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Abstract

Weintroducea number of new resultsin the context of multi-
view geometry from general algebraic curves. e start with
the recovery of camera geometry from matching curves. We
first show how one can compute, without any knowledge
on the camera, the homography induced by a single planar
curve. Then we continue with the derivation of the extended
Kruppa’'s eguations which are responsible for describing
the epipolar constraint of two projections of a general al-
gebraic curve. As part of the derivation of those constraints
we address the issue of dimension analysis and as a result
establish the minimal number of algebraic curves required
for a solution of the epipolar geometry as a function of their
degree and genus.

We then establish new results on the reconstruction of
general algebraic curves from multiple views. We address
three different representations of curves: (i) the regular
point representation in which we show that the reconstruc-
tion from two views of a curve of degree d admits two so-
lutions, one of degree d and the other of degree d(d — 1).
Moreover using this representation, we address the prob-
lem of homography recovery for planar curves. (ii) dual
space representation (tangents) for which we derive a lower
bound for the number of views necessary for reconstruction
as a function of the curve degree and genus, and (iii) a new
representation (to computer vision) based on the set of lines
meeting the curve which does not require any curvefittingin
image space, for which we also derive lower boundsfor the
number of views necessary for reconstruction as a function
of curve degree alone.

1. Introduction

A large body of research has been devoted to the problem of
analyzing the 3D structure of the scene from multiple views.
The necessary multi-view theory is by now well understood
when the scene consists of point and line features — a sum-
mary of the past decade of work in this area can be found in
[20, 10] and references to earlier work in [9].

The theory is somewhat fragmented when it comes to
curve features, especially non-planar algebraic curves of
general degree. Given known projection matrices [35, 29,
30] show how to recover the 3D position of a conic section
from two and three views, and [37] show how to recover the
homography matrix of the conic plane, and [16, 41] shows
how to recover a quadric surface from projections of its oc-
cluding conics.

Reconstruction of higher-order curves were addressed
in [26, 25, 4, 33, 34]. In [4] the matching curves are
represented parametrically where the goal is to find a re-
parameterization of each matching curve such that in the
new parameterization the points traced on each curve are
matching points. The optimization is over a discrete pa-
rameterization, thus, for a planar algebraic curve of degree
n, which is represented byn(n + 3) points, one would
needn(n + 3) minimal number of parameters to solve for
in a non-linear bundle adjustment machinery — with some
prior knowledge of a good initial guess. In [33, 34] the
reconstruction is done under infinitesimal motion assump-
tion with the computation of spatio-temporal derivatives
that minimize a set of non-linear equations at many different
points along the curve. In [25] only planar algebraic curves
were considered, whereas in [26], the plane of non-planar
algebraic curve 3D reconstruction is addressed.

On the problem of recovering the camera geometry (pro-
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matrix from matching conics with the result that 4 match-



ing conics are minimally necessary for a unique solution. ometry one can introduce higher level features with higher
[25] generalize this result to higher order curves, but con- configurational complexity.
sider only planar curves and [26] generalizes this result to
non-planar curves. .
In this paper we address the general issue of multi-view 2. Informal Mathematical Back-
geometry of algebraic curves from both angles: (i) recover- ar ound
ing camera geometry (fundamental matrix or homography
in the case of planar curve), and (i) reconstruction of the 2.1. Algebraic varieties

curve from its projections across two or more views. Short o . _—
pro) The central concept to be used in this paper is the definition

versions of this work were published in [25, 26]. } . g
. ) of an affine variety. This is the locus of common zeros of
The necessary mathematical background is rather broad

. ) a family of polynomials. More precisely, consider a fam-
and E{he :gaf[de;s ;_eferreg io tge ?ppeznfdlxfor_afformall_mtath— ily of polynomials inn variables. The locus of their com-
ematicalintroduction and to section 2toran informalintro- -, 76105 defines an algebraic variety inithdimensional
duction to the main introductory concepts. In Section 3 we

. - \ : affine space. When the polynomials are all homogeneous,
star twith the denvatpn of theaendgd Kruppa squaﬂgns this variety can also be regarded as being embedded in the
which govern the epipolar constraint of two projections of

. . — 1-dimensional projective space, and is call jec-
a general algebraic curve. We first address the case of pla—n pro) P ot a}

tive variety.
nar curves. In that context, we also show how to recover

the homography generated by a single planar curve. Then A variety can be formed as the union of subvarieties, and
we turn our attention to the general case. Furthermore aswhen these subvarieties are independent they are called the
: components of the variety. The variety is said to bere-

part of the derivation of the extended Kruppa'’s equations in LA S
the general case, we address the issue of dimension analy(—jUCI bleif it has only one component (the variety itself).

sis and as a result establish the minimal number of algebraic ' nedimension of a variety can be defined in several dif-

curves required for a solution of the epipolar geometry as a ferent ways. The topological definition of dimens.ion is the
function of their degree and genus. supremum of the lengths of chains of embedded irreducible

On the reconstruction front (section 4), we address three_components. However it can been proven that this definition

different representations of curves: (i) the regular point rep- IS equivalent o the intuitive concept of dimension which 'S
resentation for which we show that two views of a curve the numberofmdependent parameters necessary to describe
of degreed admit two solutions, one of degrekeand the the variety.
other of degreél(d — 1) (moreover, using this representa-
tion, we address the problem of homography matrix recov-
ery for planar curves), (ii) dual space representation (image
measurements are tangent lines) for which we derive a for-
mula for the minimal number of views necessary for recon- As mentioned above, an affine varieties is defined by a set
struction as a function of the curve degree and genus, andof polynomials equations in variables. Such a set defines
(i) a new representation (with regard to computer vision) an affine variety in thes—dimensional affine space. On
based on the set of lines meeting the curve which does notthe other hand to define projective varieties, we need ho-
require any curve fitting in image space, for which we also mogeneous polynomials. Consider a set of homogeneous
derive formulas for the minimal number of views necessary polynomials inn + 1 variables. This set defines a projective
for reconstruction as a function of curve degree alone. variety in then—dimensional projective space. However
For the latter two representations we also address theone can also consider this set defines an affine variety in
problem of recovering a curved trajectory from a moving the(n + 1)—dimensional affine space. This latter variety is
camera (as in [38] for conics). We derive formulas which called theaffine cone over the former projective variety.
specify the minimal number of views necessary for recon-  There exists also another relation, of major importance,
struction as a function of curve degree and/or genus. between affine and projective varieties. Consider a projec-
Beyond the technical contributions of this paper, our tive variety, sayl,, C P, defined by homogeneous equa-
work paves the way to introducing a more powerful lan- tions f;(Xi, ..., X,,11) = 0. If the hyperplane at infinity
guage, based on algebraic geometry, for handling curvedin P” is defined byz,,1 = 0, then variety defined by
objects for which the standard linear projective tools which f;(X1, ..., X,,1) = 0 is an affine variety, say,, included
have become popular in the computer vision literature be- in n—dimensional affine spacé/, is called theprojective
come a particular case. The standard tool of projective ge-closure of V,,. V,, can be regarded as the affine piecé/pf
ometry allow the consideration of points and lines as fun- and the varieties defined hy(Xjy, ..., X,,,0) = 0 is made
damental features, whereas with the tools of algebraic ge-of the points infinity ofl/,.

2.2. Relation between affine and projective va-
rieties



2.3. Complex or real varieties

When dealing with applications, the varieties can also de-

algebraic curve embedded in the dual plane. It is called the
dual curve. Hence there exists a polynomigl:, v, w) such

fined by equations with real coefficients. However algebraic that(u, v, w) is a zero of¢ if it represents the coordinates
varieties are well behaved when regarded as complex vari-Of line tangent*toi’ at a simple point. The degree 6fand
eties. So we shall consider all of them as varieties defined!t dual curveC™ are easily related when the only singular

by equations with complex coefficients. This allows using

all the power of algebraic geometry. For the computations,
however, after the results is obtained over the complex num-

bers, we eventually consider only the real solutions.

2.4. Algebraic Planar Curves
A curveis a one-dimensional variety. The particular case of

points of C are nodes. In that case the degree of the dual
curvem is:

m =d(d — 1) — 2(#nodes),

whered is the degree of and(#nodes) is the number of
nodes.
Consider once again the functiof{\) defined above.

planar and spatial curves is of special interest for us. WhenWhen the Taylor expansion dfvanishes up to third order,
embedded in a projective plane, a curve is the zero locusthe tangent lineC intersects the curvé at three coincident
of a single homogeneous polynomial in three variables. Let Points. Inthat case, the tangency pointis said to beféx-

f be such a polynomial, thefi can factored as follows:
f = 11 fi» where f; are irreducible polynomials. In this

ion point. It turns out that inflexion points can be recovered
with the Hessian curve (see Appendix for further details).

case, the components of the curve are simply the subcurves Finally a topological invariant of the curve can be de-

defined byf; = 0. In order to avoid multiple components,
we will consider only the case wheyfeis square-free, that
iswhenf; # f; fori # j. Note that when the polynomigil

is irreducible then the curve is an irreducible variety in the
sense defined above.

The degree of a planar curve is simply the degree of its
defining polynomial. To better understand the geometric
meaning of this notion, consider a cutwe&mbedded in the
projective plane defined bj(z,y,2) = 0. Let £ be a line
generated by two points andb. A pointp = a + Ab on
L is located on the curve if(\) = f(a + Ab) has a root.
Since the degree aof, as function of), is the degree of,
the degree of is the number of points a general line in the
plane meets the curve.

Now suppose that the poiatis on the curv&. Consider
then a first order Taylor expansion.ff\). We get:J(\) =
f(a) + AV f(a)Tb. Then two cases must be considered. If
Vf(a) = 0, the pointa is called asingular point of the
curveC. Otherwise the point is said to lpegular or simple.

We shall say that the ling is tangent to the curvé ata if
a is regular and\ = 0 is a double root off (\).

