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COMPARING SEMANTICS OF LOGICS FOR MULTI-AGENT
SYSTEMS

ABSTRACT. We draw parallels between several closely related logics that combine –
in different proportions – elements of game theory, computation tree logics, and epistemic
logics to reason about agents and their abilities. These are: the coalition game logics CL and
ECL introduced by Pauly in 2000, the alternating-time temporal logic ATL developed by
Alur, Henzinger and Kupferman between 1997 and 2002, and the alternating-time temporal
epistemic logic ATEL by van der Hoek and Wooldridge (2002). In particular, we establish
some subsumption and equivalence results for their semantics, as well as interpretation of
the alternating-time temporal epistemic logic into ATL.

The focus in this paper is on models: alternating transition systems, multi-player game
models (alias concurrent game structures) and coalition effectivity models turn out to be
intimately related, while alternating epistemic transition systems share much of their philo-
sophical and formal apparatus. Our approach is constructive: we present ways to transform
between different types of models and languages.

1. INTRODUCTION

In this study we offer a comparative analysis of several recent logical
enterprises that aim at modeling multi-agent systems. Most of all, the co-
alition game logic CL and its extended version ECL (Pauly 2002, 2000b,
2001), and the Alternating-time Temporal Logic ATL (Alur et al. 1997,
1998a, 2002) are studied. These turn out to be intimately related, which
is not surprising since all of them deal with essentially the same type of
scenarios, viz. a set of agents (players, system components) taking ac-
tions, simultaneously or in turns, on a common set of states – and thus
effecting transitions between these states. The game-theoretic aspect is
very prominent in both approaches; furthermore, in both frameworks the
agents pursue certain goals with their actions and in that pursuit they can
form coalitions. In both enterprises the objective is to develop formal tools
for reasoning about such coalitions of agents and their ability to achieve
specified outcomes in these action games.

An extension of ATL, called Alternating-time Temporal Epistemic Lo-
gic (ATEL) was introduced in van der Hoek and Wooldridge (2002) in
order to enable reasoning about agents acting under incomplete informa-
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2 VALENTIN GORANKO AND WOJCIECH JAMROGA

tion. Although the semantics for ATEL is still under debate, the original
version of that logic is certainly worth investigating. It turns out that,
while extending ATL, ATEL can be embedded into the former in the sense
that there is a translation of models and formulas of ATEL into ATL that
preserves the satisfiability of formulas.

This does not imply that logics like ATEL are redundant, of course –
in fact, the way of expressing epistemic facts in ATL is purely technical,
and the resulting formulas look rather unnatural. Similarly, each of the
three alternative semantics for ECL and ATL, investigated here, has its
own drawbacks and offers different advantages for practical use.

The rest of the paper is organized a follows: first, we offer a brief sum-
mary of the basic concepts from game theory; then we introduce the main
“actors” of our study – logics and structures that have been used for model-
ing multi-agent systems in temporal perspective. In order to make the paper
self-contained we have included all relevant definitions from Pauly (2002,
2001, 1998a), Alur et al. (2002), van der Hoek and Wooldridge (2002).1 In
Sections 3 and 4 the relationships between these logics and structures are
investigated in a formal way. The main results are the following:

1. We show that specific classes of multi-player game models are equiv-
alent to some types of alternating transition systems.

2. We demonstrate that ATL subsumes CL as well as ECL.
3. We show that the three alternative semantics for Alternating-time Tem-

poral Logic and Coalition Logics (based on multi-player game models,
alternating transition systems and coalition effectivity models) are
equivalent.

4. We show that formulas and models of ATEL can be translated into its
fragment ATL.

The paper partly builds on previous work of ours, included in Goranko
(2001) and Jamroga (2003).

2. MODELS AND LOGICS OF STRATEGIC ABILITY

The logics studied here have a few things in common. They are intended
for reasoning about various aspects of multi-agent systems and multi-
player games, they are multi-modal logics, they have been obviously
inspired by game theory, and they are based on the temporal logic ap-
proach. We present and discuss the logics and their models in this section.
A broader survey of logic-based approaches to multi-agent systems can be
found in van der Hoek and Wooldridge (2003b).
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LOGICS FOR MULTI-AGENT SYSTEMS 3

Figure 1. Extensive and strategic form of the matching pennies game: (A) perfect
information case; (B) a1 does not show his coin before the end of the game.

2.1. Basic Influences

2.1.1. Classical Game Theory
Logics of agents and action build upon several important concepts from
game theory, most of them going back to the 40s and the seminal book (von
Neumann and Morgenstern 1944). We will start with an informal survey
of these concepts, following Mostly Hart (1992). An interested reader is
referred to Aumann and Hart (1992), Osborne and Rubinstein (1994) for a
more extensive introduction to game theory.

In game theory, a game is usually presented in its extensive and/or
strategic form. The extensive form defines the game via a tree of possible
positions in the game (states), game moves (choices) available to players,
and the outcome (utility or payoff) that players gain at each of the final
states. These games are usually turn-based, i.e., every state is assigned a
player who controls the choice of the next move, so the players are taking
turns. A strategy for player a specifies a’s choices at the states controlled
by a.

The strategic form consists of a matrix that presents the payoffs for
all combinations of players’ strategies. It presents the whole game in a
‘snapshot’ as if it was played in one single move, while the extensive form
emphasizes control and information flow in the game.
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4 VALENTIN GORANKO AND WOJCIECH JAMROGA

EXAMPLE 1. Consider a variant of the matching pennies game. There are
two players, each with a coin: first a1 chooses to show the heads (action h)
or tails (t), then a2 does. If both coins are heads up or both coins are tails
up, then a1 wins (and gets score of 1) and a2 loses (score 0). If the coins
show different sides, then a2 is the winner.

The extensive and strategic forms for this game are shown in Figure 1A.
The strategies define agent’s choices at all ‘his’ nodes, and are labeled
appropriately: q1hq2t denotes, for instance, a strategy for a2 in which the
player chooses to show heads whenever the current state of the game is q1,
and tails at q2. Note that – using this strategy – a2 wins regardless of the
first move from a1.

The information available to agents is incomplete in many games. Clas-
sical game theory handles this kind of uncertainty through partitioning
every player’s nodes into so called information sets. An information set
for player a is a set of states that are indistinguishable for a. Traditionally,
information sets are defined only for the states in which a chooses the
next step. Now a strategy assigns choices to information sets rather than
separate states, because players are supposed to choose the same move for
all the situations they cannot distinguish.

EXAMPLE 2. Suppose that a1 does not show his coin to a2 before the end
of the game. Then nodes q1 and q2 belong to the same information set of
a2, as shown in Figure 1B. No player has a strategy that guarantees his win
any more.

A general remark is in order here. The concept of coalitional game tra-
ditionally considered in game theory where every possible coalition is
assigned a real number (its worth), differs somewhat from the one con-
sidered here. In this study we are rather concerned with qualitative aspects
of game structures rather than with quantitative analysis of specific games.
It should be clear, however, that these two approaches are in agreement and
can be easily put together. Indeed, the intermediate link between them is
the notion of (qualitative) effectivity function (Pauly 2002). That notion
naturally transfers over to alternating transition systems, thus providing
a framework for purely game-theoretic treatment of alternating temporal
logics.

2.1.2. Computational Tree Logic and Epistemic Logic
Apart from game theory, the concepts investigated in this paper are
strongly influenced by modal logics of computations (such as the compu-
tation tree logic CTL) and beliefs (epistemic logic). CTL (Emerson 1990;
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LOGICS FOR MULTI-AGENT SYSTEMS 5

Figure 2. Transitions of the variable controller/client system, together with the tree of
possible computations.

Huth and Ryan 2000) involves several operators for temporal properties of
computations in transition systems: E (for all paths), A (there is a path),
X (nexttime), F (sometime), G (always) and U (until). ‘Paths’ refer to
alternative courses of events that may happen in the future; nodes on a path
denote states of the system in subsequent moments of time along this par-
ticular course. Typically, paths are interpreted as sequences of successive
states of computations.

EXAMPLE 3. As an illustration, consider a system with a binary variable
x. In every step, the variable can retain or change its value. The states
and possible transitions are shown in Figure 2. There are two propositions
available to observe the value of x: ‘x = 0’ and ‘x = 1’. Then, for
example, EFx = 1 is satisfied in every state of the system: there is a
path such that x will have the value of 1 at some moment. However, the
above is not true for every possible course of action: ¬AFx = 1.

It is important to distinguish between the computational structure, defined
explicitly in the model, and the behavioral structure, i.e., the model of how
the system is supposed to behave in time (Schnoebelen 2003). In many
temporal models the computational structure is finite, while the implied
behavioral structure is infinite. The computational structure can be seen
as a way of defining the tree of possible (infinite) computations that may
occur in the system. The way the computational structure unravels into a
behavioral structure (computation tree) is shown in Figure 2, too.

Epistemic logic offers the notion of epistemic accessibility relation that
generalizes information sets, and introduces operators for talking about
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6 VALENTIN GORANKO AND WOJCIECH JAMROGA

individual and collective knowledge. Section 4 describes them in more
detail; a reader interested in a comprehensive exposition on epistemic logic
can be also referred to the seminal book by Fagin, Halpern, Moses and
Vardi (Fagin et al. 1995), or to van der Hoek and Verbrugge (2002) for a
survey.

2.2. Coalition Game Logics and Multi-Player Game Models

Coalition logic (CL), introduced in Pauly 2000b, 2002), formalizes reason-
ing about powers of coalitions in strategic games. It extends the classical
propositional logic with a family of (non-normal) modalities [A], A ⊆
Agt , where Agt is a fixed set of players. Intuitively, [A]ϕ means that
coalition A can enforce an outcome state satisfying ϕ.

2.2.1. Multi-Player Strategic Game Models
Game frames (Pauly 2002), represent multi-player strategic games where
sets of players can form coalitions in attempts to achieve desirable out-
comes. Game frames are based on the notion of a strategic game form – a
tuple 〈Agt , {�a | a ∈ Agt}, Q, o} consisting of:

– a non-empty finite set of agents (or players) Agt ,
– a family of (non-empty) sets of actions choices, strategies) �a for each

player a ∈ Agt ,
– a non-empty set of states Q,
– an outcome function o:

∏
a∈Agt �a → Q which associates an outcome

state in Q to every combination of choices from all the players. By a
collective choice σA we will denote a tuple of choices 〈σa〉a∈A (one for
each player from A ⊆ Agt), and we will be writing o(σA, σAgt\A) with
the presumed meaning.

