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Abstract: We demonstrate the non-uniqueness of Proportionally Fair prices, and show that
the model of [1] falls into the category of models which can be generalized to allow opti-
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framework, we also show that the total revenue that can be obtained through Proportional
Fairness pricing on a network is unique.
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L’optimisation de la Tarification des Télécommunications
basée sur la Politique de Proportional Fairness

Résumé : On montre la non-unicité des prix obtenus par la politique d’allocation de res-
sources “Proportional Fairness” et comment généraliser le modéle de [1] afin d’optimiser
les prix sur les arcs, avec une vue 3 la maximisation des profits. Cependant, on montre
également que revenu total qui pourrait étre obtenu par cette politique de tarification est
unique.

Mots-clés : Tarification de I'Internet, Allocation de Resources, Equité, Multiplicateurs de
Lagrange



Optimizing Proportionally Fair Prices 3

1 Introduction

The concept of Proportional Fairness Pricing [1], was motivated by the desire to incorporate
the notion of fairness into the allocation of network resources. In that scheme, one inter-
pretation is that a resource allocation is fair if it is in proportion to the users willingness
to pay. Under this interpretation, the model can be seen as one that generalizes standard
resource allocation models by incorporating user utility functions into the objective of the
resource allocation optimization problem. Prices for bandwidth allocation are then provided
by certain Lagrange multipliers of the model.

Alternatively, another interpretation is that an allocation z* is proportionally fair if it

satisfies the following inequality
Ty — T
—£ <0 1
Y B, <>

seS $

for all feasible allocations x,, where s is a user, or demand for communication, and S the
set of all such demands on the network!. That is, an increase in the allocation of network
resources for one user must be compensated by corresponding decreases in the allocations
of one or more other users.
Letting F(z) = Vf(z) = Viog(z), z € X C R, so that F,(z) = 1/z,, we can rewrite
(1) as follows:
F(z*)T(z* —2) >0, z€X, (2)

where X is the set of all feasible resource allocations, z. The expression (2) is then a standard
variational inequality, which generalizes the class of optimization problems. Note then that
to add a route-dependent weight to the inequality (1), as in [1], one needs only to define the
function fs(x) = wslog(zs); more complex forms are then clearly possible as well.

When F : |Rel Xl = RIX! can be expressed as the gradient of some function f : ®" — ®,
then the variational inequality (2) is precisely the first order optimality condition of the
following optimization problem?:

mas (). (3)
Mathematical program (3) then gives the utility form of the problem, when f(z) = log(z),
or f(z) = wlog(z), as defined above. In the case of Proportional Fairness Pricing, these
two interpretations are therefore equivalent, as can be seen through the use of the varia-
tional inequality. The first interpretation is that of a network flow optimization problem,
with a logarithmic objective (utility) function; the variational interpretation is precisely the
optimality condition to that optimization problem. The variational inequality formulation
allows, furthermore, the use of much more general utility functions, including differentiated
service, asymmetric response functions, etc., as well as deeper insights into the mathematical
properties and different solution methods for the problem.

INote that the definitions of x and x* are opposite to those of [1]; we maintain the standard custom in
the optimization literature to refer to z* as the optimal solution over all feasible x.

2This equivalence is notably not present when the vector function F' has an asymmetric jacobian matrix.
In this case, there is no equivalent convex (or concave) optimization formulation for the variational inequality.
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Proportionally Fair prices posses certain desirable traits, including the fact that the prices
are zero when the network is uncongested, and thereafter are proportional to the degree of
oversaturation of the network. This framework then provides some intrinsic congestion
control, should the prices be applied in practice. That was the premise of the work of [1].
Similar approaches can be found in Low and Lapsley [2], and many others since.

Existence of these prices was shown by the Kelly in [3], but their uniqueness has up to
now remained an open question. We shall demonstrate when the prices are unique and not,
and further, in the latter case, describe a strategy for optimizing a secondary criterion over
the set of Proportionally Fair prices.

We begin by summarizing this model and necessary notation for our developments of it.
Let G(N, A) denote a strongly connected network, where N is the set of nodes, of which
there are n, and A the set of links, a, of which there are m. Each link has associated with
it a given capacity u, € R4 U {0}, a € A.

For certain node pairs, s = (n1,n2) € S C N x N, there is a demand for communication,
known as ds. The flow associated with the set of all such demands over the network can be
expressed as a flow on each link a, or on each origin-to-destination route. We shall assume
here that several routes serve the same origin-to-destination (od) pair. The set of all routes
on the network will be referred to as R. This may represent the case of several physical
routes that a request may take, or the presence of more than one network operator serving
that pair.

