more local
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Figure 2. The MONTIUM processor tile.

level of storage. Locality of reference is one of the guiding principles applied to obtain
energy-efficiency in the MONTIUM. A vertical segment that contains one ALU together with
its associated input register files, a part of the interconnect and two local memories is called
a processing part (PP). The five processing parts together are called the processing part
array (PPA). A relatively simple sequencer controls the entire PPA. The communication
and configuration unit (CCU) implements the interface with the world outside the tile.
The MONTIUM has a datapath width of 16-bits and supports both integer and fixed-point
arithmetic. Each local SRAM is 16-bit wide and has a depth of 512 positions, which adds
up to a storage capacity of 8 Kbit per local memory. A memory has only a single address
port that is used for both reading and writing. A reconfigurable address generation unit
(AGU) accompanies each memory. It is also possible to use the memory as a lookup
table for complicated functions that cannot be calculated using an ALU, such as sine
or division (with one constant). A memory can be used for both integer and fixed-point
lookups.

The interconnect provides flexible routing within a tile. The configuration of the inter-
connect can change every clock cycle. There are ten busses that are used for inter-PPA
communication. Note that the span of these busses is only the PPA within a single tile.
The CCU is also connected to the global busses. The CCU uses the global busses to access
the local memories and to handle data in streaming algorithms. Communication within a
PP uses the more energy-efficient local busses. A single ALU has four 16-bit inputs. Each
input has a private input register file that can store up to four operands. The input regis-
ter file cannot be bypassed, i.e., an operand is always read from an input register. Input
registers can be written by various sources via a flexible interconnect. An ALU has two
16-bit outputs, which are connected to the interconnect. The ALU is entirely combinatorial
and consequentially there are no pipeline registers within the ALU. The diagram of the
MONTIUM ALU in Figure 3 identifies two different levels in the ALU. Level 1 contains four
function units. A function unit implements the general arithmetic and logic operations that
are available in languages like C (except multiplication and division). Level 2 contains the
MAC unit and is optimized for algorithms such as FFT and FIR. Levels can be bypassed
(in software) when they are not needed.
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Figure 3. The MONTIUM ALU.

Neighbouring ALUs can also communicate directly on level 2. The West-output of an
ALU connects to the East-input of the ALU neighbouring on the left. The 32-bit wide East-
West connection makes it possible to accumulate the MAC result of the right neighbour
to the multiplier result. This is particularly useful when performing a complex-number
multiplication, or when adding up a large amount of numbers (up to 20 additions in
one clock cycle). The East-West connection does not introduce a clock delay, as it is not
registered.

4. Communication systems

The research presented in this article focuses on multi-standard communication systems. By
studying the state-of-the-art in Software Defined Radio (SDR) for Bluetooth, HiperLAN/2
and UMTS, we will define a set of typical DSP algorithms used in wireless communications.
We present the initial results of mapping a set of characteristic algorithms on our dynamically
reconfigurable heterogeneous platform. Currently, the physical layers of two communication
systems are subject of our research: a rather complex wireless LAN system, the HiperLAN/2
standard, and a less complex communication system, the Bluetooth standard. These two
communication standards have been selected, because they are already part of ongoing
research [20, 23] and they are different enough to give an indication whether our approach
is feasible or not.
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4.1. HiperLAN/2 receiver

HiperLAN/2 [9] is a wireless local area network (WLAN) access technology and is similar
to the IEEE 802.11a WLAN standard at the physical level. HiperLAN/2 operates in the 5
GHz frequency band. The air interface is based on time division multiple access (TDMA)
and time division duplex (TDD). In a TDMA system a medium access control (MAC) frame
is divided in multiple time slots. Multiple users can make use of the same MAC frame by
utilizing different time slots. TDD means that time slots for both downlink and uplink are
available within the same MAC frame. The task of the physical layer in HiperLAN/2 is
to modulate bits that originate from the data link control layer at the transmitter side and
to demodulate them at the receiver side. The transmission format of the physical layer is
a burst, which consists of a preamble and a data part. Orthogonal frequency division mul-
tiplexing (OFDM), which is a special kind of multicarrier modulation, has been used in
HiperLAN/2. This modulation technique divides the high data rate information in several
parallel bit streams and each of these bit streams modulates a separate subcarrier. 52 sub-
carriers are being transmitted in parallel per radio channel, which occupies a bandwidth of
20 MHz. However, 4 of these subcarriers are used to transmit pilot tones. The bit rate of
HiperLAN/2 at the physical level depends on the modulation type and is either 12, 24, 48 or
72 Mbit/s.