REMARK 1. Note that the notion of “strategy” in strategic game forms is
local, wrapped into one-step actions. It differs from the notion of ‘strategy’
in extensive game forms (used in the semantics of ATL) which represents
a global, conditional plan of action. To avoid confusion, we will refer to
the local strategies as choices, and use the term collective choice instead of
strategy profile from Pauly (2002) to denote a combination of simultaneous
choices from several players.

REMARK 2. A strategic game form defines the choices and transitions
available at a particular state of the game. If the identity of the state does
not follow from the context in an obvious way, we will use indices to
indicate which state they refer to.
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Figure 3. Transitions of the variable controller/client system.

The set of all strategic game forms for players Agt over states Q will be
denoted by �

Agt

Q . A multi-player game frame for a set of players Agt is a

pair 〈Q, γ 〉 where γ : Q → �
Agt

Q is a mapping associating a strategic game
form with each state in Q. A multi-player game model (MGM) for a set of
players Agt over a set of propositions � is a triple M = 〈Q, γ, π〉 where
〈Q, γ 〉 is a multi-player game frame, and π : Q → P (�) is a valuation
labeling each state from Q with the set of propositions that are true at that
state.

EXAMPLE 4. Consider a variation of the system with binary variable x

from Example 3. There are two processes: the controller (or server) s can
enforce the variable to retain its value in the next step, or let the client
change the value. The client c can request the value of x to be 0 or 1.
The players proceed with their choices simultaneously. The states and
transitions of the system as a whole are shown in Figure 3.

Again, we should make the distinction between computational and
behavioral structures. The multi-player game model unravels into a com-
putation tree in a way analogous to CTL models (cf. Figure 2).

2.2.2. Coalition Logic
Formulas of CL are defined recursively as:

ϕ := p | ¬ϕ | ϕ ∨ ψ | [A]ϕ.

where p ∈ � is a proposition, and A ⊆ Agt is a group of agents. The
semantics of CL can be given via the clauses:

– M,q |= p iff p ∈ π(q) for atomic propositions p;
– M,q |= [A]ϕ iff there is a collective choice σA such that for every

collective choice σAgt\A, we have M,oq(σA, σAgt\A) |= ϕ.

EXAMPLE 5. Consider the variable client/server system from Example 4.
The following CL formulas are valid in this model (i.e., true in every state
of it):
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8 VALENTIN GORANKO AND WOJCIECH JAMROGA

1. (x = 0 → [s]x = 0) ∧ (x = 1 → [s]x = 1): the server can enforce
the value of x to remain the same in the next step;

2. x = 0 → ¬[c]x = 1: c cannot change the value from 0 to 1 on his
own;

3. x = 0 → ¬[s]x = 1: s cannot change the value on his own either;
4. x = 0 → [s, c]x = 1: s and c can cooperate to change the value.

2.2.3. Logics for Local and Global Effectivity of Coalitions
In CL, the operators [A]ϕ can express local effectivity properties of coali-
tions, i.e., their powers to force outcomes in single ‘rounds’ of the game.
Pauly (2000b) extends CL to the Extended Coalition Logic ECL with
iterated operators for global effectivity [A∗]ϕ expressing the claim that
coalition A has a collective strategy to maintain the truth of ϕ throughout
the entire game. In our view, and in the sense of Remark 1, both systems
formalize different aspects of reasoning about powers of coalitions: CL
can be thought as reasoning about strategic game forms, while ECL rather
deals with extensive game forms, representing sequences of moves, col-
lectively effected by the players’ actions. Since ECL can be embedded as
a fragment of ATL (as presented in Section 2.4), we will not discuss it
separately here.

2.3. Alternating-Time Temporal Logic and its Models

Game-theoretic scenarios can occur in various situations, one of them be-
ing open computer systems such as computer networks, where the different
components can act as relatively autonomous agents, and computations
in such systems are effected by their combined actions. The Alternating-
time Temporal Logics ATL and ATLs, introduced in Alur et al. (1997),
and later refined in Alur et al. (1998a, 2002), are intended to formalize
reasoning about computations in such open systems which can be enforced
by coalitions of agents, in a way generalizing logics CTL and CTLs.

2.3.1. The Logics ATL and ATLs
In ATLs a class of cooperation modalities 〈〈A〉〉 replaces the path quanti-
fiers E and A. The common-sense reading of 〈〈A〉〉	 is:

The group of agents A have a collective strategy to enforce 	 regardless of what all the
other agents do.

ATL is the fragment of ATLs subjected to the same syntactic restrictions
which define CTL as a fragment of CTLs, i.e., every temporal operator
must be immediately preceded by exactly one cooperation modality. The
original CTLs operators E and A can be expressed in ATLs with 〈〈Agt〉〉
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LOGICS FOR MULTI-AGENT SYSTEMS 9

and 〈〈∅〉〉 respectively, but between both extremes one can express much
more about the abilities of particular agents and groups of agents. Since
model-checking for ATLs requires 2EXPTIME, but it is linear for ATL,
ATL is more useful for practical applications, and we will not discuss
ATL* in this paper. Formally, the recursive definition of ATL formulas
is:

ϕ := p | ¬ϕ | ϕ ∨ ψ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUψ

The ‘sometime’ operator F can be defined in the usual way as: 〈〈A〉〉Fϕ ≡
〈〈A〉〉�uϕ.

It should be noted that at least three different versions of semantic
structures for ATL have been proposed by Alur and colleagues in the
last 7 years. The earliest version (Alur et al. 1997), involves definitions
of a synchronous turn-based structure and an asynchronous structure in
which every transition is controlled by a single agent. The next paper
(Alur et al. 1998a) defines general structures called alternating transition
systems where the agents’ choices are identified with the sets of possible
outcomes. In the concurrent game structures from Alur et al. (2002), labels
for choices are introduced and the transition function is simplified. The
above papers share the same title and they are usually cited incorrectly in
the literature as well as citation indices, which may lead to some confusion.

2.3.2. Alternating Transition Systems
Alternating transition systems – building on the concept of alternation de-
veloped in Chandra et al. (1981) – formalize systems of transitions effected
by collective actions of all agents involved. In the particular case of one
agent (the system), alternating transition systems are reduced to ordinary
transition systems, and ATL reduces to CTL.

An alternating transition system (ATS) is a tuple T =
〈�, Agt,Q, π, δ〉 where:

– � is a set of (atomic) propositions, Agt is a non-empty finite set of
agents, Q is a non-empty set of states, and π : Q → P (�) is a
valuation of propositions;

– δ: Q × Agt → P (P (Q)) is a transition function mapping a pair
〈state, agent〉 to a non-empty family of choices of possible next states.
The idea is that at state q an agent a chooses a set Qa ∈ δ(q, a) thus
forcing the outcome state to be from Qa . The resulting transition leads
to a state which is in the intersection of all Qa for a ∈ Agt and so it
reflects the mutual will of all agents. Since the system is required to be
deterministic (given the state and the agents’ decisions), Q1 ∩ . . .∩Qk

must always be a singleton.2
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Figure 4. An ATS for the controller/client problem.

DEFINITION 1. A state q2 ∈ Q is a successor of q1 if, whenever the
system is in q1, the agents can cooperate so that the next state is q2,
i.e., there are choice sets Qa ∈ δ(q1, a), for each a ∈ Agt such that⋂

a∈Agt Qa = {q2}. The set of successors of q will be denoted by Qsuc
q .

DEFINITION 2. A computation in T is an infinite sequence of states q0q1

. . . such that qi+1 is a successor of qi for every i ≥ 0. A q-computation is
a computation starting from q.

2.3.3. Semantics of ATL Based on Alternating Transition Systems
DEFINITION 3. A strategy for agent a is a mapping fa: Q+ → P (Q)

which assigns to every non-empty sequence of states q0, . . . qn a choice
set fa(q0 . . . qn) ∈ δ(qn, a). The function specifies a’s decisions for every
possible (finite) history of system transitions. A collective strategy for a
set of agents A ⊆ Agt is just a tuple of strategies (one per agent from A):
FA = 〈fa〉a∈A.

Now, out(q, FA) denotes the set of outcomes of FA from q, i.e., the set
of all q-computations in which group A has been using FA.

REMARK 3. This notion of strategy can be specified as ‘perfect recall
strategy’, where the whole history of the game is considered when the
choice of the next move is made by the agents. The other extreme altern-
ative is a ‘memoryless strategy’ where only the current state is taken in
consideration; further variations on ‘limited memory span strategies’ are
possible. While the choice of one or another notion of strategy affects the
semantics of the full ATLs, it is not difficult to see that both perfect recall
strategies and memoryless strategies eventually yield equivalent semantics
for ATL.
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Let �[i] denote the ith position in computation �. The definition of truth
of an ATL formula at state q of an ATS T = 〈�, Agt,Q, π, δ〉 follows
through the below clauses. Informally speaking, T , q � 〈〈A〉〉	 iff there
exists a collective strategy FA such that 	 is satisfied for all computations
from out(FA, q).

(A, X) T , q � 〈〈A〉〉Xϕ iff there exists a collective strategy FA such that
for every computation � ∈ out(q, FA) we have T , �[1] � ϕ;

(A , G) T , q � 〈〈A〉〉Gϕ iff there exists a collective strategy FA such that
for every � ∈ out(q, FA) we have T , �[i] � ϕ for every i ≥ 0.

(A, U) T , q � 〈〈A〉〉ϕUψ iff there exists a collective strategy FA such
that for every � ∈ out(q, FA) there is i ≥ 0 such that T , �[i] � ψ

and for all j such that 0 ≤ j < i we have T , �[j ] � ϕ.