Indicator matrices can be used to convert from the flow on links to flow on routes. Let A
be the link-route indicator matrix, where A, = 1 if link a is present along on route r € R,
and 0 otherwise. Let I' be the od-route indicator matrix, where I',.; = 1 if route r serves the
od-pair s € S, and 0 otherwise.

In this paper, we shall suppose that the users are homogeneous in their quality of service
requirements. Adding user differentiation within each node pair is straightforward, but
complicates the notation.

The Proportional Fairness Pricing model associates with each od-pair a user utility func-
tion that takes as decision variable the amount of resource allocated to that user over
his entire path. The utility function for each user s, U,(d,), is assumed to be increas-
ing, strictly concave, additive, and continuously differentiable with respect to ds. Denoting
d=(ds,s€8),andU(d) =3, Us(d,), the concave maximization problem of determining
a Proportionally Fair resource allocation is given below:

max ), g Us(ds) (4)
subject to
Iy = ()
Ay < (6)
dy > 0 (7)

INRIA



Optimizing Proportionally Fair Prices 5

The variable y € R/ El is the vector of route flows. The constraint (5) indicates that the
aggregate flow over the routes serving each od-pair must be equal to the demand of that
pair. The constraints (6) state that the aggregate flow on each link must be less or equal to
the capacity of the link.

Since the objective function is assumed strictly concave in d, the amount of resource
allocated to each user, that is to each od-pair, is unique. In [1] the use of a Lagrangian
method was proposed to solve (4)—(7), in which the capacity constraints (6) are relaxed.
Then the authors interpreted the Lagrangian multipliers, A,, a € A the Proportionally Fair
price for a unit flow through link a; in other words, A, is the shadow price of additional
capacity at resource a.

The authors further decomposed (4)—(7) into a coupled pair of problems: one for the
users, who seek to maximize their individual utilities without regard to the capacity con-
straints, and the other for the network manager, who seeks to allocate resources so as to
maximize revenue, and satisfy capacity restrictions. The decision variable in both sets of
problems is the same — that of the amount of resource to allocate to each user, ds;. The link
between the two problems is the price paid by each user A, which is the sum of the link
prices A, over all links on the paths of all routes used by the user s, that is,

As = Z Z Aarrrs)\a-

a€EATER
The pair of linked problems is:
maxg ZsES Us(ds) — Asds (8)
subject to
ds > 0, (9)
and
max Z Asds (10)
ses
subject to
Ay < (12)
dy > 0. (13)

The network problem attempts to choose the resource allocation so as to maximize
revenue as a function of flow only.

Since the user problem (8)—(9) has no constraints linking the different users, and the
objective function is additive, it can be decomposed and a solution obtained individually for
each user, s; that is, one can solve the individual user problems separately:

RR n® 4311



6 Wynter

maxy, Ug(ds) — Ayds (14)

subject to
d, > 0. (15)

It was shown by Kelly in [3] that there exists a multiplier vector, or shadow price, A such
that the solution to the two problems, (8)—(9) and (10)-(13) is the same, and further is the
same as that which one would obtain from solving (4)—(7).

2 A restricted bilevel programming problem

The above model from [1] is of significant interest for the allocation of telecommunication
resources, as it provides an economic foundation to the resulting allocation, when a utility
function is used to describe user preferences in the place of the traditional (linear) cost
minimization objective.

It further provides a starting point for modeling link pricing and its relation to the
demand for resource usage on a telecommunications network. That is, it combines marketing
ideas of pricing with technical preoccupations of flow levels on the network.

However, this model of Proportionally Fair prices and resource allocation does not go
as far as permitting the network manager to treat pricing as a goal in itself. In the above
models, the decision variables are all resource allocation levels, and prices are outputs of the
algorithmic strategy.

In this section, we recall the framework proposed by Larsson and Patriksson in [4] that
will allow us to extend and generalize the model above to one which explicitly considers the
network manager’s objective of maximizing revenue.

In particular, in this section we provide a formulation of the above problems as a single
saddle-point problem, which is an important special case of the general bilevel programming
problem. It permits optimizing the network manager’s objective function over a restricted
set of prices, and, further, draws a parallel between the method of marginal-cost pricing,
and operator’s profit maximization.

In addition, this approach has the advantage of providing a model having a unique
optimal solution, and is therefore computationally very easy to solve, as opposed to its more
general bilevel programming counterpart.