One OFDM symbol is represented by a block of 80 complex-number input samples (in
the time domain), so once per 80 samples the receiver has enough information to demodulate
the received samples and output the resulting bits. The sample rate of the input signal is
20 MHz, so the duration of an OFDM symbol is 4 µs. For every MAC frame, the physical
layer transmits a preamble—a sequence of known OFDM symbols—before the OFDM
symbols containing the actual data are transmitted.

The receiver not only has to convert the received signal to data bits by performing the
inverse of the transmitter, but it also has to inverse distortions caused by the radio channel.
The receiver can roughly be divided into two parts, a time domain part and a frequency
domain part.

The location of the functions in the receiver architecture shown in Figure 4, is based upon
a trade-off between the necessary resolution that must be reached for a certain correction
and the solution with the minimum number of operations. Furthermore, one tries to keep

Figure 4. Block diagram of the baseband functions in the HiperLAN/2 receiver.
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the corrections independent of each other by deciding the execution order of the functions
[15].

We will describe the most important functions (i.e. the most computational intensive) in
order to map the functionality on the MONTIUM architecture. We only consider the receiver
part of the HiperLAN/2 physical layer, although the transmitter part can be described in a
similar way.

4.1.1. Prefix removal. The receiver first needs to synchronize with the transmitter.
It does this by detecting the start of a transmission and then detecting the pream-
ble sections by means of correlating the received stream of samples with the known
preamble.

A MAC frame always starts with a preamble. A preamble is a sequence of predefined
OFDM symbols. Which preamble is used depends on the burst type. In the HiperLAN/2
standard five burst types are defined: broadcast, downlink, uplink with short preamble,
uplink with long preamble and direct link. All burst types use one or more preamble
sections to precede the data burst. The following preamble sections are defined: A, B
(short), B (long) and C. Figure 5 depicts how the preamble sections are used for each
burst type and the figure shows that a preamble section consists of repetitions of identical
parts.

Because the sampling clock of the receiver hardware is not synchronized with the clock
in the transmitter, the OFDM symbol window in the receiver may slowly wander away
from the ideal OFDM symbol window. Therefore, the start position of the data of each
received OFDM symbol containing data has to be determined. The prefix information
of an OFDM symbol is used for this purpose. The maximum of correlations between
16 samples at the beginning of an OFDM symbol and 16 samples received 64 samples
later determines the location of the prefix. The prefix is then removed from the OFDM
symbol.

Figure 5. Preambles for all HiperLAN/2 burst types.
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4.1.2. Frequency offset correction. There exists a difference in mix frequencies between
transmitter and receiver, which is called frequency offset and causes inter-subcarrier in-
terference. The frequency offset is determined in the time domain. In the time domain a
frequency offset causes a phase-shift. Hence, the frequency offset can be determined by
taking the phase-shift between a known and a received signal. Using information that can be
retrieved from the received preamble sections, the receiver can compensate for frequency
offsets.

4.1.3. Inverse OFDM. 64 time domain samples represent the useful data part of the OFDM
symbol that has to be demodulated. Before demodulation can take place, the subcarrier
values must be retrieved from the useful data part. This can be done by applying a fast Fourier
transform (FFT) to the vector containing the 64 samples. The FFT efficiently implements a
discrete Fourier transform (DFT), given in Equation 1:

f̂ n[x] =
N−1∑

m=0

s̃n[m]e− j2π xm
N , (1)

with x = 0, . . . , 63 and N = 64. s̃n denotes the vector of input samples in the time domain.
f̂ n denotes the vector of samples in the frequency domain. From this vector 52 subcarrier
values—48 complex-number data values and 4 pilot values—can be extracted.

4.1.4. Equalization. The received complex-number values may still suffer from distortions
that need to be corrected before de-mapping them to a bitstream. The reflections of the
transmitted radio signals have different propagation times before they reach the receiver.
Slow movement of the receiver introduces a Doppler shift in the received signal. These two
effects together result in frequency selective fading. The equalizer can compensate these
effects.

4.1.5. Phase offset correction. The various distortions of the transmitted signal caused by
a (realistic) wireless channel make it very difficult to estimate the frequency offset exactly
at the receiver side. Therefore, the signal will still experience a small frequency offset. This
small frequency offset causes a small, linearly changing phase difference between the trans-
mitted and received signals. This phase offset is small and is assumed to be constant during
one OFDM symbol. A phase offset corrector can detect this small phase offset by comparing
the received pilot values with their predefined value and subsequently compensate for it.