EXAMPLE 6. An ATS for the variable client/server system is shown in
Figure 4. The following ATL formulas are valid in this model:

1. (x = 0 → 〈〉s〉〉X x = 0) ∧ (x = 1 → 〈〈s〉〉X x = 1): the server can
enforce the value of x to remain the same in the next step;

2. x = 0 → ¬〈〈c〉〉F x = 1∧ → ¬〈〈s〉〉F x = 1: neither c nor s can
change the value from 0 to 1, even in multiple steps;

3. x = 0 → 〈〈s, c〉〉F x = 1: s and c: s and c can cooperate to change
the value.

2.3.4. Semantics of ATL Based on Concurrent Game Structures and
Multi-player Game Models

Alur et al. (2002) redefines ATL models as concurrent game structures:

M = 〈k,Q,�, π, d, o〉,
where k is the number of players (so Agt can be taken to be {1, . . . , k}),
the decisions available to player a at state q are labeled with natural num-
bers up to da(q) (so �a(q) can be taken to be {1, . . . , da(q)}); finally,
a complete tuple of decisions 〈α1, . . . , αk〉 from all the agents in state
q implies a deterministic transition according to the transition function
o(q, α1, . . . , αk). In a concurrent game structure the type of a strategy
function is slightly different since choices are abstract entities indexed by
natural numbers now, and a strategy is a mapping fa : Q+ → N such that
fa(λq) ≤ da(q). The rest of the semantics looks exactly the same as for
alternating transition systems.

REMARK 4. Clearly, concurrent game structures are equivalent to Pauly’s
multi-player game models; they differ from each other only in notation.3
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Thus, the ATL semantics can be as well based on MGMs, and the truth
definitions look exactly the same as for alternating transition systems (see
Section 2.3.3). We leave rewriting the definitions of a strategy, collective
strategy and outcome set in terms of multi-player game models to the
reader. The next section shows how this shared semantics can be used to
show that ATL subsumes coalition logics.

2.4. Embedding CL and ECL into ATL

It turns out that both CL and ECL are strictly subsumed by ATL in terms of
the shared semantics based on multi-player game models.4 Indeed, there is
a translation of formulas of ECL into ATL, which becomes obvious once
the ATL semantic clause (A,X) is rephrased as:

[A] T , q � 〈〈A〉〉Xϕ iff there exists a collective choice FA = {fa}a∈A

such that for every collective choice FAgt\A = {fa}a∈Agt\A, we have
T , s � ϕ, where {s} = ⋂

a∈A fa(q) ∩ ⋂
a∈Agt\A fa(q)

which is precisely the truth-condition for [A]ϕ in the coalition logic CL.
Thus, CL embeds in a straightforward way as a simple fragment of ATL

by translating [A]ϕ into 〈〈A〉〉Xϕ. Accordingly, [C∗]ϕ translates into ATL
as 〈〈A〉〉Gϕ, which follows from the fact that each of [C∗]ϕ and 〈〈A〉〉Gϕ,
is the greatest fixpoint of the same operator over [C]ϕ and 〈〈A〉〉Xϕ re-
spectively (see Section 2.5). In consequence, ATL subsumes ECL as the
fragment ATLXG involving only 〈〈A〉〉Xϕ and 〈〈A〉〉Gϕ.

We will focus on ATL, and will simply regard CL and ECL as its
fragments throughout the rest of the paper.

2.5. Effectivity Functions and Coalition Effectivity Models as alternative
semantics for ATL

As mentioned earlier, game theory usually measures the powers of coali-
tions quantitatively, and characterizes the possible outcomes in terms of
payoff profiles. That approach can be easily transformed into a qualitative
one, where the payoff profiles are encoded in the outcome states them-
selves and each coalition is assigned a preference order on these outcome
states. Then, the power of a coalition can be measured in terms of sets of
states in which it can force the actual outcome of the game (i.e., sets for
which it is effective), thus defining another semantics for ATL, based on so
called coalition effectivity models (introduced by Pauly for the coalition lo-
gics CL and ECL). This semantics is essentially a monotone neighborhood
semantics for non-normal multi-modal logics, and therefore it enables the
results, methods and techniques already developed for modal logics to be
applied here as well.
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Figure 5. A coalition effectivity function for the variable client/server system.

DEFINITION 4. A (local) effectivity function is a mapping of type e:
PAgt → P (P (Q)).

The idea is that we associate with each set of players the family of out-
come sets for which their coalition is effective. However, the notion of
effectivity function as defined above is abstract and not every effectivity
function corresponds to a real strategic game form. Those which do can be
characterized with the following conditions:

1. Liveness: for every A ⊆ Agt , ∅ /∈ e(A).

2. Termination: for every A ⊆ Agt , Q ∈ e(A).

3. Agt-maximality: if X /∈ e(Agt) then Q \ X ∈ e(∅) (if X cannot be
effected by the grand coalition of players, then Q \ X is inevitable).

4. Outcome-monotonicity: if X ⊆ Y and X ∈ e(A) then Y ∈ e(A).

5. Super-additivity: for all A1, A2 ⊆ Agt and X1, X2 ⊆ Q, if A1 ∩ A2 =
∅, X1 ∈ e(A1), and X2 ∈ e(A2), then X1 ∩ X2 ∈ e(A1 ∪ A2).

We note that super-additivity and liveness imply consistency of the
powers: for any A ⊆ Agt , if X ∈ e(A) then Q \ X �∈ e(Agt \ A).

DEFINITION 5. An effectivity function e is called playable if conditions
(1)–(5) hold for e.

DEFINITION 6. An effectivity function e is the effectivity function of a
strategic game form γ if it associates with each set of players A from γ the
family of outcome sets {Q1,Q2, . . .}, such that for every Qi the coalition
A has a collective choice to ensure that the next state will be in Qi .

THEOREM 5 (Pauly 2002). An effectivity function is playable iff it is the
effectivity function of some strategic game form.

EXAMPLE 7. Figure 5 presents a playable effectivity function that de-
scribes powers of all the possible coalitions for the variable server/client
system from Example 4, and state q0.

DEFINITION 8. A coalition effectivity frame is a triple F = 〈Agt,Q,E〉
where Agt is a set of players, Q is a non-empty set of states and E:
Q → (P (Agt) → P (P (Q))) is a mapping which associates an effectiv-
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14 VALENTIN GORANKO AND WOJCIECH JAMROGA

ity function with each state. We shall write Eq(A) instead of E(q)(A). A
coalition effectivity model (CEM) is a tuple E = 〈Agt,Q,E, π〉 where
〈Agt,Q,E〉 is a coalition effectivity frame and π is a valuation of the
atomic propositions over Q.

DEFINITION 8. A coalition effectivity frame (resp. coalition effectivity
model) is standard if it contains only playable effectivity functions.

Thus, coalition effectivity models provide semantics of CL by means of
the following truth definition (Pauly 2002):

E, q |= [A]ϕ iff {s ∈ E | E, s |= ϕ} ∈ Eq(A).

This semantics can be accordingly extended to semantics for ECL
(Pauly 2001) and ATL (Goranko 2001) by defining effectivity functions
for the global effectivity operators in extensive game forms, where they
indicate the outcome sets for which the coalitions have long-term strategies
to effect. This extension can be done using the following fixpoint char-
acterizations of 〈〈A〉〉Gϕ ↔ ϕ ∧ 〈〈A〉〉X〈〈A〉〉Gϕ, and 〈〈A〉〉ϕUϕ ↔
ψ ∨ ϕ ∧ 〈〈A〉〉ϕUψ as follows:

〈〈A〉〉Gϕ := νZ.ϕ ∧ 〈〈A〉〉XZ,

〈〈A〉〉ϕUψ := µZ.ψ ∨ ϕ ∧ 〈〈A〉〉XZ.

3. EQUIVALENCE OF THE DIFFERENT SEMANTICS FOR ATL

In this section we compare the semantics for Alternating-time Temporal
Logic, based on alternating transition systems and multi-player game mod-
els – and show their equivalence (in the sense that we can transform the
models both ways while preserving satisfiability of ATL formulas). Fur-
ther, we show that these semantics are both equivalent to the semantics
based on coalition effectivity models.

The transformation from alternating transition systems to multi-player
game models is easy: in fact, for every ATS, an isomorphic MGM can
be constructed via re-labeling transitions (see Section 3.2). Construction
the other way round is more sophisticated: first, we observe that all multi-
player game models obtained from alternating transition systems satisfy a
special condition we call convexity (Section 3.2); then we show that for
every convex MGM, an isomorphic ATS can be obtained (Section 3.3).
Finally, we demonstrate that for every arbitrary multi-player game model
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a convex MGM can be constructed that satisfies the same formulas of ATL
(Section 3.4).

We show also that the transformations we propose preserve the property
of being a turn-based structure, and that they transform injective MGMs
into lock-step synchronous ATSs and vice versa.

3.1. Some Special Types of ATSs and MGMs

DEFINITION 9 (Pauly 2002). A strategic game form 〈Agt, {�a | a ∈
{Agt,Q, o〉 is an a-dictatorship if there is a player a ∈ Agt who
determines the outcome state of the game, i.e.,

∀σa ∈ �a ∃q ∈ Q∀σAgt\{a}o(σa, σAgt\{a}) = q.

An MGM 〈Q, γ, π〉 is turn-based if every γ (q) is a dictatorship.5

We note that the notion of a-dictatorship is quite strong: it presumes that
any choice of the dictator forces a chosen state as the outcome. A mean-
ingful alternative, which one can aptly call a-leadership, is when some
choices of a can force the next state (the “wise choice of the leader”).
It should be interesting to investigate whether the dictatorship-based and
leadership-based strategic game forms lead to equivalent semantics for
ATL.

DEFINITION 10. A strategic game form is injective if o is injective, i.e.,
assigns different outcome states to different tuples of choices. An MGM is
injective if it contains only injective game forms.

EXAMPLE 8. Note that the variable client/server game model from Fig-
ure ?? is not injective, because choices 〈reject, set0〉 and 〈reject, set1〉
always have the same outcome. The model is not turn-based either: s is a
leader at both q0 and q1 (he can determine the next state with σs = reject),
but the outcome of his other choice (σs = accept) depends on the choice
of the client. On the other hand, the game tree from Figure 1A can be seen
as a turn-based MGM: player a1 is the dictator at state q0, and player a2 is
the dictator at q1 and q2 (both players can be considered dictators at q3, q4,
q5 and q6).