An important concept is the multiplicity of a singularity.
Consider a singular point of C, then themultiplicity of a
is the smallest integern such that there exists a triple of
integers(i, 7, k) such that + j + k = m and

omf

Oixdiyokz 7 0.

fined. It is called thegenus of the curve. When the only
singularities of the curve are nodes and the degree of the
curve isd, the genug is given by:

SN2 e,
where(#nodes) is the number of nodes as defined above.

2.5. Algebraic Spatial Curves

A spatial algebraic curveis the intersection of two or more
algebraic surfaces. We will consider only projective spatial
curves where such a curve is defined by two or more poly-
nomial homogeneous equations:

F(X,Y,Z,T) =0.

As in the case of planar curves, there is a natural concept
of duality. Thedual curveis the set of planes tangent to the
curve at a simple point, that is a poilRtfor which there ex-
istsi, such thalv F;(P) # 0. Itturns out that the dual curve
is also an algebraic variety of the dual three-dimension pro-
jective spaceP?* (Figure 1). Moreover in general the dual
curve is simply a surface d?**. The relation between a
curve and its dual curve is bijective in the sense that a curve
is completely determined by its dual curve. Therefore a spa-
tial algebraic curve can be represented either as the solution
of a family of equation or by its dual curve.

There exists a third and very useful representation of spa-

The concept of tangent can be generalized so that a pointtial algebraic curves. A line ift? can be regarded as a point

of multiplicity m hasm tangents. We shall say that a mul-
tiple point isordinary if all its tangents are distinct. An
ordinary multiple point of multiplicity2 is called anode. It
has two distinct tangent.

A planar algebraic curve, s&y has a natural dual object.

in P5 via its PLicker coordinates. If you consider the set of
all lines intersecting a spatial algebraic curve, it turns out to
be an algebraic variety @®, which completely determines
the original curve (Figure 2).

To obtain a more in-depth understanding of this repre-

The set of tangents to simple points of the curve is also ansentation of varieties, we shall first recall that thedREr



the two image curves, involving the fundamental matrix.
Hence such an algebraic relation may be regarded as an ex-
tension of Kruppa’s equations. In their original form, these
equations have been introduced to compute the camera-
intrinsic parameters from the projection of the absolute
conic onto the two image planes [31]. However it is ob-
vious that they still hold if one replaces the absolute conic
by any conic that lies on a plane that does not meet any of

Figure 1:The dual curve is the set of planes tangent to the curve the camera centers. In this form they can be used to recover

at simple points.

Figure 2:The set of lines intersecting a spatial curve completely
determines the curve itself.

the epipolar geometry from conic correspondences [23, 25].
Furthermore it is possible to extend them to any planar al-
gebraic curve [25]. Moreover a generalization for arbitrary
algebraic spatial curves is possible and is a step toward the
recovery of epipolar geometry from matching curves [26].
We start by the case of planar curves which is much more
simple than the general case.
We shall use the following notations in this sectiok.
will denote a spatial curve, either planar or not, whereas the
image curves will be denoted ly;,7 = 1,2 and defined
by polynomialsf;,i = 1,2. The dual image curves* are
defined by the polynomialg;. The camera matrices will
always be denoted iyl ;. F, e; ande- are respectively the
fundamental matrix, the first and the second epipole. We
will also need to consider the two following mappings, that

coordinates of a line satisfies a special quadratic equatione call in the sequel the epipolar mappings,p — e1 Ap

defining a quadric if?®>. On the other hand every point of
this quadric can be interpreted as thadker coordinates of
a line embedded if*®. Therefore the set of lines @? is
isomorphic (in any suitable sense) to a quadri® This
quadric is called the Grassmannian of line®éfand is de-
noted byG(1, 3).

and¢ : p — Fp. Both are defined on the first image plane;
~ associates a point to its epipolar line in the first image,
while £ sends it to its epipolar line in the second image.

3.1. The caseof planar curves
The spatial curveX is assumed to be planar and might have

Consider next an irreducible algebraic curve embedded singylar points.

in P3. We have mentioned that the set of lines which in-
tersect this curve is an algebraic varietylof. More pre-

cisely, this variety is the intersection of the Grassmannian

G(1, 3) with a hypersurface oP®>. More formally, letF

3.1.1 Introductory properties

Let H be the homography induced by the plane of curve

be the family of hypersurfaces that represent the variety of in space. Given a poing in the first image lying ort;,

lines intersecting the curve i&>. All the elements ofF
intersect in the same sub-variety owf1, 3). Therefore
picking any element ofF fully determines the variety of
intersecting lines of the curve, which fully determines the
curve itself. We can translate this fact in terms of polyno-
mial equations. Each element of the famfiyis defined by

a polynomial. All these polynomials are identical modulo
the defining equation of the Grassmann@fi, 3). Each

of these polynomials is called tt@&how polynomial of the
curve.

3. Recovering the epipolar geometry
from curve correspondences

Hp, also denoted(p), must lie in the second image curve
Y,. Since these curves are irreducible, there exists a simple
relation between, Y5 andh:

El)‘a Vm,y,z, fZ(h(xay’Z)) = )\fl(l',y,Z) (1)

Now we proceed to prove some further elementary prop-
erties about two views of a planar curve. Those properties
will be necessary in the sequel. We shall denote;lifie set
of epipolar lines, in imagé, tangent td\’; at regular points.

Proposition 1 The two sets ¢; and €5 are projectively iso-
morphic. Furthermore the elements of ¢; and e; arein cor-
respondence through the homography H.

Recovering epipolar geometry from curve correspondencesProof: The line joininge; andp, is tangent toy; at p if
requires the establishment of an algebraic relation between\ = 0 is a double root of the equatiorf; (p + Ae;) = 0.



This is equivalent to say that grgdfl)Tel = 0. More- Proof: First it is clear, by proposition 1, that both sides of

over if p’ = Hp, graq),(fZ)Te2 = grade(fz)THel = the this equations define the same algebraic set, that is the
dfa(h(p)) o dh(p).e; = d(f2 o h)(p).e; = Adfi(p).e; = union of the tangent lines tb; passing through the first
Agradp(fl)Tel. epipolee;. This set has been denoteddyy Moreover by
Therefore the line generated by andp is tangent td’; propositions 2 and 3 the two dual curves have same degree,
if and only if the line given bye, A Hp is tangent taYs. which is a necessary condition for the equation to hold. Itis
Given a linel € ¢, its corresponding lin&’ € ¢, is given left to show that each tangent appears with the same multi-
by H-"1=1.1 ] plicity in each side. It is easily checked by a short compu-

Note that since epipolar lines are transformed in the sametation: ¢» ({(p)) = ¢2(e2 A Hp) = ¢a(h(e2) A h(p)) =
way through any regular homography, the two sgtande, ¢2 o (*h)~'(p). ? Then it is sufficient to see that the dual

are in fact projectively related by any homography. formulation of equation (1) is given by o (*h) ™! = ¢,. m
Proposition 2 The inflexions (respectively the singulari- 3.1.3 Recovering epipolar geometry from matching
ties) of the two image curves are projectively related by the conics

homography through the plane of the curvein space.
Let C; (respectivelyC-) be the full rank (symmetric) ma-
Proof: The simple relation (1) implies this double property: trix of the conic in the first (respectively second) image. The
equations of the dual curves ape(u,v,w) = 17Ci{1 =0

%_?(P) %—?(HP) and gz (u,v,w) = 17C31 = 0 wherel = [u,v,w]T, C}
= (p) = HT 52 (Hp) andC3 are the adjoint matrices €, andC- (see [39]).
%—-il(p) %—;(Hp) ) Hence the extended Kruppa’s equations reduce in that
case to the classical ones:
of — HT2f
[52:0; (P)] = H [555%; (Hp)[H FTCiF = 1]« Cller]x. 3)
The first relations implies the conservation of the singulari-  From equation (3), one can extract a set, denétecf

ties by homography, whereas the second relation implies thesjy equations ofF, e; and an auxiliary unknown. By
conservation of the whole Hessian curve by homogramhy.  gjiminating) itis possible to get five bi-homogeneous equa-

Using further derivation, we immediately get: tions onF ande;.
Proposition 3 The multiplicity and the number of distinct Theorem 2 The six equations, £, are algebraically inde-
tangents at a singularity is the same in both images. pendent.
3.1.2 Extended Kruppa's equations Proof:  Using the following regular isomorphism:
(FaelaA) — (DgFDflaDleh)\) = (X7Y7>\)1

Roughly speaking, the extended Kruppa’'s equations stateyhereD, = v/Ci andD} = \/@ the original equations
that the sets of epipolar lines tangent to the curve in eachim-gre mapped into the upper-triangle K’X = Aly]%.

age are projectively related. A similar observation has beengijyen this simplified form, it is possible of compute a
made in [2] for epipolar lines tangent to apparent contours Grsbner basis [5]. Then we can compute the dimension
of objects, but it was used within an optimization scheme. gf the affine variety in the variableg, y, ), defined by
Here we are looking for closed-form solutions, where no these six equations. The dimension is 7, which shows that
initial guesses are required. In order to develop such ape equations are algebraically independent. ]
closed-form solution for the computation of the epipolar Note that the equatior, imply thatFe; = 0 (one can
geometry, we need a more quantitative approach, which isgasily deduce it from the equation33. In order to count
given by the following theorem: the number of matching conics, in generic positions, that
are necessary and sufficient to recover the epipolar geom-
etry, we eliminate\ from £, and we get a sef that de-
fines a varietyy” of dimension 7 in a 12-dimensional affine
space, whose points afe;, F). The equations ig are bi-
homogeneous ilr ande; andV can also be regarded as a