4.1.6. De-mapping. In HiperLAN/2 four mapping techniques are available: BPSK, QPSK,
16-QAM and 64-QAM. Each of these techniques has a different number of bits per complex-
number symbol. The de-map function assumes that the most likely symbol to be transmitted
was the symbol that maps (given the modulation type) to the complex-number value closest
to the received complex-number value. This method of de-mapping is called hard decision
de-mapping.
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4.2. Bluetooth receiver

The Bluetooth radio technology [10] provides a universal radio interface for electronic
devices to communicate via short-range ad hoc radio connections. The task of the physical
layer in Bluetooth is to modulate bits that origin from the data layer at the transmitter side
and to demodulate them at the receiver side, and vice versa. The Bluetooth system uses
packet-based transmission: the information stream is fragmented into packets. In each slot,
only a single packet can be sent. All packets have the same format, starting with an access
code, followed by a packet header, and ending with the user payload. Single slot, 3-slot and
5-slot packets have been defined.

The channel is a hopping channel with a nominal hop dwell time of 625 µs that cor-
responds to a single slot. To simplify the implementation, full-duplex communication is
achieved by applying time-division duplexing (TDD).

In the Industrial, Scientific and Medical (ISM) band, the signal bandwidth of the Bluetooth
system is limited to 1 MHz. For robustness, a binary modulation scheme was chosen.
With the mentioned bandwidth restriction, the data rates are limited to about 1 Mbps.
Bluetooth uses Gaussian-shaped frequency shift keying (GFSK) modulation with a nominal
modulation index of k = 0.32. Logical ones are sent as positive frequency deviations, logical
zeros as negative frequency deviations [5].

In the receiver part, the transmitted radio signal is converted back into a binary NRZ
signal. The radio signal, which is received, conveys all its information in the frequency
deviation of the signal.

4.2.1. FM discriminator. One possible way to demodulate a FM signal is by means of FM-
to-AM conversion, which is also called a FM-discriminator. The FM-discriminator allows
the implementation of low-cost radio units, which is essential for Bluetooth systems. In
the FM-discriminator, which is shown in Figure 6, the received signal is multiplied with
its delayed version. The signal has to be delayed τ = 1

4 fc
seconds [21]. When the center

frequency, fc, of the intermediate Bluetooth signal is 2.5 MHz, one has to set the delay, τ ,
to 100 ns. Suppose the sample rate of the Bluetooth signal is equivalent to 10 Mega samples
per second (MSPS). Consequently, the signal has to be delayed by 1 sample time.

4.2.2. Low Pass Filter. After FM-to-AM conversion, the signal is passed through a Low
Pass Filter. The FIR filter is applied in order to pass the slowly varying AM signal with
a frequency of 1 MHz and to block all high frequencies that occur due to multiplication.
Actually the FIR filter, as depicted in Figure 7, operates at a sampling rate of 10 MSPS.

Figure 6. Block diagram of the FM-discriminator.
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Figure 7. Finite Impulse Response filter.

4.2.3. Threshold detector. Finally, the consecutive bits are detected by a threshold detector,
which is not shown in Figure 6. In the threshold detector decisions about the received bit
value are taken. For the threshold detector it is sufficient to operate at a sample rate of
1 MSPS, since the bit rate of the Bluetooth communication system is 1 Mbps.

5. Implementation

For both communication systems we will analyze the feasibility of implementing the systems
in the target architecture.

5.1. HiperLAN/2 receiver

The HiperLAN/2 receiver has been implemented in the target architecture. The computa-
tional intensive kernels are implemented in the MONTIUM. Irregular tasks are performed in
software (i.e. GPP). The receiver’s implementation block diagram is given in Figure 8.

5.1.1. Prefix removal. In the prefix removal function (and the synchronization function)
complex-number samples are detected with matched filters in order to synchronize the
receiver. In Table 1 the sizes of the matched filters that are applied in the different functions
are shown.

After the prefix is detected, the useful part of the OFDM symbol is copied to a cyclic
buffer of length 64.

