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Abstract. Many application level qualities are functions of available computation resources. Recent studies
have handled the computation resource allocation problem to maximize the overall application quality.
However, such QoS problems are fundamentally multi-dimensional optimization problems that require
extensive computation. Therefore, online usage of optimization procedures may significantly reduce the
computation resource available for applications. This raises the question of how to best use the optimization
procedures for dynamic real-time task sets. In dynamic real-time systems, it is important to improve the
performance by re-allocating the resources adapting to dynamic situations. However, the overhead of changing
task parameters (i.e., algorithms and frequencies) for resource re-allocation is non-negligible in many
applications. Thus, too frequent change of resource allocation may not be desirable. This paper proposes a
method called service classes configuration to address the QoS problem with dynamic arrival and departure of
tasks. The method avoids online usage of optimization procedures by offline designing templates (called service
classes) of resource allocation, which will be adaptively used depending on online situations. The service classes
are designed by best trading-off the accuracy of dynamic adaptation against the overhead of resource re-
allocation. A simplified radar application is used as an illustrative example.

Keywords: real-time system, optimal resource allocation, quality of service, online QoS management, service
class, surveillance radar system

1. Introduction

QoS research recognizes that application level qualities are functions of available
computation resources. For example, feedback control systems can provide better control
performance with higher rates of sampling and control actuation. Recent studies (Seto et
al., 1996, 1998) allocate CPU resources in a way that maximizes the control performance.
QoS-based resource allocation model (Q-RAM) is a generalized approach that handles
several quality attributes and several different forms of utility functions (Rajkumar et al.,
1997, 1998; Lee et al., 1998). The QoS problem is fundamentally a multi-dimensional
optimization problem that requires extensive computation.

For a system with a static task set, we can apply the optimization procedure offline to
find the optimal resource sharing and it can be constantly used online. However, more
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challenging QoS applications have a dynamically changing task set. For example, a
surveillance radar system must simultaneously track multiple targets. Tracking quality of
each target depends on the amount of computing resource allocated to its track task. A
higher sampling rate and more sophisticated algorithms, which require more computing
resource, will produce better tracking quality. However, the largest possible amount of
resource for each task is bounded due to finite computing resource shared among multiple
track tasks. Thus, it is important to allocate computing resources in such a way that the
weighted sum of tracking qualities is maximized. The challenge is that targets come and
go. Different numbers of targets and target types create different QoS optimization
problem online. And the QoS optimization is a computationally expensive problem that
may compete with tracking tasks for limited computing resources if it is applied online.

As a result, existing real-time scheduling methods typically allocate resources based on
a worst case scenario. Consider an example system with the requirement that it must
simultaneously track five air planes and seven missiles in the worst case. However, the
actual workload state of the system will change under the worst case as targets
dynamically arrive and depart. The set of all possible workload states in this simplified
example can be depicted as in Figure 1 where each cell represents a workload state and its
row and column numbers represent air plane and missile counts at the state. As the
workload state dynamically changes, the optimal resource sharing for the best tracking
quality also changes. Thus, the resource allocation should be adaptive to online workload
changes. The resource allocation based on the worst case scenario is inefficient since it
cannot adapt to workload changes. On the other hand, recomputing the QoS problem
online has too high an overhead.

This paper investigates how to best use the optimization procedures for dynamic real-
time applications. We tackle this problem by a method called service classes
configuration. A service class is a pre-calculated resource allocation. During the design
phase, we design a set of service classes (CL;, CL,, and CL; in Figure 1) that are
optimized for different workload states (shaded states in Figure 1). A light workload
service class (e.g., CL,) can provide a large amount of resource to each task, resulting in
high quality of each. On the other hand, a heavy workload service class (e.g., CL;) can
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Figure 1. An example set of service classes.
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only assign a significant amount of resource to certain important tasks while others must
have less resource in order to handle more tasks. Each service class covers a certain
region of workload states. A light workload service class can be used only when the
system workload is low. A heavy workload service class can be used when workload is
either high or low. However, it is preferable to use the light workload class for low
workload. The set of workload states is partitioned into a number of regions each of
which is covered by its corresponding service class as shown in Figure 1.

The more service classes we have, the closer the online workload state can be to the
state for which the covering service class is optimized. For example, if we can have the
same number of service classes as the total number of workload states, each service class
can be optimized for each workload state. However, many service classes require
frequent service class switching as the online workload changes. Switching service
classes causes resource re-allocation to each task that requires change of its sampling
frequency and/or algorithms. For a task to change its sampling frequency, it needs extra
time to reconfigure several objects related to the sampling frequency. Changing algorithm
also requires reconfiguration time such as cache replacement with the new algorithm
codes and memory allocation used by the new algorithm. Thus, the set of service classes
should be designed considering the trade-off between capability of online adaptation and
reconfiguration overhead by service class switching.

Another important issue in the design of service classes is the scalability to the
explosion of the workload state space since the number of workload states explodes when
there are many different target types. Therefore, designing a set of service classes has the
following challenges:

e How can we select service classes and how many service classes are needed?
e How can we best define the region of workload states covered by each service class?

e How can we minimize reconfiguration overhead’s impact to schedulability during
service class switching?

e How can we make the service class design method scalable to the explosion in
number of workload states?

The proposed service classes configuration effectively handles these inter-dependent
issues. In this paper, we propose reconfiguration scenarios and sufficient conditions for
switching service classes guaranteeing all deadlines. Based on these, the service classes
configuration method finds a maximal set of service classes without explicitly reserving
resource for reconfigurations. Using the service classes, we can effectively adapt to
online workload to achieve a high degree of QoS while always guaranteeing deadlines.

The rest of this paper is organized as follows: Section 2 uses a surveillance radar
system to illustrate the service class problem. Section 3 explains the proposed approach
to service classes configuration. Section 4 presents experimental results. Section 5
summarizes the related work. Finally, Section 6 presents our conclusions and future
work.
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2. Problem Description, Terminologies, and Assumptions

The goal of this work is to develop a method that maximizes the application level QoS
using online switching of offline computed service classes. To introduce the application
context, we assume a phased array radar system (Kuo et al., 2000) with an array of
antennae that can steer the radar beam electronically.

In such systems, radar beam steering commands are issued by three kinds of tasks with
different missions: search, confirmation and track tasks. The search task periodically
scans the entire surveillance space to detect the appearance of new targets. Once a new
target is detected, a confirmation task is created to identify the type of target. When it is
identified, a track task is created and starts tracking the target until it leaves or is
destroyed.

These search, confirmation and track tasks are scheduled on the processor resource
issuing radar control commands. Their radar control commands are scheduled on the
antenna resource. Figure 2 (Baugh, 1973) depicts the two resources. The scheduling of
radar control commands on the antenna resource is non-preemptive in nature. On the
other hand, the task scheduling on the processor can be implemented either in a
preemptive way or in a non-preemptive way. Modern radar systems use a general purpose
processor (Billetter, 1989, 1987) and thus we assume such processor scheduling tasks in a
preemptive way. Specifically, we assume the preemptive earliest deadline first (EDF) (Liu
and Layland, 1973) scheduling of tasks on the processor resource. Also, to focus on the
service class abstraction rather than the details of radar operations, we assume that certain
amounts of resource budgets are reserved for search tasks by using periodic polling
servers and for confirmation tasks by using aperiodic servers (Strosnider et al., 1995;
Ghazalie and Baker, 1995; Deng et al., 1997; Spuri and Buttazo, 1996). Therefore, in the
rest of this paper, we will focus on the optimal usage of the remaining resource budget by
track tasks to maximize the overall tracking quality.