The method works as follows. Consider a canonical network flow optimization problem
with capacity constraints:

min f(z) (16)

subject to

INRIA
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Iy = (17)
Ay < (18)
dy > 0, (19)

where the flow on a link, a, is o = Y, c g ¥rQar

Then, the linear system obtained from the Karush-Kuhn-Tucker (KKT) optimality con-
ditions for the problem (16)—(19) can be expressed after some manipulation, as was done in
Larsson and Patriksson [4], as follows:

ATIVf(z*) + N —Tx >0, (20)
[VFi(z*)+ N z* —dTn =0, (21)
M(z* —u) =0, (22)

A>0, (23)

where 7 is the Lagrange multiplier vector for constraints (17), and A is the Lagrange mul-
tiplier vector for constraints (18), as before. Equation (21) can be obtained by writing the
following linear programming formulation of (16)—(19), solving for z*:

min, Vf(z*)Tz (24)

subject to constraints (17)—(19). The function V f(z*) is the value of the gradient of the
function f evaluated at the optimal value, x*. While model (24) is clearly not solvable
in practice, since the function value f(z*) at z* is not known, it permits writing a linear
programming dual to the original nonlinear problem (16)—(19). Taking the Lagrangian
relaxation of the capacity constraints (18) and adding that into the linear programming
objective function (24), we obtain

min, Vf(z*)Tz+ A\ (z—u)=

min, Vf(z*)Tz+ AT2. (25)
Then, the linear programming dual of (25) with constraints (17) and (19) is:
max, d'w (26)
subject to
I'r < Vf(*)+ A\ (27)

Strong (linear programming) duality gives the term analogous to that of equation (21), that
is:

[Vf(z*) + N a* — d¥r = 0.

RR n® 4311
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Figure 1: A network with 3 nodes and 3 links.

For a fixed, optimal, value of z*, the system (20)—(23) describes a polyhedron in the
Lagrange multiplier vectors A and =.

Along with the system of (20)—(23), the authors in [4] observed that the multiplier vector
A will not necessarily be unique in network flow problems.

Theorem 1 [Karush-Kuhn-Tucker Necessary Conditions][5] Let z* be a local minimum of the
problem min f(z) subject to h(z) = 0 and g(z) < 0, where f, h;, and g;, are continuously
differentiable functions from ™ — R, for each i € I, j € I,. Let A(x) be the set of
active inequality constraints at x. If the equality constraint gradients Vhi(z),i = 1,... I
and the active inequality constraint gradients Vg;(x), j € Ar,(x), are linearly independent
(i.e., the point x is regular), then the Lagrange multiplier vectors for constraints h(z) = 0
and g(z) <0 are unique.

Indeed, the requirement of linear independence of binding constraint gradients is not
usually satisfied in networks, as the constraint gradients take the form of indicator matrices
for the graph, and in particular the arc-route indicator matrix, which are not constructed
so as to have linearly independent rows.

The following example illustrates, for simple network structures, cases where the linear
independence, and therefore the uniqueness of the multiplier vectors (shadow prices), holds
and does not hold.

Example 1 Consider the network of Figure 1. The network has 8 nodes, 8 links, and
one origin-destination pair, from node 1 to node 8. There are 2 routes joining the origin-
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destination pair. The link-route 0-1 incidence matriz, A, is given below.

A=

—_ O =
o= o

and the route-od pair incidence matriz, T, is given by the following:
T=[1 1|

where T has only one row since there is only one od-pair in the network. The combined
jacobian matriz of the constraints, (5)-(6), M, is then

=
O = O

The Theorem 1 states that when the rows of the matriz, M, corresponding to active con-
straints at an optimal solution are extracted into a submatriz, and that those rows are linearly
independent, then the multiplier vectors will be unique.

Noting that the constraint (5) is always active, since it is an equality constraint, and
therefore that the fourth row of M is always present, it is easy to see that the rows of M
will be linearly independent only when at least two capacity constraints are not active. In
other words, at least two links must have flows strictly less than their capacity. In this
case, the multipliers are naturally zero on the non-capacitated links. Therefore, as soon as
any two links reach capacity, the matrix given by M will have linearly dependent rows, and
the multipliers will not be unique. Consequently, the Proportionally Fair prices will not be
unique.

While the uniqueness of the multiplier or price vector is clearly network dependent, we
observe that even for very small and simple network structures, the Proportionally Fair Price
vector will not be unique.

When these multipliers are not unique, then, Larsson and Patriksson [4] proposed op-
timizing a secondary objective over the set of those multiplier values. That is, given the
system (20)—(23), they posed the following secondary optimization problem:

min  ¢(A) (28)

subject to
AeTNP, (29)
(30)

RR n® 4311



10 Wynter

where T is the set of A given by (20)-(23), and ¢ : R4l — R is coercive, and preferably
convex. Since the feasible set is polyhedral, when P is, this secondary, or network manager’s
optimization, problem is easy to solve using standard linear or nonlinear programming al-
gorithms, depending on whether ¢ is a nonlinear or linear function of A.