Theorem 1 For a generic position of the camera centers,
the dual image curves and the epipolar mappings are re-
lated asfollows. There exists a non-zero scalar A € C, such
asfor all p in the first image plane, the following equality
holds:

d2(E(p)) = A1 (v(p)) 2 2Indeed for a regulad x 3 matrix H: Hx AHy = det(H)H~T (x A

v). Then sinceps is a homogeneous polynomial, the last equality is true
1By duality H” sends the lines of the second image plane into the up to the scale factotet( H)?e9(¢2),

lines of the first image plane. Here we have showed Hiatinduces to 8Itis clear that we haveF” C3Fe; = 0. For any matrixM, we have:

one-to-one correspondence betweeande; . kerMT) = im(M)T. In addition,Cs is invertible. HencéFe; = 0.




variety of dimension 5 into the bi-projective spdté x P?, Theorem 4 Two planar algebraic curves which genus are
where(ey, F) lie. Now we projectl” into P8, by eliminat- greater or equal to 1 and that are lying on two generic

ing e; from the equations, we get a new variéty which is planes are sufficient to recover the epipolar geometry.

still of dimension 5 and which is contained into the variety ) ) _ _ )
defined bydet(F) = 0, whose dimension is 7. There- . However s_olvmg equa_ltlons (1) requires big machmery
fore two pairs of matching conics in generic positions define €ither symbolic or numerical. Moreover the computation of
two varieties isomorphic t&’; which intersect in a three- ~ Weierstrass points, introduced in the proof of the previous
dimensional variety{+5—7 = 3). A third conicin generic  Proposition, is quite heavy. Hence we propose a simpler
position will reduce the intersection to a one-dimensional /gorithm that works for a large category of planar curves.
variety 6 + 3 — 7 = 1). A fourth conic will reduce the  This simpler algorithm is true for non-oversingular curves,
system to a zero-dimensional variety. These results can bef-9- When a technical condition about the singularities of

compiled into the following theorem: the curve holds. A curve of degréewhose only singular
points are either nodes or cusps, satisfy theckdi’s for-

Theorem 3 {Four conics} or {three conics and a point} mula (see [43]):

or {two conics and three points} or

{one conic and five points} 3d(d —2) =i+ 66 + 8k,

in generic positions are sufficient to compute the epipolar

wherei is the number of inflexion points, is the number
of nodes, and: is the number of cusps. For our purpose, a
A similar result has been formulated independently in curve is said to beon-oversingular when its only singular-

geometry.

[23]. ities are nodes and cusps and whens > 4, wheres is the
number of all singular points.
3.14 Recoveringepipolar geometry from higher order Since the inflexion and singular points in both images are
planar curves projectively related through the homography matrix (propo-

sition 2), one can compute the homography through the
Now we proceed to analysis the case of planar algebraicplane of the curve in space as follows:
curves which degreé > 3. Since one cannot get a three- ) ) )
dimensional reconstruction from a single planar algebraic 1- Compute the Hessian curves in both images.
curve, a further analysis of the dimension of the set of so-
lutions of the extended Kruppa’s equations, in that case, is
not really relevant. Therefore we concentrate on recover-
ing the epipolar geometry through the computation of the

2. Compute the intersection of the curve with its Hessian
in both images. The output is the set of inflexion and
singular points.

homography induced by the plane of the curve in space. 3. Discriminate between inflexion and singular points by
We will show next that a single matching pair of planar the additional constraint for each singular point
curves, which genug > 1(which implies that the degree grad,(f) = 0.

d > 3), is sufficient for uniquely recovering the homog- At first sight, there aré! x s! possible correspondences

raphy matrix induced by the plane of the curve in space, . . . e
whereas two pairs of matching curves (residing on distinct petween the sets of inflexion and singular points in the two

planes) are sufficient for recovering the fundamental matrix. IMages. Bl_Jt Itis pos_smle_ to further reduc_e the comb!natory
From equation (1), we ge(td+2) _ 1 equations on the by separating the points into two categories. The points are
entries of the homogr,aphy mafirix LEt the variety inP® normalized such that the last coordinated isr 0. Then

defined by these equations. We give a sufficient conditions SeParate real points from complex points. Itis clear that real
for V' to be discrete points are mapped to real points. Now by genericity (the

plane of the curve in space does not pass through the cam-
Proposition 4 For V being a finite set, it is sufficient that era centers), complex points are mapped to complex points.
g>1. Indeed consider the poipt = (a, §,€) + (7, d,0), where
) ) e € {0,1}. Let A = (ay5);; be the homography matrix.
Prqof: The homography matrix must leave the Weierstrass Then Ap = (a11(a + i7) + a12(8 + i6) + ause, as (o +
points ([15, 19]) globally invariant. The number of Weier- i7) 4 azs (B +i0) + asse, asy (a+i7) +aza (B+i6) + asse).

strass point is always finite and is at leagt+ 2. Thenfor | orderAp to be a real point, two algebraic conditions on

g > 1, there are enough Weierstrass points to constraint thethe A andp must be satisfied. This cannot hold in general.

homography matrix up to a finite-fold ambiguity. u Therefore we can conclude that each category of the first
Hence follows immediately: image must be matched with the same category in the sec-
4Since it must be contained into the projectiotwf the hypersurface ~ ONd image. This should be used to reduce the combinatory.

defined bydet(Fe;) = 0 Then the right solution can be selected as it should be the



one that makes the system of equations extracted from (1)
the closest to zero or the one that minimizes the Hausdorff /
distance (see [22]) between the set of points from the second />
image curve and the reprojection of the set of points from
the first image curve into the second image. For better re-

sults, one can compute the Hausdorff distance on inflexion %
and singular points separately, within each category.
3.2. The case of non-planar /

Here X be a smooth irreducible curve B?, whose degree

isd > 2. Since the case of planar curve has been treated

above, X is assumed to be mon-planar curve. Before

defining and proving the extended Kruppa’s equations for Figure 3: A singularity of the image curve corresponds to an
arbitrary curve, we need to establish a number of facts aboutoptical ray meeting the curve in space at least twice.

the projection of a spatial curve onto a plane by a pinhole

camera.

Proof: For each position 0D ¢ R, we get a particular
3.2.1 Singleview of a spatial curve curveY or equivalentlyY *, which is the dual curve of".

Let Y be this family of dual curves parameterized Gy
Let M be the camera matrix) the camera centeRg the Then) C P2* x P%. Then it is known thap is flat [21,

retinal plane and” the image curve. Our first concernis 1g g, 7] over an open set Bf. SinceP? is irreducible, this

the study of the singularities of the. open set must be dense. On the other hand, the degree is
constant for a flat family of varieties. Hence the degree of

Proposition 5 The curve Y will always contain singulari- Y* is constant for a generic position 6. ]

ties. Note that using Proposition 6, it is possible to give a for-

mula form as a function of the degrekand the genug of
Proof: Singularities correspond to optical rays that meetthe X. For a generic position b, Y will have same degree
curveX in at least two distinct points or are tangent to X. and genus a¥. As mentionned above, we have:
Let G(1,3) denote the Grassmannian of linesFid. Con-

sider the subvariety x of G(1, 3) generated by the set of m =d(d — 1) — 2(fnodes,

chords and tangents &f, a chord being a line meeting (d—1)(d—2)

at least twice. LeS(X) = Ures, L be the union of lines 9=——%5— — (tnodes,

that are elements df x. It is well known thatS(X) is an

irreducible subvariety oP? and thatdim(S(X)) = 3, un- wheretnodes denotes the number of noded’ofnote that

lessX is planar, which has been excluded (see [18]). Hence this includes complex nodes). Hence the genus, the degree
S(X) = P? andO € S(X), that is, at least one chord is and the class are related by:

passing througl®. [ ]
The process of singularity formation with projection is m = 2d+2g — 2.
illustrated in the figure 3. In the proposition below we will
investigate the nature of those singularities. 322 Extended Kruppa'sequations
Proposition 6 For a generic position of the camera center, We are ready now to investigate the recovery of the epipo-
the only singularities of Y will be nodes. lar geometry from matching curves. The major result here

is that theExtended Kruppa's Equations still hold in the
Proof: This is a well known result. See [21] for further ~general case of non-planar algebraic curves.

details. m
We define theclass of the planar curve to be the degree Theorem 5 Extended Kruppa's equations
of its dual curve. Letn be the class of . We prove thatn For a generic position of the camera centers with respect
is constant for a generic position of the camera center. to the curve in space, there exists a non-zero scalar A, such
that for all pointsp inthefirst image, the following equality
Proposition 7 For a generic position of O, the class of ¥’ holds:
is constant. $2(£(p)) = Ad1(v(p)) 4)



Once again observe thatlf is a conic andC; andC, in €; ande». Hence this third assertion holds using the same
the matrices that respectively represtntandY>, the ex- argument as in Lemma 1. [ |
tended Kruppa's equations reduce to the classical Kruppa’s By eliminating the scalak from the extended Kruppa’s
equations, that ise; |7 Ct[e;], = FT CF, whereC} and equations (4) we obtain a set of bi-homogeneous equations

Cj} are the adjoint matrices @, andC.. in F ande;. Hence they define a variety ¥ x P®. This
Proving these extended Kruppa’'s equations requires thegives rise to an important question. How many of those
establishment of these three steps: equations are algebraically independent, or in other words

. _ what is the dimension of the set of solutions? This is the
1. ¢1 andg, have equal degrees, that is, the image curves g e of the next section.

have the samelass.

2. If ¢; is the set of epipolar lines tangent to the curve in 3-23 Dimension of the set of solutions
imagei, thene; ande, must be projectively isomor-

ohic Let {E;(F,e;)}; be the set of bi-homogeneous equations

onF ande;, extracted from the extended Kruppa’s equa-
tions (4). Our first concern is to determine whether all so-
lutions of equation (4) are admissible, that is whether they
satisfy the usual constrailie; = 0. Indeed we prove the
following statement:

3. Moreover in each corresponding pair of epipolar lines,
(L) € €1 x €2, the multiplicity ofl andl’ as points of
the dual curved* andY;" must be the same.