Figure 8. Block diagram of the implemented HiperLAN/2 receiver.
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Table 1. Sizes of the matched filters that are applied for
synchronization

Detection of Size of matched filter

Preamble A 16 complex-number samples
Preamble B 16 complex-number samples
Preamble C 32 complex-number samples
Prefix 16 complex-number samples

In Equation 2 the cross-correlation between two complex-number vectors is defined. The
output from a matched filter with N samples and two complex-number inputs x and y is:

output[l] = 1

N

N∑

i=1

x[i]y[l + i]∗, (2)

where y∗ denotes the complex conjugate of y.
During matched-filtering the cross-correlation is determined in order to detect preambles

and prefixes. One possible way to implement the cross-correlation function in the MON-
TIUM tile is a separate approach of calculating the real-part and the imaginary-part of the
correlation.

With 4 ALUs one can determine the real and imaginary part of the complex-number
cross-correlation. In order to result in one valuable output, one has to determine the absolute
magnitude of the complex-number cross-correlation and also a scaling factor 1/N has to be
applied. Since square root calculations are computationally complex, the squared absolute
value of the cross-correlation will be calculated instead of the absolute magnitude. Hence
the square root calculation is avoided. Scaling with 1/N is also neglected, since it only
scales the output of the cross-correlation calculation. However, the shape of the correlation
function will remain the same, so peaks in the output can still be detected.

Considering the complex-number cross-correlation one can conclude that 4 ALUs are
needed in order to perform a cross-correlation calculation of one complex-number sample.
When the complex-number cross-correlation of N samples has to be calculated, this calcu-
lation will consume N + 1 clock cycles. The real part and the imaginary part of the sum
can be calculated in parallel using 4 ALUs. In total 1 ALU configuration is used to per-
form the complex-number correlation. A summary of the requirements for complex-number
cross-correlation is given in Table 2.

Table 2. Computational requirements for a
correlation of N complex-number samples
on the MONTIUM

# Clock cycles N + 1
# ALU configurations 1
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Table 3. Computational requirements for
frequency offset correction on the MONTIUM

for 1 OFDM symbol

# Clock cycles 67
# Crossbar configurations 1
# Memory configurations 4
# ALU configurations 2
# Register configurations 4

5.1.2. Frequency offset correction. The frequency offset correction coefficient is esti-
mated by computing the cross-correlation of preamble C [4]. Figure 5 shows that preamble
C consists of a prefix of 32 samples and 2 equal sequences of 64 samples. The sequence
consists of 2 parts (C and C′), which are mirrored. The first 16 samples of the two sequences
are cross-correlated. The angle of the result of the complex-number correlation determines
the total phase offset over 64 samples. The phase offset is linearly proportional with the
frequency offset. The phase offset, due to frequency offset, is determined in software (i.e.
on the GPP) because it has to be determined infrequently (once every MAC frame).

The calculated phase offset between two samples is stored in the MONTIUM’s memory.
Based on this phase offset and the index of the data sample in the OFDM symbol, the
MONTIUM determines the complex-number offset correction coefficient with its look-up
table (LUT) functionality. After the LUT operation the complex-number offset correction
coefficient is multiplied with the corresponding complex-number data sample.

The frequency offset corrector is implemented in one MONTIUM TP. One complete OFDM
symbol can be corrected for frequency offset in 67 clock cycles. In one OFDM symbol
64 complex-number time samples are multiplied with a complex-number coefficient. A
summary of the requirements for frequency offset correction is given in Table 3. The
amount of configurations in the MONTIUM is given in terms of defined instruction context.
For example if all ALUs are configured with instruction ‘a’ and ALU5 is reconfigured with
instruction ‘b’, then two configurations (‘aaaaa’ and ‘aaaab’) are active in the MONTIUM.
Even when all ALUs are configured with instruction ‘a’ and ALU1 is reconfigured with
instruction ‘c’ while ALU3 is reconfigured with instruction ‘d’, still two configurations
(‘aaaaa’ and ‘cadaa’) are active in the MONTIUM.

5.1.3. Inverse OFDM. The inverse orthogonal frequency division multiplexing in Hiper-
LAN/2 is a 64-FFT operation. This operation is performed by radix-2 butterflies and con-
sumes 32 log2(64) complex multiplications. On the MONTIUM architecture the 64-FFT can
be performed in ( 64

2 + 2) log2(64) clock cycles [14].
The FFT algorithm can be performed with 4 ALUs and 10 memory banks, which corre-

sponds to one MONTIUM tile, as given in Table 4.