Once a track task is created to track a target object, it periodically samples the target
location and estimates the next location with a particular sampling frequency as shown in
Figure 3. Table 1 (Kuo et al., 2002) lists the nominal period value ranges depending on
the required precision level and target speed and distance. As long as the target speed and
distance are in a certain range, the track task can be modeled as a periodic task with a
constant sampling frequency. In Section 3.4, we will explain how to handle the sampling
frequency change caused by a significant change of speed and distance.

Processor Antenna
Generates radar commands COMMANDS_| Tyansmits energy
Processes radar returns « at assigned angles
: 5 e RADAR : ; X
lares W odele mitig I W o ve- S
Declares new detections and initiate tracks RETURNS « with assigned wave-forms
Maintains tracks on assigned targets Passes target position and estimated errors

Figure 2. Two resources in a radar system.
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Figure 3. Execution of a track task.

As shown in Figure 3, a track task can be modeled as an end-to-end task (Bettati, 1994;
Sun, 1997) whose first subtask is executed on the processor and the second one is
executed on the antenna. Each subtask should meet its intermediate deadline to meet the
end-to-end deadline. To make the explanation simple, we will momentarily ignore the
effect of the antenna scheduling considering only the processor resource. In Section 3.5,
we will explain how our service class approach can be extended to the dual resource
problem with processor and antenna resources.

Track tasks are differently classified by target types they are tracking. For example, in
the surveillance radar application, targets can be classified into different types such as
missile, hostile air plane, unknown, etc. The number of different target types is denoted
by K. Due to the resource limitation, for each target type ke {1,...,K}, we assume that
the maximum number of targets that the system must simultaneously track, denoted by
N,, is given as a system specification. Thus, the worst case workload is denoted by a K-
tuple (N|,N,, ..., Ng). Each possible system workload state or just state s is denoted by
(n},n, ..., n%), 0<n] <N, 0<ni <N,,...,0<n} <Ng. We call the set of all
possible system states workload space denoted by WS. Figure 4 shows the workload
space for a system where the number of target types, that is, K, is two.

A track task for each target type ke{1,...,K} produces different tracking quality
depending on the amount of allocated processor resource. For example, tracking a missile
with higher sampling frequency and/or more sophisticated algorithms will require more
processor resource but produce better tracking quality. Thus, the tracking quality of each
target type ke{l,...,K} is modeled as a function of its sampling frequency f, and
computation time Cy, that is, V,(f;,C,). For now, we assume that each track task for a
type ke {1,...,K} uses a fixed algorithm and thus requires a constant computation time

Table 1. Nominal period values of track tasks.

Tracking precision level Period
High-precision track (100 ms, 250 ms)
Precision track (100 ms, 250 ms)

Normal track (250 ms, 2000 ms)




10 LEE ET AL.

Ny

Figure 4. Workload space WS = {s = (n},n3) | 0 < nj <N;,0 <n§ <N,}.

C, at each sampling period. Only its sampling frequency f; is assumed to be adjustable.
Later, we will show how our approach can be generalized to handle the situation where
both C, and f, are adjustable by using the Q-RAM approach (Rajkumar et al., 1997, 1998;
Lee et al., 1998). Additional quality attributes can be handled in a similar way.

Generally, the control performance depending on the sampling frequency is modeled as
an exponential function (Seto et al., 1996; Caccamo et al., 2000). In a radar system, the
system keeps a record (track) of each target and remembers its current position, heading,
speed, etc. as the target moves. The records are updated periodically at sufficiently high
frequencies so as to maintain a specified level of confidence in their accuracy. The higher
is the update frequency to keep track of it, the more accurate the record is. The accuracy
improvement by increasing the update frequency is significant at the beginning but
becomes only marginal once the accuracy is saturated with a high enough frequency.
Such property allows us to apply the exponential performance model proposed by Seto et
al. (1996). We assume that the tracking performance, also called tracking quality, for
target type k can be defined with the following form of exponential function:'

Vi(fi) = we(1 —e_“kf"+ﬁk) (1)

where the sampling frequency f} is a controllable variable that should be larger than or
equal to f i, to avoid loss of tracking. The parameters wy, oy, and 8, specify the weight
(importance of the target type), sensitivity to sampling frequency, and control value of
minimum achievable performance, respectively. These parameters for each target type
can be given by nonlinear regression techniques (Bates and Watts, 1988) after thoroughly
investigating target characteristics such as speed, maneuverability, and lethality. Figure 5
shows examples of tracking quality functions for two different target types: one is for a
target type more critical and more sensitive to the sampling frequency and the other less
critical and less sensitive to the sampling frequency. Note that the minimal sampling
frequencies for these two target types are not the same. The minimal sampling frequency
of one target type is determined by the physical property of the target such as the
maximal speed and maneuvering capability. Figure 5 shows that by properly choosing
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Figure 5. Examples of tracking quality function.

Semin> Wi» %, and B, we can draw many different shapes of tracking quality functions that
can properly model physical properties of different target types.

With these settings, the processor resource allocation problem can be formally
described as follows:

Problem Description Which sampling frequency f; should be assigned to each target
type ke{1,...,K} at each system state s WS, to maximize the total sum of expected
tracking quality (3_;cwsP(S) Xore i, k) M Vi(fi) where p(s) is the probability that the
system is at state s) while guaranteeing all deadlines and minimal requirements f ;,?

We handle this problem with a set of service classes each of which is defined as a pre-
calculated sampling frequency allocation. The set of service classes is denoted by
{CL,,CL,, ..., CL,} where CL,(1 <i < M) is each service class in the set. A service
class CL,; is optimized for a different workload state defined as a base state. The base state
of CL, is denoted by &% = (n?L", ce ng“[) where nEL’ (1 <k <K) is the number of
target instances of type k. The CL;’s frequency allocation optimized for .% Li is denoted
by i = (fICL’, . ,fISL’) where f,fLi(l < k <K) is the sampling frequency for target
type k. The region of the workload space that is covered by a service class CL; is called
CL,’s covering region.

As mentioned before, changing service classes, that is, changing sampling frequencies
and/or algorithms is not free. For changing them, a task needs extra time for recon-
figuration such as re-initialization of objects, cache replacement, and memory allocations.
We call this extra time reconfiguration cost. For simplicity, the reconfiguration cost for
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each type of track task is assumed same and denoted by C,. It can be easily relaxed by
using different C, values for different types.