The first step is obviously necessary for the equation (4) o o

to hold. It is true, as stated in Proposition 7. As previously, Proposition 8 Aslong as there are at least 2 distinct lines

let m be the common degree gf, and . The second through e; tangent to Y7, equation (4) impliesthat rankF =

point is necessary to prove that both sides of equation (4)2 and Fe; = 0.

represent the same geometric set, that is here the union of . . ] )

lines ine,. This point holds thanks to the following lemma: ~Proof: The variety defined by (7(p)) is then a union of
at least 2 distinct lines througéy . If equation (4) holds,

Lemma 1 The sets of epipolar lines tangent to theimage ~ ¢2(£(p)) must define the same variety.

curve in each image are projectively related. There are 2 cases to exclude: If r&hk= 3, then the
curve defined by, (£(p)) is projectively equivalent to the

Proof: This is due to the fact that a pair of corresponding curve defined by,, which is Y. In particular, it is irre-

epipolar lines is the trace in the images of a plane contain- ducible.

ing the baseline joining the two camera centers. Hence the  |f rankF < 2 or rank¥ = 2 andFe; # 0, then there

two lines are tangent to the image curves if and only if the js somea, not a multiple ofe, such thaffa = 0. Then

plane they define (which contains the baseline) is tangentthe variety defined by (£(p)) is a union of lines through

to the curve in space. Therefore the two sat@nde; are  a. In neither case can this variety contain two distinct lines

composed of the traces in the images of the planes containthroughe;, so we must have raifk= 2 andFe; = 0. =

ing the baseline and tangent to the curve in space. Hence As a result, in a generic situation every solution of

these two sets are projectively related. B (F(F,e))}; is admissible. Lefi” be the subvariety of

Finally we can prove Theorem 5. P2 x P8 x P? defined by the equation§E;(F,e;)}; to-

Proof: Since each side of equation (4) represents the uniongether withFe; = 0 ande,”F = 07, wheree, is the

of lines iney, it can be factorized into linear factors, satis- second epipole. We next compute the lower bound on the

fying the following: dimension ofi/, after which we would be ready for the cal-
culation itself.

¢)1 (7(37, Y, Z)) = H(alix + Q2;Y + a3iz)ai

i Proposition 9 If V' is non-empty, the dimension of V' is at
62(E(x,y,2)) = [ Milaniz + asiy + azi2)", least 7. — m.
' Proof: Choose any lind in P2 and restricke; to the affine
where}; a; = >, b; = m. Itis left to prove that for alf, pieceP?\ 1. Let(z,y) be homogeneous coordinatesloif

a; = b;. Observe that; > 1, when the epipolar line istan- Fe; = 0, the two sides of equation (4) are both unchanged
gentto the image curve in at least two distinct points. Hence by replacingp by p + ae;. So equation (4) will hold for
one must prove that the number of tangency points for eachall p if it holds for all p € 1. Therefore equation (4) is
element ofe; is the same for its corresponding element in equivalent to the equality of 2 homogeneous polynomials
€. This number must also be the number of tangency points of degreem in = andy, which in turn is equivalent to the
of the plane, defined by these two corresponding elementsequality of (m + 1) coefficients. After eliminating\, we



havem algebraic conditions ofle, F, e2) in addition to
Fe1 = 0, egTF = OT.

The space of all epipolar geometries, that is, solutions
to Fe; = 0, e;”F = 07, is irreducible of dimension 7.
ThereforeV is at leas{7 — m)-dimensional. [ |

For the calculation of the dimension bf we introduce
some additional notations. Given a triplet;,F,e,) €
P2 x P8 x P2, let {qiq(e1)} (respectively{qs,(e2)}) be
the tangency points of the epipolar lines throeghrespec-
tively e») to the first (respectively second) image curve. Let
Q. (e1,e>) be the 3d points projected on{e1,(e;)} and
{q2a(e2)}. LetL be the baseline joining the two camera
centers. We next provide a sufficient condition Tortto be
discrete.

Proposition 10 For a generic position of the camera cen-
ters, the variety V' will be discrete if, for any point
(e1,F,ex) € V, theunion of L and the points Q (e, e2)
is not contained in any quadric surface.

Proof: For generic camera positions, there will bedis-
tinct points{qi.(e1)} and{qz.(e2)}, and we can regard
d1ia, 924 locally as smooth functions ef;, e,.

We letTV be the affine variety ift® x C° x C® defined by
the same equations & Let© = (e, F, e2) be a point of
W corresponding to a non-isolated pointiéf Then there
is a tangent vectof = (v, ®,v') to W at© with ¢ not a
multiple of F.

If x is a function orfV, Vo ¢ () will denote the deriva-
tive of x in the direction defined by at©. For

Xa(e1, F,e2) = qaa(e2) " Fqia(er),

the extended Kruppa’s equations imply that vanishes
identically onW, so its derivative must also vanish. This
yields

V@,ﬁ(Xa) - (v@,ﬁ (an))TFqla

+ qg‘acbqla + qgaF(v@,ﬂ(qla))
=0.

®)

We shall prove thaV g s(q14) is in the linear span of
ande;. (This means that when the epipole moves slightly,
1, Moves along the epipolar line, see figure 4.)

Considers(t) = f(qia(e1 + tv)), wheref is the poly-
nomial defining the image curdé . Sinceq;,(e; + tv) €
Y1, k = 0, so the derivative:’(0) = 0. On the other hand,
K'(0) = Ve,s(f(aia)) = grad,, ()" Ve,s(dia)-

Thus we have gragd (f)* Ve s(qia) = 0. But also
grad,, (f)Taia = 0 and grag, (f)Te; = 0. Since
grad,, (f) # O (a1 is not a singular point of the curve),
this shows thaVe s(q14), 14, @ande; are linearly depen-
dent. q;, ande; are linearly independent, S6o 9(q14)
must be in their linear span.

Figure 4:The pointqi. (e1) is a smooth function o#;. When
e1 moves slightlygi. (e1) moves along the epipolar line.

We have thatql Fe; ql Fq,, 0, so
T N H H
45, F Ve s(q1o) = 0: the third term of equation (5) van-
ishes. In a similar way, the first term of equation (5) van-
ishes, leaving
q2Ta'l>q1a =0.

The derivative ofy(e,F,e2) = Fe; must also vanish,
which yields:
eQT(ﬁel =0.

From the first equality, we deduce that for ev&y,, we
have:
Q MIeM,Q, = 0.

From the second equality, we deduce that every pBint
lying on the baseline must satisfy:

P"MIeM,P =0.

The fact that® is not a multiple of F implies that
MIT®M,; # 0, so together these two last equations mean
that the uniorL. U {Q, } lies on a quadric surface. Thus if
there is no such quadric surface, every poinVimust be
isolated. ]

Observe that this result is consistent with the previous
proposition, since there always exist a quadric surface con-
taining a given line and six given points. However in gen-
eral there is no quadric containing a given line and seven
given points. Therefore we can conclude with the following
theorem.

Theorem 6 For a generic position of the camera centers,
the extended Kruppa’'s equations define the epipolar geom-
etry up to a finite-fold ambiguity if and only if m > 7.

Since different curves in generic position give rise to in-
dependent equations, this result means that the sum of the
classes of the image curves must be at |&dst V' to be a
finite set. Observe that this result is consistent with the fact



that four conics# = 2 for each conic) in general position  such that:He, = pe>.° As seen in equation (1), the two
are sufficient to compute the fundamental matrix, as shownimage curves and the homogradyare related as follows:
in [23, 25]. Now we proceed to translate the result in terms

of the geometric properties of directly using the degree I\ Vp, fi(p) = Af2(Hp)

and the genus ok, related tom by the following relation: o

m = 2d+2g— 2. Here are some examples for sets of curves 1his implies:
that allow the recovery of the fundamental matrix:

Agraq;(fl) = HTgraq—Ip(fQ)a

for anyp in the first image. Leg; = grad, (fi),i = 1,2.
2. Two rational cubicsd = 3, g = 0) in general position. ~ Thus the previous expression, appliedep, can be re-
written as follows:

1. Four conicsd = 2, g = 0)in general position.

3. Arational cubic and two conics in general position.

- : . iy Ag1 = p (ST + hel)gs.
4. Two elliptic cubics ¢ = 3,g = 1) in general position g1 =p" (ST +hey)e

(see also [25]). We defines to be 3 = elg, = dfs2(e;) andy to be
Henceh = (g1 — S"g2). ThusH =

— A
5. A general rational quartiel(= 4,9 = 0), and agen- " _1 pd-1 . o . .
eral elliptic quartic ¢ = 4, g = 1). S+ ex(ngi —g28) = (I — 5e285)S + Zeag; . Substi-
tuting this expression df into equation (1) yields:

4. 3D Reconstruction Ai(p) = f((T+ %ezgf)sp + %ezgfp)-

We turn our attention to the problem of reconstructing an

algebraic curve from two or more views, given known cam-  Then after elimination of\, we get a set o(df) -1

era matrices (epipolar geometries are known). The basicequations of degreé in . Hence the problem is equiva-

idea is to intersect together the cones defined by the camerdent to find the common solutions to this set of equations.

centers and the image curves. However this intersection canThis can be achieved by picking one equation, solving it

be computed in three different spaces, giving rise to differ- and keeping only solutions that are solutions of the whole

ent algorithms and applications. Given the representation insystem.

one of those spaces, it is possible to compute the two other Now we turn back our attention to the general case. We

representations [24]. shall investigate three different types of representation, each
We shall mention that in [14] a scheme is proposed to re- leading to a particular reconstruction algorithm.

construct an algebraic curve from a single view by blowing-

up the projection. This approach results in a spatial curve 4.2. Reconstruction in Point Space

defined up to an unknown projective transformation. In fact

the only computation this reconstruction allows is the recov-

ery of the projective properties of the curve. Moreover this Let the camera projection matrices fe0] and [S;e,],

reconstruction is valid for irreducible curves only. However yhereS = — 22l 7 see [28]. Hence the two cones de-