DEFINITION 11 (Alur et al. 1997). An ATS is turn-based synchronous if
for every q ∈ Q there is an agent a who decides upon the next state, i.e.,
δ(q, a) consists entirely of singletons.

Every ATS can be “tightened” by removing from every Q ∈ δ(q, a)

all states which can never be realized as successors in a transition from
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16 VALENTIN GORANKO AND WOJCIECH JAMROGA

q. Every reasonably general criterion should accept such tightening as
equivalent to the original ATS.

DEFINITION 12. An ATS T = 〈�, Agt,Q, π, δ〉 is tight if, for every
q ∈ Q, a ∈ Agt and Qa ∈ δ(q, a), we have Qa ⊆ Qsuc

q .

COROLLARY 6. For every ATS T there is a tight ATS T ′ which satisfies
the same formulas of ATL.

DEFINITION 13. An ATS is lock-step synchronous if the set of suc-
cessor states Qsuc

q of every state q can be labeled with all tuples from
some Cartesian product

∏
a∈Agt Qa so that all choice sets from δ(q, a)

are ‘hyperplanes’ in Qsuc
q , i.e., sets of the form {qa} × ∏

b∈Agt\{a} Qb,

where qa ∈ Qa .6 In other words, the agents act independently and each
of them can only determine its ‘private’ component of the next state. It is
worth emphasizing that lock-step synchronous systems closely correspond
to the concept of interpreted systems from the literature on reasoning about
knowledge (Fagin et al. 1995).

Note that every lock-step synchronous ATS is tight.

3.2. From alternating transition systems to MGMs

First, for every ATS T = 〈�, Agt,Q, π, δ〉 over a set of agents Agt =
{a1, . . . , ak} there is an equivalent MGM MT = 〈Q, γ T , π〉 where, for
each q ∈ Q, the strategic game form γ T (q) = 〈Agt, {�q

a | a ∈
Agt}, oq,Q〉 is defined in a very simple way:

– �
q
a = δ(q, a),

– oq(Qa1, . . . ,Qak
) = s where

⋂
ai∈Agt Qai

= {s}.

EXAMPLE 9. Let us apply the transformation to the alternating transition
system from Example 6. The resulting MGM is shown in Figure 6. The
following proposition states that it satisfies the same ATL formulas as the
original system. Note that – as T and MT include the same set of states Q

– the construction preserves validity of formulas (in the model), too.

PROPOSITION 7. For every alternating transition system T , a state q in
it, and an ATL formula ϕ: T , q |= ϕ iff MT , q |= ϕ.

The models MT defined as above share a specific property which will be
defined below. First, we need an auxiliary technical notion: a fusion of
n-tuples (α1, . . . , αn) and (β1, . . . , βn) is any n-tuple (γ1, . . . , γn) where
γi ∈ {αi, βi} , i = 1, . . . , n. The following is easy to check.
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LOGICS FOR MULTI-AGENT SYSTEMS 17

Figure 6. From ATS to a convex game structure: MT for the system from Figure 4.

PROPOSITION 8. For any game form 〈Agt, {�a | a ∈ Agt},Q, o〉, where
Agt = {a1, . . . , ak}, the following two properties of the outcome function
o:

∏
a∈Agt �a → Q are equivalent:

(i) If o(σa1, . . . , σak
) = o(τa1, . . . , τak

) = s then o(ςa1, . . . , ςak
) = s for

every fusion (ςa1, . . . , ςak
) of (σa1, . . . , σak

) and (τa1, . . . , τak
).

(ii) For every s ∈ Q there are �a ⊆ �a such that o−1(s) = ∏
a∈Agt �a.

DEFINITION 14. A strategic game form 〈Agt, {�a | a ∈ Agt},Q, o〉
is convex if the outcome function o satisfies (any of) the two equivalent
properties above. A multi-player game model M = (Q, γ, π) is convex if
γ (q) is convex for every q ∈ Q.

PROPOSITION 9. For every ATS T , the game model MT is convex.
Proof: Let MT be defined as above. If oq(Q

1
a1

, . . . ,Q1
ak

) = oq(Q
2
a1

,

. . .,Q2
ak

) = s then s ∈ Q
j
a for each j = 1, 2 and a ∈ Agt , therefore⋂

a∈Agt Q
ja
a = {s} for any fusion (Q

j1
a1, . . . ,Q

jk
ak ) of (Q1

a1
, . . . ,Q1

ak
) and

(Q2
a1

, . . . ,Q2
ak

).

synt184.tex; 19/02/2004; 10:12; p.17



18 VALENTIN GORANKO AND WOJCIECH JAMROGA

REMARK 10. Pauly has pointed out that the convexity condition is known
in game theory under the name of ‘rectangularity’ and rectangular strategic
game forms which are ‘tight’ in sense that their α – and β – effectivity
functions coincide are characterized in Abdou (1998) as the normal forms
of extensive games with unique outcomes.

PROPOSITION 11.

1. Every turn-based game model is convex.
2. Every injective game model is convex.

Proof. (1) Let M = 〈Q, γ, π〉 be a turn-based MGM for a set of play-
ers Agt , and let d ∈ Agt be the dictator for γ (q), q ∈ Q. Then for
every s ∈ Q, we have o−1

q (s) = ∏
a∈Agt �a where �d = {σd ∈ �

q

d |
oq(. . . , σd, . . .) = s}, and �a = �

q
a for all a �= d.

(2) is trivial.

Note that the MGM from Figure 6 is convex, although it is neither injective
nor turn-based, so the reverse implication does not hold.

3.3. From Convex Multi-Player Game Models to Alternating Transition
Systems

As it turns out, convexity is a sufficient condition if we want to re-
label transitions from a multi-player game model back to an alternating
transition system. Let M = 〈Q, γ, π〉 be a convex MGM over a set of
propositions �, where Agt = {a1, . . . , ak}, and let γ (q) = 〈Agt, {�q

a |
a ∈ Agt},Q, oq〉 for each q ∈ Q. We transform it to an ATS T M =
〈�, Agt,Q, π, δM 〉 with the transition function δM defined by

δM(q, a) = {Qσa
| σa ∈ �q

a },
Qσa

= {oq(σa, σAgt\{a}) | σb ∈ �
q

b , b �= a}.
Thus, Qσa

is the set of states to which a transition may be effected from
q while agent a has chosen to execute σa. Moreover, δM(q, a) simply
collects all such sets. For purely technical reasons we will regard these
δM(q, a) as indexed families, i.e., even if some Qσ1 and Qσ2 are set-theore-
tically equal, they will be considered different as long as σ1 �= σ2. By con-
vexity of γ (q) it is easy to verify that

⋂
a∈Agt Qσa

= {oq(σa1, . . . , σak
)} for

every tuple (Qσa1
, . . . ,Qσak

) ∈ δM(q, a1)×· · ·× δM(q, ak). Furthermore,
the following propositions hold.

PROPOSITION 12. For every convex MGM M the ATS T M is tight.
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PROPOSITION 13. For every convex MGM M, a state q in it, and an ATL
formula ϕ, M,q |= ϕ iff T M, q |= ϕ.

Note that the above construction transforms the multi-player game
model from Figure 6 exactly back to the ATS from Figure 4. More gener-
ally, the constructions converting tight ATSs into convex MGMs and vice
versa are mutually inverse, thus establishing a duality between these two
types of structures:

PROPOSITION 14.

1. Every tight ATS T is isomorphic to T MT

.
2. Every convex MGM M is isomorphic to MT M

.

Proof. 1. It suffices to see that δMT

(q, a) = δ(q, a) for every q ∈ Q

and a ∈ Agt which is straightforward from the tightness of T .
2. Let M = 〈Q, γ, π〉 be a convex MGM and γ (q) = 〈Agt, {�q

a | a

∈ Agt},Q, oq〉 for q ∈ Q. For every σa ∈ �
q
a we identify σa with Qσa

defined as above. We have to show that the outcome functions oq in M and
oq in MT M

agree under that identification. Indeed, oq(Qσa1
, . . . ,Qσak

) = s

iff
⋂

a∈Agt Qσa
= {s} iff oq(σa1, . . . , σak

) = s.

The following proposition shows the relationship between structural prop-
erties of MGMs and ATSs:

PROPOSITION 15.

1. For every ATS T the game model MT is injective iff T is lock-step
synchronous.

2. For every convex MGM M, the ATS T M is lock-step synchronous iff
M is injective.

3. For every turn-based synchronous ATS T the game model MT is turn-
based. Conversely, if MT is turn-based for some tight ATS T then T

is turn-based synchronous.
4. For every convex MGM M the ATS T M is turn-based synchronous iff

M is turn-based.

Proof. (1) Let T be lock-step synchronous and oq(Qa1, . . . ,Qak
) =

〈sa1 , . . . , sak
〉 for some Qai

∈ δ(q, ai), i = 1, . . . , k. Then Qai
= {sai

} ×∏
a∈Agt\{ai} Qa where Qsuc

q = ∏
a∈Agt Qa, whence the injectivity of MT .

Conversely, if MT is injective then every state s ∈ Qsuc
q can be labeled

with the unique tuple 〈Qa1, . . . ,Qak
〉 such that oq(Qa1, . . . ,Qak

) = s,

i.e., Qsuc
q is represented by

∏
a∈Agt δ(q, a), and every Qai

∈ δ(q, ai) can
be identified with {Qai

} × ∏
a∈Agt\{ai} δ(q, a).
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(2) If M is injective then Qsuc
q can be labeled by

∏
a∈Agt �

q
a where every

Qσai
∈ δ(q, ai) is identified with {σai

} × ∏
a∈Agt\{ai} δ(q, a). Conversely,

if T M is lock-step synchronous then every two different Qσa
and Q′

σa
from

δ(q, a) must be disjoint, whence the injectivity of M.
(3) and (4): the proofs are straightforward.