3. Design of Service Classes
3.1. Reconfiguration for Service Class Switching

In this section, we derive sufficient conditions for service class switching without
explicitly reserving resource for the reconfiguration cost of switching. This section
assumes that service classes and their covering regions were already computed and stored
in a table. Thus, whenever the workload state changes, by looking at the table, we can
determine the current covering service class (denoted by GLOBAL_CLASS) and its
associated frequency allocation. Our method to find a set of service classes and covering
regions will be explained in Section 3.2.

Let us consider an example in Figure 6 where the arrival of a new target triggers
service class switching from CL; to CL,. In the example, the system is originally in a
state with two targets that is served by CL,. The track tasks of the two targets 7, and 1,
have computation times C; = 3 and C, = 4. CL, has pre-calculated frequencies f; = 1/6
and f, = 1/8 for the two track tasks. Thus, the two track tasks are using all processor
resource (3/6 +4/8=1).

When a new target is detected at time 11, the scheduler changes the system state and
notices that the new state is covered by the new service class CL,. The track task for the
new target t; has computation time C; = 1 and the new service class CL, has pre-
calculated frequencies f; =1/9, f, =1/10, and f; = 1/4. Once it is noticed, the
scheduler changes the global variable GLOBAL_CLASS from CL; to CL,. We assume
that the time for changing GLOBAL_CLASS is negligible. Whenever the scheduler is
invoked at release time of a job, it uses GLOBAL_CLASS to assign the job’s deadline
and local variable LOCAL_CLASS. Therefore, jobs released after time 11 will have
deadlines determined by periods of CL, and local variables LOCAL_CLASS = CL,.

0 10 20 30 40
Time | 1 | 1 1 ‘ 1 1 | 1 | 1 1 1 | ‘ 1 1 1 |
o /1 /| (,._l W — | — |
) ‘ [ } ) I !—\ | 1M }_I [

I
73 Switching from CL, to CL, I:\ ij | i) I:\

Figure 6. Example of service class switching by an arrival.
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Every track task checks its LOCAL_CLASS at the beginning of execution at each
sampling period. Thus, the first instance of each track task released after time 11 can
notice that its LOCAL_CLASS = CL, is different to the previous one, that is, CL,.
Therefore, they consume C, =1 (marked as dark shaded tall box in the figure) to
reconfigure objects related to the sampling frequency such that successful tracking with
the new sampling frequency of CL, can be performed. After all existing track tasks are
reconfigured, the new track task is started at time 28.2

To avoid potential loss of target tracks, we should guarantee deadlines all through the
time line. Before the service class switching time at time 11 in Figure 6, we can guarantee
all deadlines if we make the total utilization in CL; (3/6 + 4/8) less than or equal to 1.
Also, after the completion time of all reconfigurations at time 28 in Figure 6, all deadlines
are guaranteed if we make the total utilization in CL, (3/9 +4/10 + 1/4) less than or equal
to 1. However, during the time interval of reconfiguration from time 11 to time 28 in
Figure 6, three types of jobs are mixed: jobs using sampling periods of CL,, jobs with
reconfiguration time C, using sampling periods of CL,, and jobs using sampling periods
of CL,. Therefore, to guarantee all deadlines in the time interval, a certain relation
between CL, and CL, should be satisfied. We derive such a relation in Theorems 1 and 2.
In the following, a job J; with release time r; and deadline d; is said to be active at time ¢
ifri<t<d,.

THEOREM 1 A system of preemptable jobs is schedulable according to the EDF
algorithm if the sum of densities C;/(d; — r;) of all active jobs J; is no greater than 1 at
all times (Liu, 2000).

THEOREM 2 Consider a system state change from s, to s, by arrivals of new targets that
triggers a service class switching from CL, to CL,. Let U1 (s) and U 2(s,) be
the total utilization factors at states sy and s,, that is, 3, C ,-.)‘;-CL‘ andy . . C fiCLZ,
respectively. If the following conditions hold, all deadlines are guaranteed.

UCLI (Sl) < 17
U (s,) < 1,
C,-ficLl > (C; + C)f"™, for all tasks 1, at s,.

1

Proof: Suppose that the service class switching occurs at time ¢, and all
reconfigurations complete at t.. Before f#,, the sum of densities of all active jobs
is no greater than 1 since U“"i(s;) < 1. During the interval [r,1;), the density of
some task t; at s; becomes (C; —|—Cr)fl-CL2 and then C,-f,«CLZ. Since CifiCLl > (C; +
Cr)f;»CL2 >C; f,-CL2 and only tasks at s, are scheduled before 7, the sum of densities of all
active jobs at all times in [, #;) is no greater than 1. From the time I, the sum of densities
of all active jobs is no greater than 1 since U2 (s,) < 1. By Theorem 1, all deadlines are

guaranteed. |

If the conditions in Theorem 2 hold between two service classes CL; and CL,, the
reconfiguration in the reverse direction, that is, from CL, to CL,, by departures of
existing targets can be performed as in Figure 7 guaranteeing all deadlines. In Figure 7,
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Figure 7. Example of service class switching by a departure.

the system is originally at a state with three track tasks (7, = (C; = 3, flcL2 =1/9),

1, = (Cy = 4,f,2 = 1/10), 13 = (C3 = 1,f{* = 1/4)) covered by CL,. At time 16, a
target 75 departs. Thus, the scheduler changes the system state and notices that the new
state is covered by the new service class CL;, whose predefined frequency allocation
is ( ICL‘ =1/6, fZCL‘ =1/8). Then, the scheduler changes the global variable
GLOBAL_CLASS from CL, to CL,. After time 16, the scheduler will use
GLOBAL_CLASS = CL,; to determine the local variables LOCAL_CLASS of all
released jobs. The first instance of each task after time 16 notices the service class
switching from CL, to CL,; at the beginning of the execution by checking its
LOCAL_CLASS. Unlike the previous type of switching caused by arrivals of new targets
in Figure 6, for this type of switching, the new period of CL; will be applied from the
second instance after the service class switching. That is, in Figure 7, the periods of the
first instances after time 16 are still those of CL, and the new periods of CL; will be
applied from the next instance. Thus, the first instance executes with the original period
and then reconfigures objects at the end of execution such that the new period can be used
from the next instance. Theorem 3 has the formal proof.

THEOREM 3 Consider a system state change from s, to s, by departures of existing
targets that triggers a service class switching from CL, to CL,. If the conditions in
Theorem 2 hold, all deadlines are guaranteed.