. . . . eo |2
reconstructing from two projections not only gives the pro- finaq py the irrlllaﬂe curves and the camera centers are given

jective properties of the curve, but also the relative depth of by: A (P) = fi([LO]P) and Ax(P) = fo([S:es]P).

it with respect to others objects in the scene and furthermore,4 reconstruction is defined as the curve whose equations
the relative position between irreducible components. areA, = 0andA, = 0. Itis clear that the original

space curves is contained within the intersection on these
4.1. Homography recovery for planar curve two viewing cones. However since each cone has degree

We begin by restricting our attention to planar curves. We d (the same than the space curve), by Bezout theorem, the
proceed to the recovery of the homography matrix induced intersection must have degréé This |mpI|eS that the in-

by the p|ane of the curve in space. This approach reducestel’section contains more than just the original space curve.
the reconstruction problem to finding the roots of a uni- It turns out, by the following theorem, that this intersection
variate polynomial. Let;,i = 1,2 be the first and second ~ contains, in general, only two irreducible components (sep-
epipole. LetS be any homography, which can be extracted arated curves). One has degreand the other has degree
from the epipolar geometry by = [e] x F, where[es]« is d(d — 1). Therefore ifd > 3, since the original space has
the matrix representing the CI’OSS-pI’OdUCter Then the 5Note that it is not possible to normaliZ such thafie, = e», be-

homography through the plane of the curve in space can begayse is given as a function & by H = S + exh?’, which constraints
written as:H = S + e;h” (see [40, 28]). We define to be its norm.

4.2.1 Thegeneral case

10



degreed, we can extract the right component which is the If the loopl; goes round a point of the first two types,
answer of the reconstruction problem. Wheén= 2 (the then it is still true thatux. ([l]) = 1. Now suppose that
curve is a conic), however, the reconstruction problem ad- [; goes round a genuine branch pointpfsayb (and goes
mits two solutions, which are both conics, and a third view round no other points if§). By genericityp is a simple two-

is necessary to select the right conic. fold branch point, hence x ([I¢]) is a transposition. This
shows that inlu x . ) is actually generated by transpositions

Theorem 7 For a generic position of the camera centers, and so infux,) = Perm(X;).

that is when no epipolar planeis tangent twice to the curve Now considerX , the curve defined byA; = 0,A, =

X, the curve defined by {A; = 0,A; = 0} hastwoir- 31 By Bezout's TheorenX has degree?. Leti € X. Itis
reduq ble components. Ong has degree d and is the actual projected onto a poing; in ¥;, such thaty, (y1) = 1 (y2).
solution of the reconstruction. The other one has degree HenceX = Y; xp: Y3; restricting to the inverse image

d(d - 1). of the setS, we haveXgs = Xg x5 Xg. We can there-
fore identifyf(t with X; x X;. The monodromyLXS can
then be given by:z_(z,y) = (uxs(z), uxs(y)). Since
im(ux,) = Perm(Xy), the action of infu ) on X; x X;
has two orbits, namely(z, z)} = X; and{(z,y)|z # y}.
HenceX has two irreducible components. One has degree
d and isX, the other has degre® — d = d(d — 1). ]
Solving the system defined ldy, (P) = 0 andA,(P) =
1. X 5 o(L) = P!, taking a point: € X to the epipo- 0 can be done by Giiner basis computation. Then as men-
lar plane that it defines with the camera centers. tioned above, fod > 3, the actual solution can be extracted.
However the case of planar curves can be treated more eas-
2. Y7 % o(er) = o(L) = P!, taking a poinyy € Y; to ily.
its epipolar line in the first image.

Proof: For a linel c P?, we write o(1) for the pencil of
planes containing. For a pointp € P2, we write o(p)

for the pencil of lines througlp. There is a natural iso-
morphism betweet (e;), the epipolar lines in image and

o (L), the planes containing both camera centers. Consider
the following covers of?!:

3. Vs & o(ey) = o(L) = P', taking a poinyy € Y5 to

: . ;. . 4.2.2 Thecaseof planar curves
its epipolar line in the second image.

If p; is the projectionX — Y;, thens = n,p;. Let B the An explicit elimination can_be doneto geta systgm on the
union set of branch points of, and,. It is clear that the plqne parameters only, which can be gseful to refine the so-
branch points of; are included in3. LetS = P!\ B, lution of the hornographyfogndm section 4.1._ Fete the
pick ¢ € S, and writeXs = 5= (S), X; = 7~ (¢). Let plane of curve in space, defined by the equatitm) = 0.

ux, be the monodromyrr (S,t) — Perm(X;), where

Pern(Z) is the group of permutations of a finite s&t It Theorem 8 The plane equation 1(P) = 0 satisfies the fol-

is well known that the path-connected componentX efre lowing constraint. There exists a scalar & and a polynomial
in one-to-one correspondence with the orbits of the action . gch that:
of im(ux,) on X;. SinceX is assumed to be irreducible, rxh=Ap+ kA,

it has only one component and (mx,) acts transitively

onX;. Thenifim(ux,) is generated by transpositions, this

willimply thatim(px.) = Pern{X;). In orderto showthat ~ Proof: A; andA, can be regarded as regular functions on

im(ux, ) is actually generated by transpositions, consider a the plane. Since they are irreducible polynomials and van-

loop inP! centered at, sayl;. If I; does not go round any ish on the plane on the same irreducible curve and nowhere

branch point, thet, is homotopic to the constant path$h else, they must be equal up to a scalar in the coordinate ring

and therux, ([I;]) = 1. Now in B, there are three types of ~Of the plane, e.g. they are equal up to a scalar motiule

branch points: Leth(P) =ax X+ xY+yx Z+4dxT,whereP =

[X,Y,Y,T]". The theorem 8 provides = (*') equa-

tions onk, a, 3,7, 6, (i)1<i<d—1, where(r;); are the coef-

ficients ofr. Now we proceed to show an explicit way to

perform the elimination of the auxiliary unknowns;(r ;).

Let S be the surface, whose equatiois= A;+kA, = 0.

The pointsP that lie on the plan#l are characterized by the

3. branch points that come from epipolar lines tangent ei- fact that when regarded as points$ftheir tangent planes
ther toY; or toY5: these are genuine branch points of are exactlyH. This is expressed by the following system of
n. equations:

1. branch points that come from nodes}af: these are
not branch points of,

2. branch points that come from nodesf: these are
not branch points of,

11



h(P)=0 new proof that the degree of the dual image curve is constant

(B5% — ag—?)(P) =0 for a generic position of the camera center. [
(7g—§ — g—g)(P) = 0 The reconstruction problem can be regarded in two dif-
(68—E — a—?)(P) =0 ferent ways leading to two different applications. In the first
approach, we get an algorithm to reconstruct a curve from
On the other hand, on the plai&P) = A(P) + a set of views, while in th(_a second approa_ch we show how
kAs(P) = 0. Thereforek = — i;g;; for any P on the to recover an arbitrary trajectory of a moving point from a

moving camera.

For the reconstruction of * from multiple view, we will
need to consider the mapping from a lihef the image
plane to the plane that it defines with the camera center. Let

plane that is not located on the curve itself. Therefore we
get the following system:

h(P)=0 © 1 — M-~1 denote this mapping [11]. There exists a
1d hi [ h i
(B(A281 — A 282) _ (A, 281 — A 222))(P) = olinkinvolving Y,  andg, the polynomial of the dual image
(v(Ay BR, _ Ay 9%2) —a((As GZ& - A GZXZ))(P) = ocurve: T(u(1)) = 0 wheneverp(l) = 0. Since these two
(6(Ay 9:% — A a;éjz) _ a((AQ%A? — Ay 852 NEP) = opolynomials have the same degree (becauisdinear) and

¢ is irreducible, there exist a scalasuch that
Since the plane we are looking for does not pass through

the point[0,0, 0, 1]” which is the first camera centércan T(u(1)) = Ap(D),

be normalized to 1. Thus for a poilt on the plane, we

have: T = —(aX + Y + Z). By substituting this

expression ofl" into the previous system, we get a new

system that vanishes over all values(df,Y, Z). There-

fore its coefficients must be zero. This provides us with a Proposition 12 The reconstruction in the dual space can
large set of equations dw, 3, ), that can be used to refine be donelinearly using at least k > m2H6mE11 \igns,

the solution obtained by the homography based approach. = 3(m+3)

Moreover once the plane is computed, its intersection with proof:  The least number of views must satisfy

one of the image cones can be computed, the outcome bey,((m+2)(m+1) _ 1) > )mt2)(mtl) 4 -
. . 2 = 6 .
ing the equation of the curve on the plane. For that pur-  The jower bounds on the number of view$or few ex-

pose, one has to eliminafé between the two equations: amples are given below:
aX +p8Y +4Z+T = 0andfi(M;P) = 0. When a

projective calibration only is known, then the first camera 1. fora conic locusk > 2,
matrix is[I; 0]. Thus this yields immediately the equation
of the curve orH.

for all linesl € P2*. Eliminating)\, we get
linear equations off. Since the number of coefficients in

T is (mBmE2)(mtl) |\e can state the following result:

m+42)(m+1) 1
2

for a rational cubick > 3,

for an elliptic cubick > 4,
4.3. Reconstruction in the Dual Space

As above, letX be the curve in space, that we want to re-
construct. LetX* be the dual variety of, that is, the set
of planes tangent t&'. Since X is supposed not to be a Moreover it is worth noting that the fitting of the dual
line, the dual varietyX * must be a hypersurface of the dual image curve is not necessary. It is sufficient to extract
space [18]. Hence IeT be a minimal degree polynomial tangents to the image curves at distinct points. Each tangent
that represent(*. Our first concern is to determine the 1 contributes to one linear equation ah Y (u(l)) = 0.
degree off. However one cannot obtain more thdR=2.mth) _ q
linearly independent equations per view.

for a rational quartick > 4,

o M WD

for a elliptic quartick > 4.