The network manager’s objective can take various forms. Larsson and Patriksson [4], in
the context of transport planning, discuss at length the network objective of trying to achieve
a particular flow (of transport users) by adding prices judiciously; this includes trying to
adjust link flows from their user-equilibrium values to a system optimum (using marginal
cost pricing) or to some other flow (which then changes the prices that are produced by the
model), or even allowing prices to be positive or negative, in which case, travel subsidies are
considered (negative prices).

3 Profit maximization with proportionally fair pricing

In our context, we are primarily concerned with a telecommunications service provider,
rather than a public authority, and so prices should be determined so as to maximize revenue.

Returning now to the Proportional Fairness pricing model [1] of (4)—(7), we shall express
the corresponding polyhedral system of multipliers, or shadow prices, of the capacity con-
straints, which have been referred to as Proportionally Fair prices. While an existence result
for these prices is immediate, and was included [3], the uniqueness of these prices has been
an open issue. The issue is of very clear importance if the prices are to be used. Indeed, in
the case of non-unique prices, depending on the algorithm used, a different price (multiplier)
vector would be obtained.

Within the context of this paper, the interest is in obtaining a particular price vector,
that is, one which satisfies an additional objective. Therefore, this question is first addressed
for the model of (4)—(7).

Remark 1 Recall that, according to Theorem 1, proving the uniqueness of the prices requires
a study of the network topology at the optimal flow solution. If the active constraint gradients
evaluated at that solution are linearly independent, then the multiplier vectors are known to
be unique by the Karush-Kuhn-Tucker necessary optimality conditions. The active constraint
gradients in this model are a subset of the route-arc indicator matriz, A, and the entire route-
od indicator matriz, I'. Depending upon which capacity constraints are active, the subset of
A and the matrix T’ may or may not have linearly independent rows.

Remark 2 (Pareto optimal solutions) In order to satisfy the Pareto optimality of the op-
timal resource allocation, efficient links would likely not remain under-utilized with respect
to their capacity limits. Therefore, a consequence of having many active capacity constraints
is that Pareto optimal solutions would admit, in general, non-unique Proportionally Fair
prices.

We can study the system defining the multiplier vectors that arises from looking at the
KKT conditions and the statement of strong duality of the corresponding linear program.

INRIA
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The model of (4)—(7) is different from that of (16)—(19) as the decision variable is the total
demand between each pair of nodes, rather than the link flow.

To do so, we begin by formulating the linear programming form of the Proportional
Fairness pricing problem. We obtain:

maxq, VU(d*)Td (31)
subject to
Ty = d (32)
Ay < (33)
dy > 0. (34)

The linear programming dual to (31)—(34) can then be expressed as follows:

miny . ulA (35)
subject to
'Tr+ATY > 0 (36)
dTn > VU(d") (37)
A > 0. (38)
By strong duality, we have that
VU(d*) = uT A\ (39)

Equation (39) says that the quantity u7 ) is equal to a constant value, VU (d*), and the
term uT \ gives the revenue accrued from the network flow, when link prices \,, a € A are
charged. Indeed, A will be identically zero when the constraint (6) is not active, i.e. when
capacity is not reached. For that link, the component of right-hand side of (39) makes no
contribution. On the other hand, the price A is collected precisely when capacity is reached.
on each link, that is when A,,.y* = u,, a € A. Consequently, ul ) gives the total revenue
obtained from the flow y*. This is summarized in the following proposition.

Proposition 1 The total revenue obtained by charging Proportional Fairness prices, that
15 ) qca NaTa, Where To = Ag,y, is the total flow on link a € A, is unique.

Proof.

By strong duality on the linear programming formulation of (4)—(7), we have that (39)
holds. Since u” ) represents the revenue associated with the optimal flow y*, and VU (d*)
is constant for fixed d*, the desired result follows.

RR n® 4311
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Remark 3 Although the total revenue that can be obtained through the Proportion Fair-
ness pricing model is unique, the prices themselves are not necessarily unique, as discussed
in Remark 1. Indeed, there are an infinite number of ways that the same total revenue
Y aca AaZa, can be obtained by distributing prices X, among the links a € A of the network,
all giving the same optimal link flow x and user resource level d. This result also arose in
the elastic-demand formulation of traffic equilibrium in [4].

4 Conclusions

We have analyzed the Proportional Fairness Pricing model and presented it within a more
general optimization framework, in which the prices, viewed as Lagrange multipliers on a
convex (or concave) optimization problem, can be optimized. The set of those prices, or
Lagrange multipliers, was expressed explicitly, using a linear-programming dual formulation
of the nonlinear programming problem.

The uniqueness of the prices was discussed and it was demonstrated through a very
simple example that the prices are not likely to be unique. The problem which allows those
prices to be optimized while maintaining their characterization as “Proportionally Fair” was
provided, and is in fact, not much more complex to solve than the original problem.

Further research along these lines could take the form of more general utility functions,
including differentiated services with asymmetric response functions.
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