Proof: Suppose that the service class switching occurs at time ¢,. Let the release time of
the first job after ¢, be t,. Before #,, the sum of densities of all active jobs is no greater
than 1 since U (s,) < 1. After #,, the density of some task t; at s, becomes
(C;+ Cr)f-CLZ and then C; f,-CL‘ . It is clear that jobs of departed tasks are not active after ¢,.

l

That is, only jobs of tasks in s, can be active after #,. Since (C; + Cr)fiCL2 <C; fiCL‘ and
Ut (s,) < 1, the sum of densities of all active jobs at all times after #, is no greater than

1. By Theorem 1, all deadlines are guaranteed. |
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3.2. Heuristic Approach to Designing Service Classes

In this section, we give a heuristic design method to find a maximal set of service classes
without explicit reservation for reconfigurations by using the conditions explained in
Section 3.1. The overall idea of our approach is as follows. We position base states of
service classes on the diagonal of the workload space as shown in Figure 8 where the
diagonal states are lightly shaded and base states are darkly shaded. A state on the
diagonal is represented by ([N,(i/N)],..., [Nk(i/N)]) where i=0,...,N and
N =max;cq . xyNi- When i=N, it represents the worst case workload state
(N{,..., Ng). When i =0, it represents the zero workload state (0,...,0). Among all
diagonal states, we choose a subset of them as a set of base states’ using a method
explained later. For the chosen base states, we optimize the sampling frequency allocation
using a non-linear optimization technique, which will also be explained later. The
sampling frequency allocation optimized for each base state forms a service class. The
covering region of each service class is determined by checking the schedulability at each
state using the frequency allocation of the service class. In this way, we can partition the
workload space into a number of covering regions that are covered by corresponding
service classes as shown in Figure 8.

To guarantee all deadlines even if service class switching happens, we need to make
the conditions in Theorem 2 hold for any pair of two service classes. We also need to
guarantee the minimum sampling frequency of each type of target even at the worst case
workload state. To do so, we start with the base state on the worst case workload state

(Ny,..., Ng). The service class based on the worst case workload is denoted as CL,,.

0 1 2 3 4 5 6 7 8 9 10
0
1

CL; e
2 <
3 e cil,
~—

4 CL': = ~
5 }CL;

FEH = (f11= 100 Hz, f;°M1 = 80 Hz)
F2 = (2 =70 Hz, 2 = 60 Hz)

F3 = (13 =50 Hz, £ =40 Hz)

Figure 8. Service class design on the diagonal.
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When the workload state is (ny, ..., ng), the optimal frequency allocation problem is
formulated as follows:

maximize
K K
anvk(fk) = anwk(l — e ulith)
k=1 k=1
subject to (2)
K
Z”kckfk <1,
k=1

Je 2 femin, forallk=1,... K.

In the formulation, the objective function Zle n. Vi (f;) represents the total tracking
quality we can achieve at state (n,. .., ng) if we use sampling frequencies (fi,. .., fx)-
The first constraint says that the total utilization should be no greater than 1 for the
schedulability. The second constraint forces each sampling frequency f, to be larger than
or equal to the minimum sampling frequency fj i, of the corresponding target type k.

Since both the objective function and the constraint functions are convex, we can solve
the problem using the nonlinear optimization technique based on Kuhn-Tucker
conditions (Peressini et al., 1980) as in (Seto et al., 1996). We present the solution in
the following. The proof is similar to that in (Seto et al., 1996). Interested readers can be
referred to Seto et al. (1996).

foo k=1,2,...
f_ k,min»
ET VA B+ Il =0), k=p+1,....K

where
I, — WkOCk
k Ck )
nka
Q < nkckfk ,min (Bk +In Fk) - 1)
> p+1 (”kck/“k Z v;p;rl Ol
fis- -, fx are ordered according tO fj iy, - - - fx min Which are arranged as

Flefﬁlfl.mnﬁrﬁl < ]"ze*“zfz,min th < ... < I"Ke*“l(fk.min +Bx

and pe{l,...,K} is the largest integer such that

m.C |
anckfkmm+ > M (ocpfp,mm+lnr—‘+ﬁk—ﬂ,,> >1
k p

k=p+1

The above solution when (ny, ..., ng) = (Ny, ..., Ni) is the frequency allocation for
CL,,. To find the base state of the next service class CL,,_ |, we scan the diagonal states
([N,(i/N)],..., [Nk(i/N)]) (changing i from N —1 to 0) to check if the following
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conditions can hold. These conditions are representations of the first and third conditions
in Theorem 2 (the second condition was already satisfied when designing CL,;).

> {Nk]i,—‘ C.fi <1 3)

ke{l,.,K}

(Ck + Cr)

>
fiz =t

& forall ke {1,..., K} (4)

At state ([N,(i/N)],..., [Ng(i/N)]), if the minimum required utilization U,
to satisfy the condition (4) (such U, is simply given by ", _ (,..xy [INe(i/N)]
C.((C, —l—Cr)/Ck)kaLM) is less than or equal to 1, the above conditions can be met.
Otherwise, there cannot be a solution that satisfies the condition (3). When workload is
heavy (i.e., when i is large), U,;, is likely to be larger than 1. As scanning the diagonal
states from i =N — 1 to i =0, we can find the first state where U,,,;, becomes less than or
equal to 1. At the diagonal state, we make CL,,_ ;. When finding the optimal frequency
allocation for CL, _;, we use the formulation in (2) by replacing f; ;, with
((C+C)/CIf™.

By repeating this process until we reach the diagonal state (0,...,0) as shown in
Figure 8, we can find CL;, _,,CL,,_5,..., CL,. This is the maximal addition of service
classes on the diagonal states satisfying conditions (3) and (4).

This process can be intuitively understood as follows. Satisfying the conditions (3) and
(4) when adding service classes makes enough distances between two neighboring base
states. The utilization gap due to this distance can handle the reconfiguration costs during
service class switching.* In this way, we can design each service class without explicitly
reserving a budget for the reconfigurations.

Once we find the frequency allocations for CL,CL,, ..., CL,,;, the next step is to
determine their covering regions. The service class that covers a system state (n, ..., ng)
is determined by checking the following feasibility condition:

Covering feasibility condition A state (n;,..., ng) can be covered by a service class
CL,; if
& CL
> mCife <1 (5)
k=1
The covering service class of a state (n,,..., ng) is defined as the first service class

(from CL, to CL,,) that satisfies the above feasibility condition. Using this method, we
can determine the covering regions of the service classes partitioning the workload space.
The final shape of the partitions by the covering regions looks like Figure 8.

THEOREM 4 For any system state change that triggers a switching between any pair of
service classes, all deadlines are guaranteed.
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Proof: For any pair of service classes CL; and CL; (i <) fSH > ((C+ Cr)/C,»)kaL/
for all ke {1,...,K}. For any two system states s; and s;, respectively covered by CL;
and CL;, let U(s;) and U"i(s;) be the utilization factors at s; and s;. By the covering
feasibility condition (5), U(s;) <1 and U(s;) < 1. Therefore, all conditions in
Theorems 2 hold. This follows the theorem. |

3.3. Generalization of the Proposed Approach

Until now, we assumed that the computation time C, is fixed and only the sampling
frequency f; is adjustable. Also, we assumed that the tracking quality function V,(f;) is
defined as a continuous convex function. This section shows how to relax those
assumptions using the Q-RAM approach (Rajkumar et al., 1997, 1998; Lee et al., 1998).