5.1.4. Equalization, phase offset and De-mapping. The channel impulse response is as-
sumed to be time-invariant during one complete MAC frame, because the coherence time
of the wireless channel (20 ms) is much longer than the time of a MAC frame (2 ms) [4].
Therefore, the equalizer is trained only once per MAC frame. The equalizer coefficients are
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Table 4. Computational requirements
for 64-FFT on the MONTIUM

# Clock cycles 204
# Crossbar configurations 17
# Memory configurations 21
# ALU configurations 1
# Register configurations 2

determined by dividing the predefined preamble C values by the received complex-number
values. The computation of the equalizer coefficients themselves is done on a GPP. This
function is implemented in software because it occurs infrequently (once every 2 ms) and
because the MONTIUM is not optimized for complex-number division operations. Once the
GPP processor has computed the complex-number equalizer coefficients, they are stored in
the memory space of the MONTIUM TP.

During equalization each of the 52 complex-number subcarrier values is multiplied with
its corresponding complex-number coefficient. The MONTIUM TP can compute a complex-
number multiplication in a single clock cycle using four ALUs.

The four received equalized pilot values are used to determine the phase offset coefficient.
Because the phase offset coefficient needs to be determined for every OFDM symbol, it is
implemented in hardware (i.e. on the MONTIUM). Computing the phase offset coefficient
in software would be expensive due to the frequent communication between GPP and
MONTIUM tile.

The phase offset correction itself is a complex-number multiplication of each equalized
data value—which is already stored in a local memory of the MONTIUM TP—with the phase
offset coefficient. The phase offset correction is implemented in the MONTIUM TP.

After phase offset correction, the de-mapping is performed as hard decision de-mapping.
In HiperLAN/2 four modulation schemes are available: BPSK, QPSK, 16-QAM and 64-
QAM. A parameterizable quadrature amplitude modulation (QAM) de-mapper was imple-
mented. In 16-QAM de-mapping, both the real and the imaginary part of the complex-
number value contain two bits of information. The de-mapping itself is implemented by
means of a single look-up table (LUT) containing 64 entries for 16-QAM. In Table 5 the
size of the look-up table for the different modulation schemes is given. The implemented
de-mapping function is parameterizable, which means that the function can switch between
the different modulation types without reconfiguration.

Table 5. Size of LUT for different
modulation types

Modulation Entries in LUT

BPSK 4
QPSK 16
16-QAM 64
64-QAM 256
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Table 6. Computational requirements for
equalization, phase offset correction & de-
mapping on the MONTIUM for 1 OFDM symbol

# Clock cycles 110
# Crossbar configurations 2
# Memory configurations 5
# ALU configurations 3
# Register configurations 13

All equalization, phase offset correction and de-mapping functionality has been im-
plemented in one MONTIUM TP. The computational requirements for implementing these
functions in one MONTIUM TP are summarized in Table 6.

5.2. Bluetooth receiver

5.2.1. FM-discriminator. In the FM-discriminator (Figure 6) the incoming FM signal is
multiplied with its delayed version. Since the incoming signal is sampled at a frequency of
10 MHz, the signal only has to be delayed with one sample time under the assumption that
the intermediate frequency of the incoming signal is 2.5 MHz (Section 4.2.1).

In one MONTIUM tile one can perform 5 multiplications in parallel. An advantage of the
Bluetooth FM signals is that all sample values represent real numbers. Consequently, 5 real
multiplications can be calculated in one clock-cycle.

5.2.2. FIR filter. The processing delay of the FM-discriminator depends on the amount
of samples that have to be processed at the initialization phase; the FIR filter has to be
initialized with an amount of samples that is equal to the number of taps.

Suppose that a FIR filter with 10 taps is used, then 10 sample values have to be generated by
the FM-discriminator, before the FIR filter is initialized. Since the incoming FM modulated
signal has to be delayed with one sample time, 10 + 1 samples have to be loaded in the local
memory before the signal processing can start.

The length of the FIR filter used in the FM-discriminator is not variable. However, in a
MONTIUM tile one can perform a FIR filter with a variable amount of taps up to a maximum
of 2560 taps. In all ALUs multiply and accumulate operations can be performed. Utilizing
the EAST-WEST interconnect between the ALUs gains 1 clock cycle while performing FIR
filtering. When there are no EAST-WEST interconnects applied, each ALU has to store its
temporary result. The temporary results of all ALUs have to be collected in one extra clock
cycle. Depending on the implementation without or with EAST-WEST interconnect, FIR
filtering with N coefficients can be performed in � N

5 � + 2 or � N
5 � + 1 clock cycles, respec-

tively. Not using the EAST-WEST connection has a positive influence on the maximum
clock frequency of the MONTIUM tile.