Proposition 11 The degree of Y ism, that is, the common

degree of the dual image curves. Consider next a single moving camera viewing a moving
) . 4 ) point. Assume that at a timteonly the tangent of the trajec-
Proof: SinceX™* is a hypersurface df**, its degree isthe oy is extracted from the image. As mentioned previously,

number of points where a generic line [if* meetsX*. each such tangehyields a linear constraint offi.
By duality it is the number of planes in a generic pencil

that are tangent t&. Hence it is the degree of the dual Proposition 13 The reconstruction of the trajectory of a
image curve. Another way to express the same fact is themoving point can be done by tangential measurements from
observation that the dual image curve is the intersection of a moving camera using at least £ > w -1
X* with a generic plane if?3*. Note that this provides a images.
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Note that in the case of conics were presented in [38].
Here we summarize the minimal valuefoin few cases:

1. for a moving point on a conic locuk,> 9,
2. for a moving point on a rational cubik,> 34,
3. for a moving point on an elliptic cubi&, > 83,

4. for a moving point on a rational quartic,> 83.

4.4. Reconstruction in G(1, 3)

The spatial curveX admitsI” as a Chow polynomial. Let

be the common degree &f andT'. Let f be the polynomial
defining the image curvé;. Consider the mapping that as-
sociates to an image point its optical ray:: p — l\A/[p,
whereM is a3 x 6 matrix, which entries are polynomials
functions ofM [11]. Hence the polynomidl'(v(p)) van-
ishes wheneveyf (p) does. Since they have same degree
andf isirreducible, there exists a scafasuch as for every
pointp € P2, we have:

Figure 5:The two images of a cubic curve.
T(v(p)) = Af(p). g g

This yields(*?) — 1 linear equations of.
Hence a similar statement to that in Proposition 12 can

be made: 2. for a moving point on a cubi&, > 50,

1. for a moving point on a conic locuk,> 20,

Proposition 14 The reconstruction in G(1, 3) can be done

] s | 58 3. for a moving point on a quarti¢, > 105.
linearly using at least k > 5 === views.

For some examples, below are the minimal number of views

for a linear reconstruction of the curve@{1, 3): S, EXper Iments

5.1. Experimentson real images

) 5.1.1 Homography recovery from asingleplanar curve
2. fora cubic > 6, by point extraction

1. for a conic locusk > 4,

3. fora quartick > 8. In the first experiment, we consider the problem of recover-
ing the homography matrix induced by a planar cubic across
two images (see Figure 5) using the method described in
3.1.4 (i.e. without prior knowledge of the epipolar geome-
try). The cubic equations of the image curves were recov-
ered by least-squares fitting. The recovered homography
was then used to re-project the curve from one image onto
the other. The reprojection error was at subpixel values (see
Figure 6).

As in the case of reconstruction in the dual space, it
is not necessary to explicitly compufe It is enough to
pick points on the image curve. Each point yields a linear
equation orl: TI'(v(p)) = 0. However for each view, one
cannot extract more thagd® + 2d independent linear
equations.

Consider next a single moving camera viewing a moving
point. As mentioned previously, each point contributes one

linear equations ofi. Hence the following result follows. 5.1.2 Recovering homography from planar curves cor-
respondences

Proposition 15 The recovery of the trajectory of a moving ) ) .

point by point based measurements from a single moving Given two images of the same curve of ordefsee Fig-

camera can be done linearly using at least k > Ld* + ure 7) and the epipolar geometry, we start by computing the

243 4+ 282 4 Tq 4 1 such measurements. plane and the homography matrix, using the algebraic ap-

? 2 ’ proach described in 4.1. In order to refine the solution we
The lower bounds ok for few examples: place it into the final system, obtained at the end of 4.2.2 and

13



Figure 6: The reprojected curve is overlaid on the second im-

age cubic. The bottom display shows an enlarged section of the
curve and the overlaid reprojected curve — the error is at subpixel

values.
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Figure 7: The curves of orddras an input of the recon-
struction algorithm.

then use a local optimization algorithm. To demonstrate the
accuracy of the algorithm, the reprojection of the curve in
the second image is shown in the figure 8. The 3D rendering
of the correct solution is shown 9.

Finally, the equation of the correct solution on its plane
is given by:

f(m ) __ 9006922504387547 .4 _ _ 4947731105035649 23 +
Y,2) = 9007199254740992 1152921504606846976 Y
1070847909255857 P 54589271962076 z+
147573952589676412928 Y 1208925819614629174706176 y
3969428158337415 __7563069091264439 .ﬂZB +
2475880078570760549798248448 y 1152921504606846976
5911661048544087 _ 7447102119819593 T 22 +
295147905179352825856 302231454903657293676544 Y
625625302714855 T + 936178943362411 $222'—
618970019642690137449562112 y 295147905179352825856
8944822903795571 2 +
302231454903657293676544 y
7158022235457567 T
309485009821345068724781056 y
6146225343803339 zm + 7423176283805271 m3 +
302231454903657293676544 618970019642690137449562112 4
6539339092801811 $4

6189700196426901?7449562112 .
The curve is drawn on figure 10.

5.1.3 Epipolar geometry from points and conic corre-
spondences

We proceeded to the recovery of the epipolar geometry from
conics and points correspondences extracted from real im-
ages. The extraction has been done manually and the conics
were fitted by classical least square optimization.

The recovery of the epipolar geometry has been done us-
ing four conics and 1 point. First the fundamental matrix is
computed using three conics and 1 point, which leads to a fi-
nite number of solutions (see theorem 3). The computation
is too intense for the standard computer algebra packages.



Figure 8: Reprojection of the curve onto the second image.

Figure 9: The curve of ordet as an output of the recon-
struction algorithm.

Figure 10: The original curve.
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Figure 11: The two images that were used. The epipoles
and the corresponding epipolar lines tangents to the conics
are drawn on the images.

We have found thaFast Gb 6, a powerful software tool
for Grébner basis computation, introduced by J.C. Faugere
[12, 13]is one of the few packages that can handle this kind
of computation. Then the additional conic is used to select
the right solution.

The images used for the experiments together with re-
sults and comments are presented in figure 11

514 3D reconstruction using the Grassmannian
G(1,3)

For the next experiment, we consider seven images of an
electric wire — one of the views is shown in figure 12 and
the image curve after segmentation and thinning is shown
in figure 13. Hence for each of the images, we extracted a
set of points lying on the thread. No fitting is performed in
the image space. For each image, the camera matrix is cal-
culated using the calibration pattern. Then we proceeded to
compute the Chow polynomidl of the curve in space. The
curve X has degre8. Oncel is computed, a reprojection

is easily performed, as shown in figure 14.

6L ogiciel cona et Balig au laboratoire LIP6 de I'universitPierre et
Marie CURIE.



Figure 12: An electric thread. Figure 14: Reprojection on a new image.

are introduced, the system reduces to the following:
F[1,1)=F[2,2] = F[2,3] = F[3,2] = F[3,3] =0
F[3,1]+ (V3 -1)F[1,3] =0
10F[2,1]+ (V3 - 1)F[1,3] =0
10F[1,2]+ (V3 —2)F[1,3] =0
133813F71, 3]> — 20600/3 — 51100 = 0

Thenitis easy to get the right answer for the fundamental
Figure 13: An electric thread after segmentation and thin- matrix:

ning.
0 =28 qp 1
/511206 v/3 /511206 V3
5.2. Experimentson synthetic data S EEVE. 0 0
P . . ¥ . V/511-206 /3
5.21 Recoveringepipolar geometry from conicscorre- V3
10 —=1£v3
spondences 0 006 5 0 0

We compute the fundamental matrix from 3 conics and 2 ) ) )
points in a synthetic experiment. Once again the computa-5-2-2 Recovering epipolar geometry from spatial
tion were made b¥Gb. The conics in the first image are: curves cor respondences

fl(z,y,2) = 2% +y*> +92° We procegd to the_ computation qf the epipolar geometry
gl(z,y,2) = 42° +y° + 81 22 from a rational cubic and two conics. The curves are ran-
hl(z,y,2) = (4z+y)z+ (x —1/22)y+ (=1/2y + )=  domlychosen, as well as the camera. .
. ) Hence the cubic is defined by the following system:
The conics in the second image are:
_ _ 1 _ 2 2265666659564526267 X — 19148549932360861692T —
2y, 2) = 100(*“*‘/5)2( 19002+ 791130248041963297Y Z — 119860986808750802222 +
80022v/3 — 1309y> + 400y>V/3 + 9820yz+/3—

16000 7270022 + 400002°v/3 893468169675527814X T + 285940501848919422T% —
Yz - 7+ Z°V3) 179632615056970090Y T + 277960038226472656Y 2 = 0

92(z,y, 2) = m(33036473600$2+

5732960000z v/3 + 3329996002y /3— 555920076452945312XY + 656494420457765614Z X —
214463200xy — 73852000z — 1384952000x2+/3+ 1755155973545148735Y Z — 1749154450800074954 72 +
9091399981y> + 1771266080y>/3— 984240461094724954X T — 61309565864179510Y T —
16090386780y2v/3 + 10160177600y = + 5564962423002> + 1802588912007356295ZT + 291319745776795474T2% = 0
1415825920002%+/3)

h2(z,y, 2) = —m(—mgmmomu 1111840152905890624 X > — 2905335341664005486Z X —
4831170022 — 1257491202yv/3 + 432499202y — 793850352563738017Y Z + 1286890161434843658 22 +
25464640022+/3 — 6553140y2v/3+ 1713207647519936006 X T' — 248798847306328202Y2T—
56456040y~ + 6834800022 /3 + 127965120022— 2042349361064284313ZT + 3988143869515851347% = 0