Consider a situation where a track task for a target type ke{l,...,K} has two
algorithm options (Algorithms 1 and 2) and 5 sampling frequency options (10, 20, 30, 40,
and 50Hz). Using Algorithms 1 and 2 at each sampling period takes 2 and 3 ms,
respectively. With these options, we can draw two tracking quality functions Vflg(’l( )
and Vﬁlgoz( fi) as shown in Figure 9(a). These functions can be simply translated into
functions of assigned resource R, since C,f, = R,. Figure 9(b) shows the translated
functions V'*°'(R,) and V,"¢*(R,). By taking the maximum of the two functions, we
can obtain the final tracking quality function V,(R,) (the thick line in Figure 9(b)):

Vi(R) = max(vﬁlg(ﬂ (Re), V/?lgoz (Ry)) (6)

Vi(Ry) is represented by a list of discrete R—V (resource—value) pairs in increasing

R'Order as f()llO WS:
< qu ) >
k‘Ik

8= (g )

Associated with each R;; (1 <j < qy), its computation time and frequency option
selection Qy; = (ij, fkj) is determined from Equation (6) by noting the option that gave
the maximum.

If such V,.(R,) is given for each target type ke{l,...,K}, the optimal resource

allocation problem at state (n,, ..., ng) is formulated as follows:
maximize
K
Z mVi(Ry)
k=1
subject to (7)

K
> mR <1,

k=1
RkZRkA,min? forallk:1,...,K
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Figure 9. Tracking quality function with multiple dimension discrete options.

This problem can be solved by optimal or near-optimal algorithms in Rajkumar et al.
(1998) and Lee et al. (1998). We present a near-optimal algorithm that solves the above
problem by constructing the convex hull for each V. (R;) as shown in Figure 9(c), which
is a variation of the one in Lee et al. (1998). In the following algorithm, R® denotes the
residual resource capacity; s_list[j].tid, s_list[j].R, and s_list[j].V denote the target type
id, the associated R and V values of the corresponding R—V pair; R, denotes the resource
allocated for target type k.

Near-Optimal Algorithm Find resource allocation R, (and associated O, = (Cy, f;)) for
each target type k, 1 <k <K when the system state is (ny, ..., ng)
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Input: (n,..., ng), (Vi(Ry),..., Vg(Rk)), (Rimins---» Ri min)
Output: Option selection of each type (Q;,..., Q) and
total value V
begin procedure
. for k=1 to K do

V,
in Vi(Ry) = <<Xk‘ ),. . <Rk"k ) >, find the first m such that Ry, > Ry i
k1 kqy

—_

2
3 Rl\ = ka
4. Vi(Ry):=convex_hull_frontier (V,(R,)) with the start point of (Z"’")
km
5. end for
6. s_list: =merge_and_sort(V|(R,), ..., Vi(Rg))
C . K

7.R :=1->,_ \mR,
8. if R° < 0 return (‘‘insufficient resource’’)

9. for j=1 to Is_listl do

10. k:=s_list[j].tid

11. B = (s_list[j].R — Ry) x n,

12. if f <R then R := R° — f3, R := s_list[j].R

13. else continue

14. end for

15. determine (Qy,..., Q) from (R;,..., R})

K

16. V=3 41 mVi(Ry)

17. return(Q,,..., O, V)
end procedure

The loop from line 1 to 5 assigns the minimum resource allocation to each target type.
Also, it finds the convex_hull_frontier of each V,(R;) with the starting point of the R—V
pair that first satisfies the minimum resource requirement. Line 6 merges all
convex_hull_frontiers into a single list s_[ist in decreasing R—V-gradient-order. In line
7, the residual resource capacity R¢ is set to the the amount of resource left by the
minimal resource allocation. If R® is negative, we cannot satisfy even the minimum
resource requirements and hence immediately return. From line 9 to 14, we further assign
resources starting from the type k with the largest R—V-gradient until the residual capacity
R is exhausted. After finding the resource allocation for each type (R, ..., Rg), line 15
determines its corresponding option selection of each type (Q;, ..., Q). The total value
V we can achieve by using the resource allocation (R|,..., Rg) at state (ny,..., ng) is
given in line 16.

One thing we need to take care is to satisfy the conditions in Theorem 2 between two
neighboring service classes CL; and CL;, to guarantee all deadlines. The first and
second conditions are automatically satisfied by the formulation in (7). The third
condition is represented as follows in this context:

Chplh > (e ) S, forall k=1,... K
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To satisfy this condition when designing CL;,
CL; CL,
Rk,min = (Ck T+ Cr)fk o
Remember that C,SL” “! and fkC b1 are known values when designing CL; since we
design service classes from CL;, to CL;.

3.4. Sub-typing of a Physical Target Type Considering Target States

The tracking value of a target type k that can be achieved by using resource R, in fact
depends on not only the target type (e.g., missile, hostile airplane, airplane, etc.) but also
target states such as distance and speed. For example, if a target is far away, we can
achieve an appropriate tracking value by using a low sampling frequency. On the other
hand, for tracking a close target, we must use a high sampling frequency to achieve a
desirable tracking value. Also, tracking a fast moving target requires a higher sampling
frequency than tracking a slow moving target.

If we specify the tracking quality function independently to target states, we should
assume the worst case target state, that is, the closest distance and the maximum speed.
Such tracking quality specification may result in an ineffective resource allocation that
unnecessarily gives much resource to a target in a non-critical state.

Our service class design approach can handle this problem by allowing finer-grained
classification of target types. In other words, a single (physical) target type can be further
classified into a number of sub-types (logical target types) depending on the target state.
For example, we can divide the surveillance space into a finite number of regions (e.g.,
critical region, tracking region, and non-critical region)’ as shown in Figure 10. A target
of (physical) type k (e.g., missile) in different regions can be regarded as different
(logical) types (e.g., missile in critical region, missile in tracking region, and missile in
non-critical region). If the target crosses the region boundary, we can handle this as if a
departure of old (logical) type and an arrival of new (logical) type happen.

With this finer-grained type classification considering target states, all possible
(logical) target types are represented as follows:

Typeyy, .-, Typey ;... Typegy, ..., Typeg;,

Type, Typeg

where L, is the number of sub-types of (physical) type ke {1,...,K}.
The maximum number of target instances is also specified for each sub-type as follows:

Ny, oo yNygyy oo, Nigyy oo N,

Ny Ng

For example, if the original specification on the maximum number of target instances
of type k was N, = 10 (i.e., 10 missiles), the fine-grained specification can be given as
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Figure 10. Division of surveillance space into discrete regions.

Ny =3, N, =5, and Ni3 = 2 (i.e., 3 critical region missiles, 5 tracking region missiles,
and 2 non-critical region missiles).

The tracking quality function associated to fine-grained target types Type;, can now be
specified as

Via(fias Cu)

The remaining process of service class design is the same as explained in Sections 3.2
and 3.3.

One serious problem of fine-grained type classification is explosion of workload
space. Assuming ZIL": Ny =N, for all ke{1,... K}, the number of workload states for
the original type classification is Ny X - -+ X Ny = Z,L;lN” X e X ZILQINK, but that
for the fine-grained classification is H[L‘ZIN1 PX e X H,LQINK,. This raises the
scalability issue of online QoS management.

Our service class based QoS management is scalable to the explosion of workload
space because the number of service classes used online is bounded by max,; ; , NV}, and
time consuming optimizations are performed offline. However, the approach that uses
optimal resource allocations for all different states become more and more impractical as
workload space explodes because the number of resource allocations managed online
also explodes.
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3.5. Dual Resource Problem: Processor and Antenna

Until now, we explained our service class approach focusing on the processor resource.
This subsection explain how our approach can be extended to handle the situation of two
different types of resources: processor and antenna.