3.4. Equivalence between the Semantics for ATL Based on ATS and
MGM

So far we have shown how to transform alternating transition systems to
convex multi-player game models, and vice versa. Unfortunately, not every
MGM is convex. However, for every MGM we can construct a convex
multi-player game model that satisfies the same formulas of ATL. This
can be done by creating distinct copies of the original states for different
incoming transitions, and thus ‘storing’ the knowledge of the previous
state and the most recent choices from the agents in the new states. Since
the actual choices are present in the label of the resulting state, the new
transition function is obviously injective. It is also easy to observe that
the below construction preserves not only satisfiability, but also validity of
formulas (in the model).

PROPOSITION 16. For every MGM M = 〈Q, γ, π〉 there is an injective
(and hence convex) MGM M ′ = 〈Q′, γ ′, π ′〉 which satisfies the same
formulas of ATL.

Proof. For every γ (q) = 〈Agt, {�q
a | a ∈ Agt},Q, oq〉 we define

Qq = {q} × ∏
a∈Agt �

q
a and let Q′ = Q ∪ ⋃

q∈Q Qq. Now we define γ ′ as
follows:

– for q ∈ Q, we define γ ′(q) = 〈Agt, {�q
a | a ∈ Agt},Oq,Q′〉, and

Oq(σa1, . . . , σak
) = 〈q, σa1 , . . . , σak

〉;
– for σ = 〈q, σa1 , . . . , σak

〉 ∈ Qq, and s = oq(σa1, . . . , σak
), we define

γ ′(σ ) = γ ′(s);
– finally, π ′(q) = π(q) for q ∈ Q, and π ′(〈q, σa1 , . . . , σak

〉) =
π(oq(σa1, . . . , σak

)) for 〈q, σa1 , . . . σak
〉 ∈ Qq.

The model M ′ is injective and it can be proved by a straightforward
induction that for every ATL formula ϕ:

– M ′, q |= ϕ iff M, q |= ϕ for q ∈ Q, and
1. M ′, 〈σa1, . . . , σak

〉 |= ϕ iff M, oq(σa1, . . . , σak
) |= ϕ for

〈σa1, . . . , σak
〉 ∈ Qq.

Thus, the restriction of the semantics of ATL to the class of injective
(and hence to convex, as well) MGMs does not introduce new validities.
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Figure 7. Construction of a convex multi-player game model equivalent to the MGM from
Figure 3.

Figure 8. ATS-style transition function for the convex game model from Figure 7.

Since every ATS can be reduced to an equivalent tight one, we obtain the
following.

COROLLARY 17. For every ATL formula ϕ the following are equivalent:

1. ϕ is valid in all (tight) alternating transition systems.
2. ϕ is valid in all (injective) multi-player game models.

We note that the above construction preserves validity and satisfiability of
ATLs formulas, too.

EXAMPLE 10. We can apply the construction to the controller from Ex-
ample 4, and obtain a convex MGM equivalent to the original one in the
context of ATL. The result is displayed in Figure 7. The labels for the
transitions can be easily deduced from their target states. Re-writing the
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game model into an isomorphic ATS, according to the Construction from
Section 3.3 (see Figure 8), completes the transformation from an arbitrary
multi-player game model to an alternating transition system for which the
same ATL formulas hold.

3.5. ATS or MGM?

Rajeev Alur stated7 that the authors of ATL switched from alternating
transition systems to concurrent game structures mostly to improve under-
standability of the logic and clarity of the presentation. Indeed, identifying
actions with their outcomes may make things somewhat artificial and unne-
cessarily complicated. In particular, we find the convexity condition which
ATSs impose too strong and unjustified in many situations. For instance,
consider the following variation of the ‘Chicken’ game: two cars running
against each other on a country road and each of the drivers, seeing the
other car, can take any of the actions: ‘drive straight’, ‘swerve to the
left’ and ‘swerve to the right’. Each of the combined actions for the two
drivers: 〈drive straight, swerve to the left〉 and 〈swerve to the right, drive
straight〉 leads to a non-collision outcome, while each of their fusions
〈drive straight, drive straight〉 and 〈swerve to the left, swerve to the right〉
leads to a collision. Likewise, in the ‘Coordinated Attack’ scenario (Fagin
et al. 1995) any non-coordinated one-sided attack leads to defeat, while
the coordinated attack of both armies, which is a fusion of these, leads to
a victory. Thus, the definition of outcome function in coalition games is
more general and flexible in our opinion.

Let us consider the system from Example 4 again. The multi-player
game model (or concurrent game structure) from Figure 3 looks natural
and intuitive. Unfortunately, there is no “isomorphic” ATS that fits the
system description. In consequence, an ATS modeling the same situation
must be larger (Jamroga 2003). The above examples show that correct al-
ternating transition systems are more difficult to come up with directly than
multi-player game models, and usually they are more complex, too. This
should be especially evident when we consider open systems. Suppose we
need to add another client process to the ATS from Example 6. It would be
hard to extend the existing transition function in a straightforward way so
that it still satisfies the formal requirements (all the intersections of choices
are singletons). Designing a completely new ATS is probably an easier
solution.

Another interesting issue is extendibility of the formalisms. Game mod-
els incorporate explicit labels for agents’ choices – therefore the labels can
be used, for instance, to restrict the set of valid strategies under uncertainty
(Jamroga and van der Hoek 2003).
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Figure 9. Coalition effectivity model for the variable client/server system.

3.6. Coalition Effectivity Models as Equivalent Alternative Semantics for
ATL

Effectivity functions and coalition effectivity models were Introduced in
Section 2.5, including a characterization of these effectivity functions
which describe abilities of agents and their coalitions in actual strategic
game forms (playable effectivity functions, Theorem 5). We are going
to extend the result to correspondence between multi-player game mod-
els and standard coalition effectivity models (i.e., the coalition effectivity
models that contain only playable effectivity functions).

Every MGM M = 〈Q, γ, π〉 for the set of players Agt corresponds
to a CEM EM = 〈Agt,Q,EM, π〉, where for every q ∈ Q, X ⊆ Q and
A ⊆ Agt , we have

X ∈ EM
q (A) iff ∃σA∀σAgt\A∃s ∈ Xo(σA, σAgt\A) = s.

The choices refer to the strategic game form γ (q). Conversely, by Theorem
5, for every standard coalition effectivity model E there is a multi-
player game model M such that E is isomorphic to EM . Again, by a
straightforward induction on formulas, we obtain:

PROPOSITION 18. For every MGM M, a state q in it, and an ATL formula
ϕ, we have M,q |= ϕ iff EM , q |= ϕ.

EXAMPLE 11. Let M be the multi-player game model from Example 4
(variable client/server system). Coalition effectivity model EM is presented
in Figure 9.

By Proposition 9 and Corollary 17, we eventually obtain:
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THEOREM 19. For every ATL formula ϕ the following are equivalent:

1. ϕ is valid in all (tight) alternating transition systems,
2. ϕ is valid in all (injective) multi-player game models,
3. ϕ is valid in all standard coalition effectivity models.

Thus, the semantics of ATL based on alternating transition systems,
multi-player game models, and standard coalition effectivity models are
equivalent. We note that, while the former two semantics are more concrete
and natural, they are mathematically less elegant and suitable for formal
reasoning about ATL, while the semantics based on coalition effectivity
models is essentially a monotone neighborhood semantics for multi-modal
logics. The combination of these semantics was used in Goranko and van
Drimmelen (2003) to establish a complete axiomatization of ATL.

4. ATEL: ADDING KNOWLEDGE TO STRATEGIES AND TIME

Alternating-time Temporal Epistemic Logic ATEL (van der Hoek and
Wooldridge 2002, 2003a) enriches the picture with epistemic component.
ATEL adds to ATL operators for representing agents’ knowledge: Kaϕ

reads as “agent a knows that ϕ”. Additional operators E
A
ϕ, C

A
ϕ, and

D
A
ϕ refer to “everybody knows”, common knowledge, and distributed

knowledge among the agents from A. Thus, E
A
ϕ means that every agent

in A knows that ϕ holds, while C
A
ϕ means not only that the agents from

A know that ϕ, but they also know that they know that, and know that
they know that they know it, etc. The distributed knowledge modality D

A
ϕ

denotes a situation in which, if the agents could combine their individual
knowledge together, they would be able to infer that ϕ is true.

4.1. AETS and Semantics of Epistemic Formulas

Models for ATEL are called alternating epistemic transition systems
(AETS). They extend alternating transition systems with epistemic access-
ibility relations ∼1, . . . , ∼k⊆ Q × Q for modeling agents’ uncertainty:

T = 〈Agt,Q,�, π,∼a1 , . . . ,∼ak
, δ〉.

These are assumed to be equivalence relations. Agent a’s epistemic rela-
tion is meant to encode a’s inability to distinguish between the (global)
system states: q ∼a q ′ means that, while the system is in state q, agent a

cannot really determine whether it is in q or q ′. Then:

T , q |= Kaϕ iff for all q ′ such that q ∼a q ′ we have T , q ′ |= ϕ
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Figure 10. An AETS for the modified controller/client problem. The dotted lines display
the epistemic accessibility relations for s and c.

REMARK 20. Since the epistemic relations are required to be equival-
ences, the epistemic layer of ATEL refers indeed to agents’ knowledge
rather than beliefs in general. We suggest that this requirement can be
relieved to allow ATEL for other kinds of beliefs as well. In particular,
the interpretation of ATEL into ATL we propose in Section 4.4 does not
assume any specific properties of the accessibility relations.

Relations ∼E
A , ∼C

A and ∼D
A , used to model group epistemics, are derived

from the individual accessibility relations of agents from A. First, ∼E
A is

the union of the relations, i.e., q ∼E
A q ′ iff q ∼a q ′ for some a ∈ A. In

other words, if everybody knows ϕ, then no agent may be unsure about
the truth of it, and hence ϕ should be true in all the states that cannot be
distinguished from the current state by even one member of the group.
Next, ∼C

A is defined as the transitive closure of ∼E
A . Finally, ∼D

A is the
intersection of all the ∼a , a ∈ A: if any agent from A can distinguish q

from q ′, then the whole group can distinguish the states in the sense of
distributed knowledge. The semantics of group knowledge can be defined
as below (for K = C,E,D):

T , q |= KAϕ iff for all q ′ such that q ∼K
A q ′ we have T , q ′ |= ϕ

The time complexity of model checking for ATEL is still Polynomial
(van der Hoek and Wooldridge 2003a).