2 2 2
2722674002" /3 + 2522418y V'3 — 208209y") The first and the second conic are respectively defined
Given just the constraints deduced from the conics, the by:

system defines, as expected, a one-dimensional variety in 95X + 9Y + 407 + 61T = 0
P? x P2, When just one point is introduced, we get a zero- 40X2 — 78XY + 627X + 11XT + 88Y 2+
dimensional variety, whose degreéils. When two points YZ+30YT +812% —5ZT — 28T* =0

16



Figure 15: A spatial quartic

and

4X —11Y +10Z + 57T =0
—82X2% —48XY — 11ZX +38XT — 7Y%+
58YZ — 94YT — 682> +14ZT — 35T =0

The camera matrices are given by:

79 43
—-61 —23
—-34 —42
—65 25
—-60 9

—-32 78

—87
-33
31
—76
—61
—66

—66
—37
88
28
29
39

M, =

M, =

Then we form the Extended Kruppa’s Equations for each
curve. From a computational point of view, it is crucial
to enforce the constraint that eakhs different from zero.
Mathematically this means that the computation is done in
the localization with respect to eagh

As expected, we get a zero-dimension variety which de-
gree is one. Thus there is a single solution to the epipolar
geometry given by the following fundamental matrix:

_ 511443
13426

2669337
13426

_ 998290
6713

23737631
114121

14061396
114121

84845

F = 2329

3426650
114121

8707255
228242

1691905
228242

5.2.3 Reconstruction of spatial curves

We start with a synthetic experiment followed later by a real
image one. Consider the curvg, drawn in figure 15, de-
fined by the following equations:

Fl(wayazat) = xQ +y2 _t2
Fy(z,y,2,t) = ot — (2 — 10t)?

The curveX is smooth and irreducible, and has degtee

17

and genud. We define two camera matrices:

1 0 0 5
Mi=|0 0 1 =2
0 -1 0 -10
10 0 =10
My=|0 0 -1 O
01 0 -10

The reconstruction of the curve from the two projections
has been made in the point space, usi@p ’, a power-
ful software tool for Gobner basis computation [12, 13].
As expected there are two irreducible components. One has
degreet and is the original curve, while the second has de-
greel2.

6. Summary and Discussion

In this paper we have focused on general algebraic curves
as the building blocks from which the camera geometries
are to be recovered and as the scene building blocks for the
purpose of reconstruction from multiple views. The new
results derived in this paper include:

1. Extended Kruppa’s equations for the recovery of
epipolar geometry from two projections of algebraic

curves.

. Dimension analysis for the minimal number of alge-
braic curves required for a solution of the epipolar ge-
ometry.

. Homography recovery from two views of a general
planar curve, when the epipolar geometry is either
known or not.

4. The reconstruction from two views of an irreducible
curve of degree is a curve which contains two irre-
ducible components one of degré@and the other of
degreed(d — 1) — a result that leads to a unique re-
construction of the original curve, far> 2.

(€21

. Formula for the minimal number of views required for
the reconstruction of the dual curve.

. Formula for the minimal number of views required
for the reconstruction of the curve representation in
G(1,3).

Most of the algorithms presented in this work lead to
solving a system of polynomial equations. As previously
mentioned, there exist two main approaches to handle this
problem: (i) computing a Gtiner basis of the ideal defined
by the equations, (ii) processing in the dual space via the

“Logiciel conai et alisg au laboratoire LIP6 de I'universitPierre et
Marie CURIE.



computation of resultants (see [5, 6] for a detailed presenta- References
tion). There exists a third method, known as the homotopy _ _ _
method, whose field of applications is broader than the res- [1] E. Allgower and K.Georg. Numerical continuation method,

olution of polynomial systems [1]. However it is generally An i_ntroduction. Number 13 in Computational Mathematics,

admitted that the symbolic methods, namely those based on ~ SPringer-Verlag, 1990.

Grébner basis or resultants, provide better results. [2] K. Astrom and F. Kahl. Motion Estimation in Image Se-
Note that numerical optimization tools like Newton- quences Using the Deformation of Apparent Contours. In

Raphson or Levenberg-Marquet optimization are not con- |EEE Transactions on Pattern Analysis and Machine Intel-

sidered here because (i) zero-dimensional polynomial sys-  ligence, 21(2), February 1999.

tems which are not overdetermined have more than one root

and these optimization methods are designed to extract a

single solutions, (ii) the convergence to a solution with these

tools is well behaved only when one starts in a small enough [4] R. Berthilson, K. Astrom and A. Heyden. Reconstruction of

neighborhood of the solution. curves inR?, using Factorization and Bundle Adjustment. In
The use of symbolic tools (either Giter basis or resul- IEEE Transactions on Pattern Analysis and Machine Intelli-

tant) for computer vision applications is not without chal- gence, 21(2), February 1999.

lenges. First, symbolic computations require large amounts [s; p._cox, J. Little and D. O'shea. Ideals, Varieties and Algo-

of available computational and memory resources. There  ithms, Second Edition, Springer-Verlag, 1997.

is the issue of computational efficiency, scalability to large

problems and the questions of effectiveness in the presencd®] D- Cox, J. Little and D. O'shea. Using Algebraic Geometry,

of measurement errors. The full answer to these questions ~ SPringer-Verlag, 1998.

is far bey?”d the SCOp_e of this Wor_k' The f'eld_Of symbolic [7] D. Eisenbud. Commutative Algebra with a view toward alge-

computations for solving polynomial systems is a very ac- braic geometry. Springer-Verlag, 1995.

tive field of research where major progress has been made

in the past decade [6, 17, 42]. For example, throughout [8] D. Eisenbud and J. Harris. The Geometry of Schemes.

this paper, the experiments were performed with one of the ~ Springer-Verlag, 2000.

latest symbolic tools “FastGB” developed by Jean-Charles [9] O.D. Faugeras Three-Dimensional Computer Vision, A geo-

Faugere for efficient and robust @ier basis computation. metric approach. MIT Press, 1993.

With those latest tools, such as FastGB, one can achieve

a high degree of scalability and efficiency in the computa- [10] O.D. Faugeras and Q.T. Luong The geometry of multiple
tions. images. MIT Press, 2001.

Finally the problem of the sensitivity to noise is related |11} o p. Faugeras and T. Papadopoulo. Grassman-Cayley alge-
to perturbation theory. It is necessary to note that since the b4 for modeling systems of cameras and the algebraic equa-
computations are symbolic, they do not add any perturba- tions of the manifold of trifocal tensors. Technical Report -
tion to the solution. Therefore, as opposed to numerical INRIA 3225, July 1997.

methods, there is no additional error due to possible trunca-
tion during the computations. However, there is very little
research on measurement error sensitivity and their prop-
agation throughout the symbolic computations. Such re- [13] J.C. Faugere. A new efficient algorithm for computing Grob-
search would be of great interest to the computer vision ner basis £4).

community, however, this topic is largely open. Neverthe-
less, a first step in this direction has been done by the intro-
duction of a hybrid of symbolic and nhumeric computations,
especially for the case of zero-dimensional system (which [15] w. Fulton Algebraic Curves.

is the case of interest in vision) solved by resultant based
methods [42, 32]. [16] Crossand A. Zisserman, Quadric Reconstruction from Dual-
Space Geometry, 1998.

[3] M. Barnabei, A. Brini and G.C. Rota On the exterior calculus
of invariant theory.Journal of Algebra, 96, 120-160(1985)

[12] J.C. Faugere. Computing Grobner basis without reduction to
zero (F5). Technical report, LIP6, 1998.

[14] D. Forsyth, Recognizing algebraic surfaces from their out-
lines.

[17] G.M. Greuel and G. Pfister, A Singular Introduction to Com-
Acknowl edgment mutative Algebra. Springer-Verlag, 2002.

[18] J. Harris Algebraic Geometry, a first course. Springer-

We thank Michael Fryers and Mina Teicher for their fruit- Verlag, 1992.

ful help. As well, we express our gratitude to Jean-Charles
Faugere for giving us access to his powerful sysk&a. [19] J. Harris and Griffith Principle of algberaic geometry.

18



[20] R. Hartley and A. Zisserman Multiple View Geometry in  [36] E. Reyssat Quelques Aspecets des Surfaces de Riemann.
computer vision. Cambridge Univeristy Press, 2000. Bikhauser, 1989.

[21] R. Hartshorne. Algebraic Geometry. Springer-Verlag, 1977. [37] C. Schmid and A. Zisserman. The Geometry and Matching
of Curves in Multiple Views. IrProceedings European Con-

[22] D.P. Huttenlocher, G.A. Klanderman and W.J. Rucklidge ference on Computer Vision, 1998.

Comparing images using the Hausdorff distance. |HRE
Transactions on Pattern Analysis and Machine Intelligence,

[38] D. Segal and A. Shashua 3D Reconstruction from Tangent-
15(9), September 1993.

of-Sight Measurements of a Moving Object Seen from a Mov-
ing Camera. IrProceedings European Conference on Com-

[23] F.Kahland A. Heyden. Using Conic Correspondence in Two puter Vision, 2000.

Images to Estimate the Epipolar GeometryPhaceedings of

the International Conference an Computer sion, 1998. [39] J.G. Semple and G.T. Kneebone. Algebraic Curves. Oxford

[24] J.Y. Kaminski Multiple-view Geometry of Algebraic Curves. University Press, 1959.