As explained in Figure 3, a track task can be modeled as an end-to-end tasks with two
subtasks: processor subtask and antenna subtask. If we use a nongreedy synchronization
protocol (Bettati, 1994; Sun, 1997) between the processor and antenna, each subtask can
be modeled as an independent periodic task on each resource. For assigning the
intermediate deadline for each subtask to meet the end-to-end deadline, we can use one of
deadline-assignment algorithms (Kao and Garcia-Molina, 1993, 1994; Sun, 1997)
reported in the literature. Here, we use the proportional deadline algorithm (Kao and
Garcia-Molina, 1993; Sun, 1997) that assigns a fraction of the end-to-end deadline to
each subtask in proportion to its computation time. Thus, the intermediate deadlines of
the processor and antenna subtasks of a track task of type k are given as follows:

] Cpl'O
intermediate deadline of processor subtask = — <M>
S \C™ + C§

ant
intermediate deadline of antenna subtask = 1 (#)
fi \CY° + Cant
where f; is the sampling frequency and C}'° and C@" are computation times on the
processor and antenna, respectively.

With these settings of intermediate deadlines, we can perform the schedulability
analysis on each resource independently when designing the service classes. Considering
the intermediate deadline, the processor schedulability condition (the first and second
conditions in Theorem 2) should be changed as follows:

. CPTO+Canl
ancpok< - ><1
k=1

The utilization gap constraint (the third condition in Theorem 2) for the reconfiguration
cost on the processor is now represented as follows:

v CPTO + Cam CPTO + Cant
CL e CL;
Cl/:rocf k ' < : Cgro 2 > (Cproc +C )f : ( Czro )

for all k=1,... K.

In addition, we need to check the schedulability of the antenna resource. When doing
this, we should note that the antenna is non-preemptive. So, the worst case non-
preemptive portion b = max;c(; .k} C¥" should be included as the blocking term B to
the schedulability condition. Assuming the non-preemptive EDF scheduling, the
schedulability condition considering the blocking effect is as follows:

K pro ant
Cy CY
> (nde"I <+t )) +B<1
Ci

k=1
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where B = max, ., _ xy O ((C;" + CI™) /Ci™).
With these new constraints, we can apply the same approach to design a set of service
classes considering both processor and antenna resource.

4. Experimental Results

In this section, we compare the expected tracking quality of our approach with those of
two alternative approaches: (1) worst case based approach and (2) all states based
approach. The worst case based approach constantly uses the resource allocation
optimized for the worst case workload. Thus, it does not require any online overhead for
reconfiguration. On the other hand, the all states based approach uses a different resource
allocation for each different workload state. Each resource allocation is optimized for the
corresponding state. However, to guarantee deadlines while switching resource
allocations, a budget for the reconfiguration cost C, is explicitly reserved by adding C,
to the execution time C; of each task when calculating the resource allocation. As an
upper bound of the expected performance, we also present the ideal performance that is
achieved by using the optimal resource allocation for each state ideally assuming zero
reconfiguration cost.

Before explaining our experiments, we first discuss on the actual impact of the
reconfiguration cost. For this, we implemented a Kalman filter algorithm for target
tracking, and measured the computation time on a 500 MHz AMD Ké6-II processor. The
Kalman filter consists of three code segments: (1) sampling frequency independent
initialization part, (2) sampling frequency dependent initialization part, and (3) track
estimation from return signal part. The first part is executed only once. The second part is
executed once whenever the sampling frequency changes. The third part reflects the
normal execution at each sampling period. We used the cycle counting ability of the
AMD K6 processor to measure cycles taken by each part. The results are shown in
Table 2.

We can regard the cycles taken by the sampling frequency dependent initialization part,
that is, 4428 cycles, as the reconfiguration cost C, we have to pay when changing the
sampling frequency. The cycles taken by the first sampling period, that is, 8068, cycles
can be regarded as the normal computation time C, in the absence of cache. In this
specific experiment, the reconfiguration cost C, takes more than 50% of the normal
computation time C,. Note that the cycles of the first and second sampling periods have a
big difference. From the second sampling period, the cycles are similar. This is because
the first sampling period is executed when the code does not reside in the cache while the
others are executed with the cached code. From this, we can estimate the reconfiguration
overhead caused by algorithm change, which may result in cache replacement. As long as
we use the same algorithm code, the code would be in the cache, so the normal
computation time would be about 3500 cycles. If we change the algorithm, the first
sampling period takes longer, 8068 cycles. Thus, the extra cost C, is about 4500, which is
more than 120% of the normal computation time C,. From these measurements, we can
notice that the reconfiguration cost is non-negligible.
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Table 2. Kalman filter cycle measurements.

Code parts Measured cycles
Sampling frequency independent initialization 19,643
Sampling frequency dependent initialization 4428
Track estimation from return signal

1st sampling period 8068

2nd sampling period 3636

3rd sampling period 3522

4th sampling period 3491

Section 4.1 presents the experimental results where tracking quality functions are
defined as continuous convex functions of sampling frequency. In Section 4.2, we show
the results for discrete tracking quality functions of multiple QoS attributes, that is,
sampling frequency and computation time.

4.1. Experiments with Continuous Convex Quality Functions of Single QoS Attribute

To keep the exposition simple, we use only two different target types, that is K =2. We
also fix the maximum number of target instances of each type as N; = 15 and N, = 31.
The computation time C; and the minimum sampling frequency f; .., for each type
k €{1,2} are also fixed. These fixed parameters are summarized in Table 3.

To see the effect of the shapes of tracking quality functions, we performed the
experiment for two sets of tracking quality functions: One set (Set 1) is highly sensitive to
sampling frequency and the other (Set 2) is less sensitive. The parameters for the two sets
are presented in Figure 11. In both Sets 1 and 2, the weights w;, and the minimal sampling
frequencies fj i, in Equation 1 are the same. However, smaller values of sensitivity oy
are used in Set 2 to see the effect of the sensitivity. The control values 8, in Set 2 are
chosen such that the resulting minimum achievable performances are similar to those of
Set 1 to make the comparison simple.

In the experiment, we assume poisson arrival of each type ke {1, 2} with arrival rate
A Also, the time for which a target instance of each type & stays in the system is assumed
to follow the exponential distribution with the parameter u,. These parameters are tightly
related to the expected tracking performance since they determine the probability that the
system is at each workload state. Therefore, we will investigate the effect of these

Table 3. Experimental parameters (fixed).

Parameters Values

No. of different target types (K) K=2

Max no. of target instances of each type (N;) N, =15, N, =31
Computation time of each type (Cy) C,=2ms, C, = 1.5ms

Min sampling frequency of each type (fj min) fimin = 10Hz, f; 1, = 10Hz
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Figure 11. Tracking quality functions for Sets 1 and 2.

parameters as changing their values. We change those values such that the resulting
average workload p ranges from 10 to 98% of the worst case workload. The time to
perform a reconfiguration also severely affects the performance. Thus, we will also
perform the experiment as changing the reconfiguration time. For illustrative purposes,
we will use the normalized reconfiguration time C,, which is the percentage of
reconfiguration time relative to the average of computation times, that is, (C; + C,)/2.
Table 4 summarizes these changing parameters. The number in parentheses represents the
default value used when we are changing other parameters.