EXAMPLE 12. Let us consider another variation of the variable controller
example: the client can try to add 1 or 2 (modulo 3) to the value of x; the
server can still accept or reject the request (Figure 10). The dotted lines
show that c cannot distinguish being in state q0 from being in q1, while s

isn’t able to discriminate q0 from q2. Some formulas that are valid for this
AETS are shown below:
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1. x = 1 → Ksx = 1,
2. x = 2 → Es,c¬x = 1 ∧ ¬Cs,c¬x = 1,
3. x = 0 → 〈〈s〉〉Xx = 0 ∧ ¬Ks〈〈s〉〉Xx = 0,
4. x = 2 → 〈〈s, c〉〉X(x = 0 ∧ ¬Es,cx = 0).

4.2. Extending Multi-Player Game Models and Coalition Effectivity
Models to Include Knowledge

Multi-player game models and coalition effectivity models can be aug-
mented with epistemic accessibility relations in a similar way, giving way
to multi-player epistemic game models M = 〈q, γ, π,∼a1, . . . ,∼ak

〉 and
epistemic coalition effectivity models E = 〈Agt,Q,E, π,∼a1 , . . . ,∼ak

〉
for a set of agents Agt = {a1, . . . , ak} over a set of propositions �.
Semantic rules for epistemic formulas remain the same as in Section 4.1
for both kinds of structures. The equivalence results from Section 3 can
be extended to ATEL and its models. In particular, Theorem 19 yields an
immediate corollary for ATEL semantics:

COROLLARY 21. For every ATEL formula ϕ the following are equiva-
lent:

1. ϕ is valid in all (tight) alternating epistemic transition systems,
2. ϕ is valid in all (injective) multi-player epistemic game models,
3. ϕ is valid in all standard epistemic coalition effectivity models.

We will use multi-player epistemic game models throughout the rest of
this chapter for the convenience of presentation they offer.

4.3. Problems with ATEL

One of the main challenges in ATEL is the question how, given an explicit
way to represent agents’ knowledge, this should interfere with the agents’
available strategies. What does it mean that an agent has a strategy to
enforce ϕ, if it involves making different choices in states that are epistem-
ically indistinguishable for the agent, for instance? Moreover, agents are
assumed some epistemic capabilities when making decisions, and other for
epistemic properties like Kaϕ. The interpretation of knowledge operators
refers to the agents’ capability to distinguish one state from another; the se-
mantics of 〈〈A〉〉 allows the agents to base their decisions upon sequences
of states. These relations between complete vs. incomplete information on
one hand, and perfect vs. imperfect recall on the other, has been studied in
Jamroga and van der Hoek (2003). It was also argued that, when reasoning
about what an agent can enforce, it seems more appropriate to require the
agent to know his winning strategy rather than to know only that such
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a strategy exists.8 Two variations of ATEL were proposed as solutions:
Alternating-time Temporal Observational Logic (ATOL) for agents with
bounded memory and syntax restricted in a way similar to CTL, and full
Alternating-time Temporal Epistemic Logic with Recall (ATELR∗) where
agents were able to memorize the whole game.

The issue of a philosophically consistent semantics for Alternating-time
Temporal Logic with epistemic component is still under debate, and it is
rather beyond the scope of this paper. We believe that analogous results
to those presented here about ATEL can be obtained for logics like ATOL
and ATELRs and their models.

4.4. Interpretations of ATEL into ATL

ATL is trivially embedded into ATEL since all ATL formulas are also
ATEL formulas. Moreover, every multi-player game model can be ex-
tended to a multi-player epistemic game model by defining all epistemic
accessibility relations to be the equality, i.e. all agents have no uncertainty
about the current state of the system – thus embedding the semantics of
ATL in the one for ATEL, and rendering the former a reduct of the latter.

Interpretation the other way is more involved. We will first construct
a satisfiability preserving interpretation of the fragment of ATEL without
distributed knowledge (we will call it ATELCE), and then we will show
how it can be extended to the whole ATEL, though at the expense of some
blow-up of the models. The interpretation we propose has been inspired
by Schild (2000). We should also mention (van Otterloo et al. 2003), as
it deals with virtually the same issue. Related work is discussed in more
detail at the end of the section.

4.4.1. Idea of the Interpretation
ATEL consists of two orthogonal layers. The first one, inherited from ATL,
refers to what agents can achieve in temporal perspective, and is under-
pinned by the structure defined via transition function o. The other layer
is the epistemic component, reflected by epistemic accessibility relations.
Our idea of the translation is to leave the original temporal structure in-
tact, while extending it with additional transitions to ‘simulate’ epistemic
accessibility links. The ‘simulation’ – like the one in van Otterloo et al.
(2003) – is achieved through adding new “epistemic” agents, who can
enforce transitions to epistemically accessible states. Unlike in that paper,
though, the “moves” of epistemic agents are orthogonal to the original
temporal transitions (‘action’ transitions): they lead to special ‘epistemic’
copies of the original states rather than to the ‘action’ states themselves,
and no new states are introduced into the course of action. The ‘action’
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Figure 11. New model: ‘action’ vs. ‘epistemic’ states, and ‘action’ vs. ‘epistemic’ trans-
itions. Note that the game frames for ‘epistemic’ states are exact copies of their ‘action’
originals: the ‘action’ transitions from the epistemic layer lead back to the ‘action’ states.

and “epistemic” states form separate strata in the resulting model, and
are labeled accordingly to distinguish transitions that implement different
modalities.

The interpretation consists of two independent parts: a transformation
of models and a translation of formulas. First, we propose a construction
that transforms every multi-player epistemic game model M for a set of
agents {a1, . . . , ak}, into a (pure) multi-player game model MATL over a
set of agents {a1, . . . , ak, e1, . . . , ek}. Agents a1, . . . , ak are the original
agents from M (we will call them ‘real agents’). Agents e1, . . . , ek are
‘epistemic doubles’ of the real agents: the role of ei is to ‘point out’ the
states that were epistemically indistinguishable from the current state for
agent a1 in M. Intuitively, Kai

ϕ could be then replaced with a formula like
¬〈〈ei〉〉X¬ϕ that rephrases the semantic definition of Ka operator from
Section 4.1. As MATL inherits the temporal structure from M, temporal
formulas might be left intact. However, it is not as simple as that.

Note that agents make their choices simultaneously in multi-player
game models, and the resulting transition is a result of all these choices.
In consequence, it is not possible that an epistemic agent ei can enforce
an ‘epistemic’ transition to state q, and at the same time a group of real
agents A is capable of executing an ‘action’ transition to q ′. Thus, in order
to distinguish transitions referring to different modalities, we introduce
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additional states in model MATL. States q
ei

1 , . . . , qei
n are exact copies of the

original states q1, . . . , qn from Q except for one thing: they satisfy a new
proposition ei , added to enable identifying moves of epistemic agent ei .
Original states q1, . . . , qn are still in MATL to represent targets of ‘action’
moves of the real agents a1, . . ., ak . We will use a new proposition act to
label these states. The type of a transition can be recognized by the label
of its target state (cf. Figure 11).

Now, we must only arrange the interplay between agents’ choices, so
that the results can be interpreted in a direct way. To achieve this, every
epistemic agent can choose to be “passive” and let the others decide upon
the next move, or may select one of the states indistinguishable from q

for an agent ai (to be more precise, the epistemic agents do select the
epistemic copies of states from Qei rather than the original action states
from Q). The resulting transition leads to the state selected by the first non-
passive epistemic agent. If all the epistemic agents decided to be passive,
the “action” transition chosen by the real agents follows.

For such a construction of MATL, we can finally show how to translate
formulas from ATEL to ATL:

1. Kai
ϕ can be rephrased as ¬〈〈{e1, . . . , ei}〉〉X(ei ∧ ¬ϕ): the epistemic

moves to agent ei’s epistemic states do not lead to a state where ϕ fails.
Note that player ei can select a state of his if, and only if, players e1,
. . . , ei−1 are passive (hence their presence in the cooperation modal-
ity). Note also that Kai

ϕ can be as well translated as ¬〈〈{e1, . . . , ek}〉〉
X(ei ∧ ¬ϕ) or ¬〈〈{a1, . . . , ak, e1, . . . , ek}〉〉X(ei ∧ ¬ϕ): when ei de-
cides to be active, choices from a1, . . . , ak and ei+1, . . . , ek are
irrelevant.

2. 〈〈A〉〉Xϕ becomes 〈〈A ∪ {e1, . . . , ek}〉〉X(act ∧ ϕ) in a similar way.
3. To translate other temporal formulas, we must require that the relevant

part of a path runs only through ‘action’ states (labeled with act pro-
position). Thus, 〈〈A〉〉Gϕ can be rephrased as ϕ∧〈〈A∪Agte〉〉X〈〈A∪
Agte〉〉G(act ∧ ϕ). Note that a simpler translation with 〈〈A ∪ Agte〉〉
G(act∧ϕ) is incorrect: the initial state of a path does not have to be an
action state, since 〈〈A〉〉ϕ can be embedded in an epistemic formula.
A similar method applies to the translation of 〈〈A〉〉ϕUψ .

4. Translation of common knowledge refers to the definition of relation
∼C

A as the transitive closure of relations ∼ai
: CAϕ means that all the

(finite) sequences of appropriate epistemic transitions must end up in
a state where ϕ is true.

The only operator that does not seem to lend itself to a translation ac-
cording to the above scheme is the distributed knowledge operator D, for
which we seem to need more ‘auxiliary’ agents. Thus, we will begin with
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presenting details of our interpretation for ATELCE – a reduced version
of ATEL that includes only common knowledge and ‘everybody knows’
operators for group epistemics. Section 4.4.3 shows how to modify the
translation to include distributed knowledge as well.

We note that an analogous interpretation into ATL can be proposed for
the propositional version of BDI logic based on CTL.