5.2.3. Threshold detector. In the threshold detector one has to decide whether a ‘0’ or ‘1’
is received. The output of the FIR filter depends on the frequency deviation in the received
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Bluetooth signal. The signal at the output of the FIR filter varies between −1 and +1. This
signal has to be translated into ‘received’ bits, by applying these rules:

if x > 0 then bit:=1

if x ≤ 0 then bit:=0

A decision of a bit value is performed using one ALU and takes only one clock cy-
cle. The actual output bit is determined by the status information bit of the function
unit.

6. Experiments

The implemented HiperLAN/2 receiver (without the prefix removal function according
to Figure 8) has been tested by means of hardware simulations. A reference model of the
HiperLAN/2 receiver was implemented in Matlab (using 64-bit floating-point computations)
in order to verify the MONTIUM implementation. Simulations were performed with both the
MONTIUM implementation of the receiver and the reference model. In each simulation a
complete MAC frame, containing 500 OFDM symbols, was received. The OFDM symbols
were 16-QAM modulated in the experiments. We assumed that the receiver was situated
in an indoor office environment and indoor hall with non line-of-sight (NLoS) between the
transmitter and receiver (‘A’ channel and ‘E’ channel, respectively) [16].

Figures 9 and 10 show the results of different simulations. For an ‘A’ channel and an
‘E’ channel the curves of both the MONTIUM implementation (marked as ‘sim.’) and the
reference model (marked as ‘ref.’) are shown. The results for an Additive White Gaussian
Noise (AWGN) channel are also included.

The curves of the MONTIUM receiver and the reference model in Figure 9 show hardly
any difference. The BER gap between reference and MONTIUM implementation increases
when the SNR becomes better. Possibly, for bad channel conditions (i.e. low SNR) the BER
of the receiver is mostly determined by the channel. Whereas, for good channel conditions
(i.e. high SNR) the limited (16-bit) precision of the hardware has a significant influence on
the BER.

The results in Figure 10 show situations wherein the phase offset varies. The results show
again that there is only a small difference between the MONTIUM implementation and the
reference model.

7. Implementation results

7.1. HiperLAN/2

Mapping the HiperLAN/2 receiver algorithms on the MONTIUM architecture requires knowl-
edge of the typical HiperLAN/2 symbol durations. In Section 5 we have discovered the
typical computational requirements of these algorithms. Furthermore we discovered that all
algorithms can be mapped on the MONTIUM. In Table 7 we summarize the time consumption
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Figure 9. The simulation results of the implemented HiperLAN/2 receiver.

Figure 10. The influence of phase offset on the simulation results.
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Table 7. Computational requirements of the HiperLAN/2 receiver on the MONTIUM

while processing 1 OFDM symbol

Exec. time Config. size Config. time
Functional block (clock cycles) (bytes) (clock cycles)

Frequency offset correction 67 274 137
Inverse OFDM 204 946 473
Equalization, Phase offset 110 576 288

correction & De-mapping

and the size of the configuration of the receiver algorithms, while they are performed on a
single tile.

One major property of signals in HiperLAN/2 physical layer is the timing aspect of OFDM
symbols. All operations in the physical layer are performed on these OFDM symbols. An
OFDM symbol has a fixed length of 80 samples. Hence, at a sample rate of 20 MHz the
duration corresponds to 4 µs. One should assure that each 4 µs a new OFDM symbol can
be processed.

The MONTIUM TP that implements the FFT for the inverse OFDM function has the worst
execution time of the three tiles. The FFT has to be performed for every OFDM symbol,
once per 4 µs. To obtain the performance this tile has to run at least at 51 MHz. A MONTIUM

realized in a 0.12 µm CMOS technology can easily achieve this performance for the FFT.
The maximum clock frequency of a MONTIUM depends on the critical path through the
ALUs and ranges from 45 to 150 MHz.

The area of a single MONTIUM TP (excluding CCU) is about 2 mm2 in 0.12 µm CMOS
technology. To save area the frequency offset correction and the inverse OFDM function can
be combined in the same tile. However, the execution time for this combined functionality
would increase to about 271 clock cycles. The required clock frequency would be at least
68 MHz.