Figure 12(a) and (b) compare the results as increasing the normalized reconfiguration
time C, from 0 to 100% for the two sets of tracking quality functions. Since the worst
case based approach does not require any reconfiguration, its performance is independent
of C,. When C, is very small, the overhead for reconfiguration is negligible. Thus, the
performance of all states based approach is almost same as the ideal. The performance of
our approach is also very close to the ideal but slightly below. The reason that our
performance is slightly worse than that of all states based approach when C, is very small
can be explained as follows; Our approach uses resource allocation optimized only for a
subset of diagonal states even for other states. On the other hand, the all states based
approach can use the nearly ideal resource allocation for all individual states if the
reconfiguration time is negligible.

As C, increases, the performances of both of our and all states based approaches
decrease. However, our approach decreases more slowly than the all states based

Table 4. Experimental parameters (Changing).

Parameters Values

Average workload (p) p=10% ~ (50%) ~ 98%
Normalized reconfiguration time (C,) C, = 0%~ (20%) ~ 100%
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Figure 12. Overall tracking quality varying reconfiguration time C, (with continuous quality functions).

approach. This is because the former does not explicitly reserve reconfiguration budget
by adding only a proper number of service classes while the latter does to handle
reconfigurations that happen whenever the state changes. Note that when C, becomes
30%, the performance of all states based approach suddenly drops to zero since it cannot
guarantee even the minimum requirements if we explicitly reserve the resource for 30%
or more reconfiguration time. When C, becomes very large, our approach automatically
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degenerates to the worst case based approach and thus its performance eventually merges
to that of the worst case based approach. These trends are observed in both of Figure
12(a) and (b). Only difference is that the performance gap is clearer when tracking quality
functions are sensitive to sampling frequencies (Figure 12(a) Set 1) than when they are
less sensitive (Figure 12(b) Set 2).

Figure 13 shows the sum of tracking qualities of targets at each workload state when
C, = 20%. In Figure 3, x, y, and z represent the number of target instances of Type 1, the
number of target instances of Type 2, and the sum of tracking qualities, respectively. In
both of Figure 13(a) and (b), the top-left, top-right, bottom-left, and bottom-right curves
correspond to ideal, all states based approach, worst case based approach, and our
approach, respectively. Since the worst case based approach uses a fixed frequency
allocation regardless of workload state, the quality of each individual target is same at
each workload state. Thus, the sum of tracking qualities at each state linearly increases
as the number of targets increases. On the other hand, all other three can assign higher
sampling frequencies for individual targets when workload is not heavy. Thus, the
performances more quickly increase than the worst case approach at the beginning. As
the workload becomes heavy, the sampling frequencies that can be assigned to
individual targets become smaller and approach to those of the worst case based
approach. The ideal performance eventually converges to that of the worst case based
approach since zero reconfiguration cost is assumed. Our approach also converges to the
worst case based approach when the workload is heavy, since no resource is need to be
reserved for reconfigurations.® However, when the workload is heavy, all states based
approach is worse than the worst case based approach since a large amount of resource
is reserved for reconfigurations and only the remaining amount of resource is used for
track tasks.

One interesting observation regarding the performance of the all states based approach
in Figure 13(a) (top-right) is that there is a performance drop in heavy workload. This
comes from the quality function shapes of Set 1 in Figure 11(a). For those functions, even
a small increase of sampling frequency over the minimum can provide a significant
quality improvement. When the workload is not so heavy, the all states based approach
can allow a reasonable increase of sampling frequency over the minimum even after the
reservation for reconfigurations. Thus, each individual track task can provide a high
quality at such workload. However, when the workload is very heavy, only the minimum
sampling frequency (or very close to the minimum, at most) can be allowed for each
individual track task due to a large amount of reservation for reconfigurations. Thus, each
track task can only provide the minimum quality. Therefore, it happens that the sum of
the tracking qualities at heavy workload is smaller than that of lighter workload although
the former state has a larger number of targets. Such performance drop in heavy workload
is not observed in Figure 13(b), since its corresponding quality functions (Figure 11(b))
gradually increase.

Figure 14(a) presents the overall tracking qualities obtained by changing the average
workload p from 10 to 98% for the tracking quality functions of Set 1. When p is very
low, the system stays at low workload states at most of time. Thus, the performance at
low workload states is the dominant factor of the overall performance. At low workload
states, it is possible to allocate enough frequencies to tasks even though a certain amount
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(b)

Figure 13. Sum of tracking qualities at each workload state.

the all states based approach that

of budget is reserved for reconfigurations. Therefore,

can adapt to the workload state shows the performance close to the ideal performance.

th prepared service classes and thus

i

shows almost ideal performance. However, since the worst case based approach cannot

adapt to light workload states, its performance is much worse than the others.

Our approach also can adapt to the workload state w
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Figure 14. Overall tracking quality varying average workload p (with continuous quality functions).

As p increases, the system stays at medium and heavy workload states for a larger
portion of time. Thus, providing good performance at those workload states becomes
important. However, all states based approach has a small amount of available resource
due to the explicitly reserved budget for reconfigurations. This small amount of resource
quickly becomes insufficient for providing good quality as the system becomes heavy
loaded. Therefore, the performance of all states based approach only slowly increases as
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p increases and eventually starts to decrease when the heavy workload states become
dominant. The performance decrease is due to the performance drop in heavy workload
as explained in Figure 13(a). In contrast, the performance of our approach keeps
increasing with the increase of p since our approach does not explicitly reserve resource
for reconfigurations. When p is very high, our approach eventually merges to the worst
case based approach that is optimized only for the worst case. Although less clear, similar
trends are still observed in Figure 14(b) that shows the results for the set of less sensitive
tracking quality functions.

4.2. Experiments with Discrete Quality Functions of Multiple QoS Attributes

As in Section 4.1, we use two different target types, that is, K=2 and the maximum
number of target instances of each type of N, = 15 and N, = 31. We also perform the
experiment changing the average workload p and the normalized reconfiguration time C,.
For these changing parameters, we use the same values in Table 4.

However, tracking quality functions are defined differently. We assume that each
track task have two algorithm options (Algol and Algo2) and nine sampling
frequency options (10, 15, 20, 25, 30, 35, 40, 45, and 50 Hz). This means that there
are 18 (2 x 9) option points among which each task can choose one. Tracking a target
of type 1 with Algol and Algo2, respectively, takes computation times C?lg(’l =2ms
and C?]goz = 3 ms. On the other hand, tracking a target of type 2 with Algol and Algo2
takes C2"%°' = 1.5ms and C5"®°> = 2ms. The experimental tracking value achieved by
each option point is presented in Table 5.