4.4.2. Interpreting Models and Formulas of ATELCE into ATL
Given a multi-player epistemic game model M = 〈Q, γ, π,∼a1, . . . ∼ ak

for a set of agents Agt = {a1, . . . , ak} over a set of propositions �, we
construct a new game model MATL = 〈Q′, γ ′, π ′〉 over a set of agents
Agt ′ = Agt ∪ Agte, where:

1. Agte = {e1, . . . , ek} is the set of epistemic agents;
2. Q′ = Q ∪ Qe1 ∪ · · · ∪ Qek , where Qei = {qei | q ∈ Q}. We assume

that Q, Qe1 , . . . , Qek are pairwise disjoint. Further we will be using
the more general notation S(ei) = {qei | q ∈ S} for any S ⊆ Q.

3. �′ = � ∪ {act, e1, . . . , ek}, and π ′(p) = π(p) ∪ ⋃
i=1,...,k π(p)ei for

every proposition p ∈ �. Moreover, π ′(act) = Q and π ′(ei) = Qei .

For every state q in M, we translate the game frame γ (q) =
〈Agt, {�q

a | a ∈ Agt},Q, o〉 to γ ′(q) = 〈Agt ′, {�q ′
a | a ∈ Agt ′},Q′, o′〉:

1. �
q ′
a = �

q
a for a ∈ Agt : choices of the ‘real’ agents do not change;

2. �
q ′
ei = {pass} ∪ img(q,∼ai

)ei for i = 1, . . . k, where img(q, R) = {q ′ |
qRq ′} is the image of q with respect to relation R.

3. the new transition function is defined as follows:

o′
q(σa1, . . . , σak , σe1 , . . . , σek ) =




oq(σa1, . . . , σak ) if σe1 = · · · = σek = pass
σei if ei is the first active

epistemic agent.

The game frames for the new states are exactly the same: γ ′(qei ) = γ ′(q)

for all i = 1, . . . , k, q ∈ Q.

EXAMPLE 13. A part of the resulting structure for the epistemic game
model from Figure 10 is shown in Figure 12. All the new states, plus the
transitions going out of q2 are presented. The wildcard ‘∗’ stands for any
action of the respective agent. For instance, 〈reject ∗, pass, pass〉 represents
〈reject, set0, pass, pass} and 〈reject, set1, pass,pass〉.
Now, we define a translation of formulas from ATELCE to ATL corres-
ponding to the above described interpretation of ATEL models into ATL
models:

tr(p) = p, for p ∈ �
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Figure 12. Construction for the multi-player epistemic game model from Figure 10.

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

tr(〈〈A〉〉Xϕ) = 〈〈A ∪ Agte〉〉X(act ∧ tr(ϕ))

tr(〈〈A〉〉Gϕ) = tr(ϕ) ∧ 〈〈A ∪ Agte〉〉X〈〈A ∪ Agte〉〉G(act ∧ tr(ϕ))

tr(〈〈A〉〉ϕUψ) = tr(ψ) ∨ (tr(ϕ) ∧ 〈〈A ∪ Agte〉〉X〈〈A ∪ Agte〉〉
(act ∧ tr(ϕ))U(act ∧ tr(ψ)))

tr(Kai
ϕ) = ¬〈〈{e1, . . . , ei}〉〉X(ei ∧ ¬tr(ϕ))

tr(EAϕ) = ¬〈〈Agte〉〉X(
∨
ai∈A

ei ∧ ¬tr(ϕ))

tr(CAϕ) = ¬〈〈Agte〉〉X〈〈Agte〉〉(
∨
ai∈A

eiU(
∨

ai∈A ei∧¬t r(ϕ))

LEMMA 22. For every ATELCE formula ϕ, model M, and ‘action’ state
q ∈ Q, we have MATL, q |= tr(ϕ) iff MATL, qei |= tr(ϕ) for every i = 1,
. . . , k.

Proof sketch (structural induction on ϕ): It suffices to note that tr(ϕ)

can only contain propositions act, E1, . . . , ek in the scope of 〈〈A〉〉X for
some A ⊆ Agt ′. Besides, the propositions from ϕ are true in q iff they are
true in qe1 , . . . , qek and the game frames for q, qe1 , . . . , qek are the same.

LEMMA 23. For every ATELCE formula ϕ, model M, and a state q ∈ Q,
we have M, q |= ϕ iff MATL, q |= tr(ϕ).
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Proof: The proof follows by structural induction on ϕ. We will show
that the construction preserves the truth value of ϕ for two cases: ϕ ≡
〈〈A〉〉Xψ and ϕ ≡ CAψ . The cases of 〈〈A〉〉Gψ and 〈〈A〉〉ψUϑ can be
reduced to the case for 〈〈A〉〉Xψ using the fact that these operators are
fixpoints (resp. greatest and least) of certain operators defined in terms
of 〈〈A〉〉Xψ (see Section 2.5). For lack of space we omit the details. An
interested reader can tackle the other cases in an analogous way.

case ϕ ≡ 〈〈A〉〉Xψ , ATELCE ⇒ ATL. Let M, q |= 〈〈A〉〉Xψ , then
there is σA such that for every σAgt\A we have oq(σA, σAgt\A) |=
ψ . By induction hypothesis, MATL, oq(σA, σAgt\A) |= tr(ψ); also,
MATL, oq(σA, σAgt\A) |= act. Thus, MATL, o′

q(σA, σAgt\A, passAgte )

= oq(σA, σAgt\A) |= act ∧ tr(ψ), where passC denotes the strategy
where every agent from C ⊆ Agte decides to be passive. In
consequence, MATL, q |= 〈〈A ∪ Agte〉〉Xtr(ψ).

case ϕ ≡ 〈〈A〉〉Xψ , ATL ⇒ ATELCE. MATL, q |= 〈〈A ∪ AgteX(act ∧
tr(ψ)), so there is σA∪Agte such that for every σAgt ′\(A∪Agte) =
σAgt\A we have MATL, o′

q(σA∪Agte, σAgt\A) |= act ∧ tr(ψ). Note
that MATL, o′

q(σA∪Agte, σAgt\A) |= act only when σA∪Agte =
〈σA, passAgte , else the transition would lead to an epistemic
state. Thus, o′

q(σA∪Agte, σAgt\A) = oq(σA, σAgt\A), and hence
MATL, oq(σA, σAgt\A) |= tr(ψ). By the induction hypothesis, M,
oq(σA, σAgt\A) |= ψ and finally M, q |= 〈〈A〉〉Xψ .

case ϕ ≡ CAψ , ATELCE ⇒ ATL. We have M, q |= CAψ , so for every
sequence of states q0 = q, q1, . . . , qn, qi ∼aji

qi+1, aji
∈ A for

i = 0, . . . , n − 1, it is true that M, qn |= ψ . Consider the same q in
MATL. The shape of the construction implies that for every sequence
q ′

0 = q, q ′
1, . . . , q ′

n in which every qi+1 is a successor of qi and every
qi+1 ∈ Qeji , eji

∈ Ae, we have MATL, q ′
n |= tr(ψ) (by induction

and Lemma 22). Moreover, MATL, q ′
i |= eji

for i ≥ 1, hence MATL,
q ′

i |= ∨
aj∈A ej . Note that the above refers to all the sequences that can

be enforced by the agents from Agte, and have
∨

aj ∈A ej true along
the way (from q ′

1 on). Thus, Agte have no strategy from q such that∨
aj ∈A ej holds from the next state on, and tr(ψ) is eventually false:

MATL, q �ATL 〈〈Agte〉〉X〈〈Agte〉〉(∨aj∈A ej )U(
∨

aj ∈A ej ∧¬tr(ψ)),
which proves the case.

case ϕ ≡ CAψ , ATL ⇒ ATELCE. We have MATL, q |= ¬〈〈AgteX〈〈Agte〉〉
(
∨

aj ∈A ej )U(
∨

aj∈A ej ∧ ¬tr(ψ)), so for every σAgte there is

σAgt ′\Agte = σAgt such that o′
q(σAgte, σAgt) = q ′ ∈ Q′ and MATL, q ′ |=

¬〈〈Agte〉〉(∨aj ∈A ej ) U(
∨

aj ∈A ej ∧ ¬tr(ψ)). In particular, this im-
plies that the above holds for all epistemic states q ′ that are successors
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of q in MATL, also the ones that refer to agents from A (∗).
Suppose that M, q � CAψ (∗∗). Let us now take the action counter-
part q ′

act ∈ Q of q ′. By (∗), (∗∗) and properties of the construction,
q ′

act occurs also in M, and there must be a path q0 = q, q1 = q ′
act,

. . . , qn, qi ∈ Q, such that qi ∼aji
qi+1 and M, qn �ATEL ψ .

Then, MATL, qn �ATL tr(ψ) (by induction). This means also that
we have a sequence q0 = q, q ′

1 = q ′, . . . , q ′
n in MATL, in which

every q ′
i ∈ Qeji , aji

∈ A, is an epistemic counterpart of qi . Thus,
for every i = 1, . . . , n: MATL, q ′

i |= eji
, so MATL, q ′

i |= ∨
aj ∈A ej .

Moreover, MATL, qn �ATL tr(ψ) implies that MATL, q ′
n �ATL tr(ψ)

(by Lemma 22), so MATL, q ′
n |= ¬tr(ψ). Thus, MATL, q ′ |=

〈〈Agte〉〉(∨aj ∈A ej )(
∨

aj∈A ej ∧ ¬tr(ψ)), which contradicts (∗).

As an immediate corollary of the last two lemmata we obtain:

THEOREM 24. For every ATELCE formula ϕ and model M, ϕ is satisfiable
(resp. valid) in M iff tr(ϕ) is satisfiable (resp. valid) in MATL.

Note that the construction used above to interpret ATELCE in ATL has
several nice complexity properties:

– The vocabulary (set of propositions �) only increases linearly (and
certainly remains finite).

– The set of states in an ATEL-model grows linearly, too: if model M
has n states, then MATL has n′ = (k + 1)n = O(kn) states.

– Let m be the number of transitions in M. We have (k + 1)m action
transitions in MATL. Since the size of every set img(q,∼a) can be at
most n, there may be no more than kn epistemic transitions per state
in MATL, hence at most (k + 1)nkn in total. Because m ≤ n2, we have
m′ = O(k2n2).