The total configuration size of all HiperLAN/2 receiver functionality is only 1,796 bytes
for 3 MONTIUM tiles. At 100 MHz for example, the configuration time for the inverse OFDM
function is only 4.73 µs.

7.2. Bluetooth

Mapping the Bluetooth receiver algorithms on the MONTIUM architecture requires knowl-
edge about the typical Bluetooth symbol timing. We have seen that there are single slot,
3-slot and 5-slot packets in the standard, which have a duration of 625 µs, 1.875 ms and
3.125 ms, respectively. Actually the slots are not completely occupied by the packets. A
single slot packet has a length of 366 bits at maximum, and therefore has a duration of
366 µs. The length of a 3-slot packet is at most 1626 bits, which corresponds to 1.626 ms,
and for a 5-slot packet the length is 2870 bits at maximum, which is equal to a duration of
2.87 ms.

From these values of the packet lengths, one can conclude that it should be useful to
perform the receiver functions in ‘streaming’ mode. This means that the processing of the
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Table 8. Timing requirements of the Bluetooth receiver on the MONTIUM

while processing 1 bit

Execution time Execution time
Functional block (clock cycles) @ 100 MHz (ns)

FM-discriminator 1 10
N -taps FIR filter � N

5 � + 2 � N
5 � × 10 + 20

� N
5 � + 1 � N

5 � × 10 + 10
Threshold detector 1 10

receiver functions starts immediately, and does not wait till a complete packet has been
loaded into the local memory. In Bluetooth the data rates are limited to about 1 Mbps, so at
most every 1 µs a bit has to be processed by the Bluetooth receiver.

In Table 8 we summarize the time consumption of all the algorithms, while they are
performed on a single tile. The processing delays in the table are given while processing is
done for a single sample. During initialization of the receiver one has to load N +1 samples
in the local memory before the processing can start. This initialization phase will consume
� N

5 � + 1 clock cycles extra. The ceiling value function, �x�, computes the smallest integer
not less than x .

8. Future work

The presented set of multi-standard algorithms is rather incomplete. In further research,
more adaptive algorithms should be considered. An interesting case will be systems that
adapt to changing environmental conditions as well as to changing user demands (QoS). A
control system that is able to adapt the WCDMA receiver in order to minimize the energy
consumption, while satisfying the quality constraints at run-time is presented in [25]. These
adaptations should be done at run-time to deal with the continuously changing external
environment.

Power consumption is another important issue, since energy-efficiency is a major issue in
terminals. At the moment, the normalized (dynamic) energy consumption of the MONTIUM

architecture is estimated at 0.5 mW/MHz per tile in .12 technology with a size of 2 mm2

per tile. Comparison of the algorithm mapping as compared to other types of architectures
(DSP, FPGA, etc.) should be done in terms of performance and power consumption.

Finally, scheduling of tasks on the reconfigurable heterogeneous architecture can be
implemented in different ways: Multiple tiles can be performing different functions instan-
taneously, while the data in the tile is changing dynamically or the data stays in one tile,
while the tile is reconfigured dynamically. Simulations have to show the advantages and
disadvantages of these scheduling strategies.

9. Conclusion

We have analyzed the feasibility of implementing wireless communication systems in
coarse-grain reconfigurable hardware. In the Adaptive Wireless Networking (AWGN ) project
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we will utilize a dynamically reconfigurable heterogeneous architecture for implementa-
tion of multi-standard communication systems. The architecture is heterogeneous in the
sense that digital signal processing is performed in general purpose processors, bit-level
reconfigurable parts or word-level reconfigurable parts.

Characteristics for mapping the HiperLAN/2 baseband receiver onto reconfigurable hard-
ware are described. We have used our MONTIUM architecture to map the receiver function-
ality. In order to perform all receiver processing (excluding the synchronization and control
part), 3 MONTIUM tiles are required.

The MONTIUM implementation of the HiperLAN/2 receiver was compared against a ref-
erence model. A standardized wireless channel model was used to enable a fair comparison.
Simulations show that the difference in performance between the MONTIUM implementation
and the reference model is negligible.

The functionality of the Bluetooth receiver has a fairly simple signal processing part,
which can be implemented in the MONTIUM architecture quite well. The computation delays
of the different receiver parts are a few clock cycles.

We showed the flexibility of the MONTIUM architecture. An HiperLAN/2 receiver as well
as a Bluetooth receiver was implemented on the same architecture.
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