Figure 15 shows experimental results obtained as changing C, from 0 to 100%. As in
Figure 12 for continuous quality functions, our approach outperforms the worst case
based and all states based approaches under most of C, values. Only when C, is very
small, the performance of our approach is slightly below that of all states based approach.
All other trends are similar to Figure 12.

Figure 16 compares the results as increasing p from 10 to 98%. Also in this case, all
trends observed in Figure 14 for continuous quality functions are retained. That is, our
approach steadily outperforms other two approaches in the entire range of p whereas
other two defeats each other depending on the p value.

Table 5. Tracking values at discrete quality points.

Tracking value

Type C (ms)f\(Hz) 10 15 20 25 30 35 40 45 50
Type 1 CM' = 2ms 010 030 050 060 065 070 074 077 0.0

M = 3ms 005 010 030 050 070 085 093 095  1.00
Type2  C3*'=15ms 010 030 040 050 055 060 062 067 070

szuguz =2ms 0.15 0.20 0.30 0.60 0.65 0.70 0.72 0.79 0.80
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Figure 15. Overall tracking quality varying reconfiguration time C, (with discrete quality functions).
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Figure 16. Overall tracking quality varying average workload p (with discrete quality functions).
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5. Related Work

Many recent studies (Huizing and Bloemen, 1996, Chang et al., 1997; Kuo et al., 2000)
have dealt with radar system design problems using real-time technology. For example,
Kuo et al. (2000) formalize the workload of typical radar systems as periodic and
aperiodic real-time tasks and propose effective task allocation and scheduling
algorithms to process the tasks in a real-time fashion. They also provide a way to
estimate the system capacity, which is essential to determine the needed amount of
resource to meet the system specification in terms of workload. Chang et al. (1997)
model each task in a radar system as a sequence of jobs with precedence relations and
contending hardware resources such as digital signal processors, communication
channels, and memory. To schedule these jobs within deadlines using as less resources
as possible, they propose a scheduling algorithm that effectively resolves resource
contention.

This paper also deals with task scheduling in radar systems in a real-time fashion.
However, unlike the previous approaches, we employ the fact that tracking quality
depends on the amount of assigned processing resource. Based on this, we try to
maximize the tracking performance with the given amount of resource by effectively
changing resource allocation depending on the workload.

The fact that the performance of a control task depends on the amount of assigned
resource has been pointed out in many recent studies (Seto et al., 1996, 1998; Chandra
and Sha, 1999; Caccamo et al., 2000). Seto et al. (1996, 1998) model the performance of
each control task as a function of its sampling frequency. For a given set of control tasks
with such performance functions, they propose a method that optimizes frequencies such
that the weighted sum of performance of the control tasks is maximized. Chandra and Sha
(1999) propose an integrated approach that can handle both reliability and schedulability
of control tasks when finding their optimal sampling frequencies. Caccamo et al. (2000)
handle the optimal frequency allocation problem when the normal and worst case
computation times have a large variation.

Rajkumar et al. (1997, 1998) and Lee et al. (1998) extend the optimal resource
allocation problem to a wider range of applications with requirements of multiple QoS
dimensions (discrete and/or continuous) such as timeliness, security, and data quality.
They present an analytic model called Q-RAM for QoS management in such applications.
In the model, the utility gained by improvement along each QoS dimension with more
resource is represented as a utility function. The resource allocation algorithms in Q-
RAM can find the optimal or sub-optimal solutions that maximize the total system utility.
A recent study in Lee et al. (1999) handles a more complex problem of allocating
multiple resources (like CPU and network bandwidth) to satisfy the QoS needs of
multiple tasks with multiple QoS dimensions.

Our approach is based on these optimization techniques. However, we deal with
resource allocation for dynamic hard real-time systems. To avoid the online overhead for
optimization, we use the optimization techniques only at the design phase to calculate the
set of service classes. Also, we modify the optimization problem to handle multiple
instances of the same type and to satisfy the conditions between service classes required
for guaranteeing deadlines.
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6. Conclusions

In this paper, we propose an approach to online QoS management based on service classes.
This approach is illustrated in a simplified radar system applications. In surveillance radar
systems, many different targets arrive and depart dynamically. This creates many
difficulties in the online resource management problem for maximizing the tracking quality.

Our approach uses pre-computed templates of resource allocations called service
classes as the basis for online QoS optimization. Experimental results show that this
approach outperforms two traditional approaches in a wide range of system parameters.

However, there are open problems. First, the service class design assumes only the
EDF scheduling, in which the optimization problem is much easier. Extension of the
proposed approach to rate monotonic scheduling (Liu et al., 1973; Sha et al., 1994) is an
open problem. Second, the conditions used in this paper for guaranteeing deadlines while
switching service classes are only sufficient and not necessary. Thus, the maximum
number of service classes we can add is conservatively limited. Finally, several inter-
dependent problems for the optimal service class design are handled by heuristics. The
optimal design of service classes is still an open problem. These limitations will be
handled in future research since it is an ongoing study.

In spite of these limitations, we believe that the design approach based on the service
class concept is an important step for online QoS management of many dynamic real-time
systems. For example, in a multimedia service system through a shared bandwidth, the
QoS of a media stream can be modeled as a function of its bandwidth share. If a large
bandwidth is available, a high QoS can be delivered by transmitting all enhancement layers
of a scalable encoded stream (e.g., MPEG2 (II, 1992) and fine-granular scalable video
coding (Thomas)). Otherwise, we can deliver a reasonably degraded QoS by transmitting
only a subset of layers. In this environment, the optimal resource sharing to maximize the
total QoS of all active streams is important. With the dynamically changing active streams,
it is impractical to apply an optimization procedure online due to its complexity. Thus, the
pre-optimized resource sharing (i.e., the service class) for a specific workload region will
help the optimal usage of limited resource without online optimization overheads. We are
currently studying on such extension of our service class approach.
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Notes

1. Other forms of functions might better model the tracking quality. However, finding such functions is beyond
the scope of this paper.

2. The confirmation task keeps tracking the new target until its track task is started. However, the time is short
because the new track task can be started within 2 x max(existing tasks’ periods) even in the worst case. The
initial configuration of the new track task is performed by the confirmation task.
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3. We consider diagonal states as candidates of base states due to the following reasons. First, it is hard to
predict the ratio among target counts of different types and the ratio dynamically changes. The optimization
based on diagonal states (at the centers of the ratio range) can provide a stable performance that is less
sensitive to the change of the ratio. Second, diagonal states forms a totally-ordered set in terms of workload.
As we will see later, this allows switching between any pair of service classes if the switching between
neighboring ones is possible.

4. One way to reduce the necessary utilization gap is to use two different frequencies—one only for service
class transition and the other for steady state in a single service class. However, the application of this idea is
not trivial since using transition period will require one more period change resulting in another
reconfiguration. We will investigate this in further study.

5. Dividing a continuous state space into a finite number of discrete states creates a large number of target sub-
types but allows fine-grained tracking quality specification. Thus, finding an effective division of continuous
state space is a challenging issue but is beyond the scope of this paper.

6. Some bumps in our approach is due to the boundaries of service classes.
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