– Only the length of formulas may suffer an exponential blow-up,
because tr(〈〈A〉〉Gϕ) involves two occurrences of tr(ϕ), and the
translation of 〈〈A〉〉ϕUψ involves two occurrences of both tr(ϕ) and
tr(ψ).9

Thus, every nesting of 〈〈A〉〉Gϕ and 〈〈A〉〉ϕUψ roughly doubles the
size of the translated formula in the technical sense. However, the
number of different subformulas in the formula only increases linearly.
Note that the automata-based methods for model checking (Alur et
al. 2002) or satisfiability checking (van Drimmelen 2003) for ATL
are based on an automaton associated with the given formula, built
from its ‘subformulas closure’ – and their complexity depends on the
number of different subformulas in the formula rather than number of
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symbols.
In fact, we can avoid the exponential growth of formulas in the context
of satisfiability checking by introducing a new propositional vari-
able p and requiring that it is universally equivalent to tr(ϕ), i.e.,
adding conjunct 〈〈∅A(p ↔ tr(ϕ)) to the whole translated formula.
Then 〈〈A〉〉Aϕ can be simply translated as p ∧ 〈〈A ∪ Agte〉〉X〈〈A ∪
AgteA(act ∧ p). ‘Until’ formulas 〈〈A〉〉ϕUψ are treated analogously.
A similar method can be proposed for model checking. To trans-
late 〈〈A〉〉Gϕ, we first use the algorithm from Alur et al. (2002) and
model-check tr(ϕ) to find the states q ∈ Q in which tr(ϕ) holds.
Then we update the model, adding a new proposition p that holds
exactly in these states, and we model-check (p ∧ 〈〈A∪ Agte〉〉X〈〈A∪
Agte〉〉A(act∧p)) as the translation of 〈〈A〉〉Aϕ in the new model. We
tackle tr(〈〈A〉〉ϕUψ) likewise.

Since the complexity of transforming M to MATL is no worse than
O(n2), and the complexity of ATL model checking algorithm from Alur
et al. (2002) is O(nml), the interpretation defined above can be used, for
instance, for an efficient reduction of model checking of ATELCE formulas
to model checking in ATL.

4.4.3. Interpreting Models and Formulas of Full ATEL
Now, in order to interpret the full ATEL we modify the construction
by introducing new epistemic agents (and states) indexed not only with
individual agents, but with all possible non-empty coalitions:

Agte = {eA | A ⊆ Agt,A �= ∅}

Q′ = Q ∪
⋃

A⊆Agt,A�=∅
QeA,

where Q and all QeA
are pairwise disjoint. Accordingly, we extend the

language with new propositions {eA | A ⊆ Agt}. The choices for complex
epistemic agents refer to the (epistemic copies of) states accessible via
distributed knowledge relations: �′

eA
= {pass} ∪ img(q,∼D

A)eA Then we
modify the transition function (putting the strategies from epistemic agents
in any predefined order):

o′
q(σa1, . . . , σak , . . . , σeA , . . .) =




oq(σa1, . . . , σak ) if all σeA = pass
σeA if eA is the first active

epistemic agent
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Again, the game frames for all epistemic copies of the action states are
the same. The translation for all operators remain the same as well (just
using e{i} instead of ei) and the translation of DA is:

tr(DAϕ) = ¬〈〈Agte〉〉X(eA ∧ ¬tr(ϕ)).

The following result can now be proved similarly to Theorem 24.

THEOREM 25. For every ATEL formula ϕ and model M, ϕ is satisfiable
(resp. valid) in M iff tr(ϕ) is satisfiable (resp. valid) in MATL.

This interpretation requires (in general) an exponential blow-up of the ori-
ginal ATEL model (in the number of agents k). We suspect that this may
be inevitable – if so, this tells something about the inherent complexity of
the epistemic operators. For a specific ATEL formula ϕ, however, we do
not have to include all the epistemic agents eA in the model – only those
for which D

A
occurs in ϕ. Also, we need epistemic states only for these

coalitions. Note that the number of such coalitions is never greater than
the length of ϕ. Thus, the ‘optimized’ transformation gives us a model
with n′ = O((k + l)n) states and m′ = O((k + l)n2) transitions, while the
new formula tr(ϕ) is again only linearly longer than ϕ (in the sense ex-
plained in Section 4.4.2). In consequence, we can still use the ATL model
checking algorithm for polynomial model checking of ATEL formulas –
the complexity of such process is O(kl(k + l)2n3).

4.4.4. Related Work
The interpretation presented in this section has been inspired by Schild
(2000) in which a propositional variant of the BDI logic (Rao and Georgeff
1991) was proved to be subsumed by propositional µ-calculus. We use a
similar method here to show a translation from ATEL models and formulas
to models and formulas of ATL that preserves satisfiability. ATL (just like
µ-calculus) is a multimodal logic, where modalities are indexed by agents
(programs in the case of µ-calculus). It is therefore possible to ‘simulate’
the epistemic layer of ATEL by adding new agents (and hence new cooper-
ation modalities) to the scope. Thus, the general idea of the interpretation
is to translate modalities of one kind to additional modalities of another
kind.

Similar translations are well known within modal logics community,
including translation of epistemic logic into Propositional Dynamic Logic,
translation of dynamic epistemic logic without common knowledge into
epistemic logic (Gerbrandy 1999) etc. A work particularly close to ours
is included in van Otterloo et al. (2003). In that paper, a reduction of
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ATEL model checking to model checking of ATL formulas is presented,
and the epistemic accessibility relations are handled in a similar way to
our approach, i.e., with use of additional ‘epistemic’ agents. We believe,
however, that our translation is more general, and provides more flexible
framework in many respects:

1. The algorithm from van Otterloo et al. (2003) is intended only for turn-
based acyclic transition systems, which is an essential limitation of its
applicability. Moreover, the set of states is assumed to be finite (hence
only finite trees are considered). There is no restriction like this in our
method.

2. The language of ATL/ATEL is distinctly reduced in van Otterloo et
al. (2003): it includes only ‘sometime’ (F ) and ‘always’ (G) operators
in the temporal part (neither ‘next’ nor ‘until’ are treated), and the
individual knowledge operator Ka (the group knowledge operators C,
E, D are absent).

3. The translation of a model in van Otterloo et al. (2003) depends
heavily on the formula one wants to model-check, while in the
algorithm presented here, formulas and models are translated inde-
pendently (except for the sole case of efficient translation of distributed
knowledge).

4. Our intuition is that our interpretation is also more general in the sense
that it can work in contexts other than model checking. We plan to
apply the same translation scheme to reduce the satisfiability problem
from ATEL to ATL, for instance.

5. CONCLUDING REMARKS

We have presented a comparative study of several logics that combine
elements of game theory, temporal logics and epistemic logics, and demon-
strated their relationship. Still, these enterprises differ in their motivations
and agendas. We wanted to show them as parts of a bigger picture, so that
one can compare them, appreciate their similarities and differences, and
choose the system most suitable for the intended applications.

Notably, the systems studied here can benefit from many ideas and
results, both technical and conceptual, borrowed from each other. Indeed,
ATL has already benefited from being related to coalitional games, as con-
current game structures provide a more general (and natural) semantics
than alternating transition systems. Moreover, coalition effectivity mod-
els are mathematically simpler and more elegant, and provide technically
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handier semantics, essentially based on neighborhood semantics for non-
normal modal logics (Parikh 1985; Pauly 2000a). Furthermore, the pure
game-theoretical perspective of coalition logics can offer new ideas to
the framework of open multi-agent systems and computations formal-
ized by ATL. For instance, fundamental concepts in game theory, such
as preference relations between outcomes, and Nash equilibria have their
counterparts in concurrent game structures (and, more importantly, in the
alternating-time logics) which are unexplored yet.

On the other hand, the language and framework of ATL has widened the
perspective on coalitional games and logics, providing a richer and more
flexible vocabulary to talk about abilities of agents and their coalitions. The
alternating refinement relations (Alur et al. 1998a) offer an appropriate
notion of bisimulation between ATSs and thus can suggest an answer to the
question ‘When are two coalition games equivalent?’.10 Also, a number of
technical results on expressiveness and complexity, as well as realizabil-
ity and model-checking methods from Alur et al. (1998a, 2002) can be
transferred to coalition games and logics. And there are some specific as-
pects of computations in open systems, such as controllability and fairness
constraints, which have not been explored in the light of coalition games.

There were a few attempts to generalize ATL by including imperfect
information in its framework: ATL with incomplete information in Alur
et al. (2002), ATEL, ATOL, ATELRs etc. It can be interesting to see how
these attempts carry over to the framework of CL. Also, stronger languages
like ATLs and alternating-time µ-calculus can provide more expressive
tools for reasoning about coalition games.

In conclusion, we see the main contribution of the present study as cast-
ing a bridge between several logical frameworks for multi-agent systems,
and we hope to trigger a synergetic effect from their mutual influence.
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NOTES

1 We make small notational changes here and there to make the differences and common
features between the models and languages clearer and easier to see.
2 Determinism is not a crucial issue here, as it can be easily imposed by introducing a
new, fictitious agent, ‘Nature’, which settles all non-deterministic transitions.
3 The only real difference is that the set of states Q and the sets representing agents’
choices are explicitly required to be finite in the concurrent game structures, while MGMs
and ATSs are not constrained this way. However, these requirements are not essential and
can be easily omitted if necessary.
4 Note that the coalition logic-related notions of choice and collective choice can be
readily expressed in terms of alternating transition systems, which immediately leads to a
semantics for CL based on ATS, too. Thus, ATL and the coalition logics share the semantics
based on alternating transition systems as well.
5 In Pauly (2002) these game frames are called dictatorial, but we disagree with that term.
Indeed, at every local step in such game one player determines the move, but these players
can be different for the different moves.
6 The definition in Alur et al. (1998a) requires the whole state space Q to be a Cartesian
product of the ‘local’ state spaces; Lomuscio (1999) calls such structures ‘hypercube
systems’. We find that requirement unnecessarily strong.
7 Private communication.
8 This problem is closely related to the distinction between knowledge de re and know-
ledge de dicto. The issue is well known in the philosophy of language (Quine 1956), as well
as research on the interaction between knowledge and action (Moore 1985; Morgenstern
1991; Wooldridge 2000).
9 We thank an anonymous referee for pointing this out.
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10 Cf. the paper ‘When are two games the same’ in van Benthem (2000).
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