Phd dissertation, The Hebrew University Of Jerusalem, June . .
y [40] A.Shashua and N. Navab. Relative Affine Structure: Canon-

2001.
ical Model for 3D from 2D Geometry and Application&EE
[25] J.Y. Kaminski and A. Shashua. On Calibration and Recon- Transactions on Pattern Analysis and Machine Intelligence,
struction from Planar Curves. Froceedings European Con- 18(9):873-883, 1996.

ference on Computer Vision, 2000. )
[41] A. Shashua and S. Toelg The Quadric Reference Surface:

[26] J.Y. Kaminski, M.Fryers, A.Shashua and M.Teicher. Mul- Theory and Applicationslnternational Journal of Computer
tiple View Geometry Of (Non-Planar) Algebraic Curves. In Vision, 23(2):185-198, 1997.
Proceedings of the International Conference on Computer V-
sion, 2001. [42] B. Sturmfels, Solving Systems of Polynomials Equations,

American Mathematical Society, 2002.
[27] S.Lang Algebra Addison-Wesley Publishing Company, Inc.

o ) . [43] R.J. Walker Algebraic Curve®rinceton University Press,
[28] Q.T Luong and T. Vieville. Canonic Representations for the 1950.

Geometries of Multiple Projective Views. Froceedings Eu-
ropean Conference on Computer ision, 1994.

[29] S.D.Ma and X. Chen. Quadric Reconstruction from its Oc- A. Technical backgrou nd

cluding Contours. IrProceedings International Conference

of Pattern Recognition, 1994. This section provides a brief introduction to algebraic ge-
ometry, and algebraic curves in particular, necessary for the
overall understanding of our work.

The ground field is assumed to be the field of complex
number. This is important from a theoretical point of view,
[31] S.J. Maybank and O.D. Faugeras A theory of self-calibration since the field of complex number is algebraically closed.

of a moving cameralnternational Journal of Computer \i- However from a practical point of view, we are interested in
sion, 8(2):123-151, 1992. the real locus of all varieties. Therefore all the algorithms
must eventually extract only the real points.

[30] S.D. Ma and L. Li. Ellipsoid Reconstruction from Three
Perspective Views. |RProceedings International Conference
of Pattern Recognition, 1996.

[32] B. Mourrain and Ph. ®buchet Algebraic methods for nu-
merical solving. InProceedings of the 3rd International ) ]
Workshop on Symbolic and Numeric Algorithms for Scientific A.l. Algebraic variety
Computing’ 01, pp. 42-57, 2002. A1l Affinevariety

[33] T. Papadopoulo and O. Faugeras Computing structure and_ .. ... . . . L
motion of general 3d curves from monocular sequences ofDerflrlltlon 1 Givena polynomial I in the polynomial ring

perspective images. Proceedings European Conference on ClXy, ..., Xy], we say that a point P in the n—dimensional
Computer Vision, 1996. affine space A", regarded asa m—tuple (Px, ....., P,), isa
zeroof Fif F(P) = 0.
[34] T. Papadopoulo and O. Faugeras Computing structure and
motion of general 3d curves from monocular sequences of Definition 2 An algebraic variety in the affine space A"
perspective images. Technical Report 2765, INRIA, 1995. is a subset of A™ being the common zeros of a family of

[35] L. Quan. Conic Reconstruction and Correspondence from polynomial {F }:
Two Views. InIEEE Transactions on Pattern Analysis and N )
Machine Intelligence, 18(2), February 1996. Z({F;}) ={P € A"|F;y(P) = Ofor all i}

19



It is clear that the variety will not be affected if we add
to the family all the combinationsy , G; F;, where all but
a finite number of7; are zeros. Hence a variety &f* is

always defined by the ideal ([27]) generated by its defining

family. We immediately deduce that:

Proposition 16 Theunion of two varietiesisa variety. The
intersection of any family of varietiesisa variety. The empty
set and the whole space are varieties.

Definition 3 A variety is said to be irreducible, if it can-
not be expressed as the union of two non-empty proper sub-
varieties.

Definition 4 Thedimension of avariety X if the supremum
of all integers k such that there exists a chain Zo C Z; C
.... C Zy, of distinct irreducible sub-varieties of X .

A.12 Projectivevariety

Then the varieties are the closed sets of a topology calledAs we defined an affine variety to be a subset of an affine

the Zariski topology.

Given an ideall in C[X4,..., X,;], we shall denote by
Z(I) the variety it defines. Since the polynomial ring is
noetherian, we get:

Proposition 17 Avariety isalways defined by a finite set of
equations, namely the generators of theideal, which defines
the variety.

As each ideal defines a variety, any subSeif A" de-
fines an ideal as follows:
I(S)={F e ([X4,..., X,]|[VP € S,F(P) = 0}
There is a relationship between ideals@®X 4, ..., X,,]

and varieties ofA™. The following properties can be
proven:

Proposition18 1. If S; C S, are two subsets of A",
then I(Ss) C I(Sy).

2. If I, C I, are two ideals of C[Xq,...
Z(Iy) C Z(I).

, Xn], then

3. For any two subsets S; and S, of A™, we have: 1(S;U
Sz) = I(S1) N1(Ss).

4 For any ideal I C C[X1,..,Xn], 1(Z(I)) =
VI, the radical of I, defined by VI = {F ¢
Clxy,...,xy] | Ir, F" € I}.

5. For any subset S € A", Z(I(S)) = S, the closure of
S.

spaceA™, defined by polynomials equations, we shall de-
fine a projective variety to be a subset of a projective space
P" defined byhomogeneous polynomials.

The properties of projective varieties are very similar to
those of affine varieties.

A.2. Algebraic planar curves
A.21 Ddfinitions

Definition 5 A polynomial f is said to be square-free if it
cannot be written as a product like: f = g2h, where g and
h are non constant polynomials.

Definition 6 A planar algebraic curve C is a subset of
points, whose projective coordinates satisfy an homoge-
neous square-free polynomial equation: f(z,y,z) = 0.
Thedegreeof f iscalled theorder or degreeof C. Thecurve
is said to be irreducible, when the polynomial f cannot be
divided by a non-constant polynomial.

Note that when two polynomials define the same curve,
they must be equal up to a scalar. For convenience and
shorter formulation, we defineform f € C[z,y, z] of de-
gree n to be an homogeneous polynomial in z, y, z of total
degreen.

A.2.2 Tangency and singularities

LetC be a curve of degre¢ and letL be a given line. We
can represent the line parametrically by taking two fixed
pointsa andb on it, so that a general poipt (exceptb
itself) on it is given bya + Ab. The intersections of and

C are the point§p, }, such that the parametexsatisfy the

Note that the fourth point is a direct consequence of the gqyation:

Hilbert’'s Nullstellensatz:

Theorem 9 When the ground field is algebraically closed
(which is the case for complex varieties), the following
holds. Let I be an ideal of C[X,,...,X,], and let F' €
C[X1, ..., X,] which vanishes at all points of Z(I). Then
F" ¢ I for someinteger r > 0.

We end this very short introduction by defining irre-
ducibity and dimension.
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J(A) = flag + Abg,ay + Aby,a, + Ab,) =0

Taking the first-order term of the a Taylor-Lagrange ex-
pansion:

J(N)

(@) + MGE@)be + gL (a)by + FL(a)b:)

f(a) + Agrad,(f)"b
= 0



If f(a) =0, ais located on the curve. Furthermore let
assume that gradf)?b = 0, then the lineC and the curve
C meet ata in two coincident points. A point is said to
beregular is grad,(f) # 0. Otherwise it is aingular (or
multiple) point. The set of singular points or singularities is
denoted bying(C). When the poina is regulartheline £
is said to be tangent to the curve C at a.

Proposition 19 The set of singularities sing(C) isfinite.

Proof: A singular pointa is such that: f(a) = 0 and
grad,(f) = 0. Thusiitis located as the intersection of four

distinct curves. Hence there are at most a finite number of

such points. [ ]

Definition 7 Let C be a curve, defined by a polynomial f.
Let p bea point on C. The multiplicity of p is the smallest
m such as there exists (i, j,k) € N* withi +j + k = m
and:

omf

Oixdiydkz () #0

The multiplicity of p is denoted by m(p, C) or simply m(p)
if thereis no ambiguity.

Note thatm(p,C) = 1 if p is a regular point of . Oth-
erwisemn(p,C) > 1. If m(p,C) = 2, the point is called a
double point, if m(p,C) = 3, atriple point, etc. If the point
p is translated to the origin, then the affine part of the curve
is given by the following polynomial:

faffine = fm + fm+1 + ...+ fd,

wheref; is a form of degred andm the multiplicity of p.
Since f,, is a form in two variables, we can write it as a
product of linear factorg,, = []1;*, wherel; are distinct
lines. The lined; are tangent to the curve at the singular
point p. A singular point is said to berdinary if all its
tangents are distinct. An ordinary double point is called a
node.

Definition 8 Given a planar algebraic curve C, the dual
curve is defined in the dual plane, as the set of all lines
tangent to C at simple points. The dual curve is algebraic
and thus can be described as the set of lines (u, v, w), that
are the zeros of a form ¢ (u, v, w) = 0.

Proposition 20 Let C be a curve of degree d, which only
singularities are nodes. The degree of the dual curve D is:

m =d(d — 1) — 2(#nodes),

where (#nodes) is the number of nodes.
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A.2.3 Inflexions pointsand Hessian curves

We will also need to consider the notion of inflexion point:

Definition 9 An inflexion point a of a curve C is a simple
point of it whosetangent intersectsthe curvein at least three
coincident points. This means that the third order term of
the Taylor-Lagrange development of .J(\) must vanish too.

It will be useful to compute the inflexion points. For this
purpose we define the Hessian cui¢€C) of C, which is
given by the determinantal equation:

5% f
| 8zi8xj

=0

It can be proven (see [39]) that the points where a curve
C meets its Hessian cuni(C) are exactly the inflexion
points and the singular points. Since the degref @f) is
3(d — 2), there are3d(d — 2) inflexion and singular points
counting with the corresponding intersection multiplicities
(Bezout’s theorem, see [39]).

A.2.4 Genusand rational curves

The genus of the algebraic curve can be defined in numer-
ous manners. Some definitions are topological, some are
analytic, and some are algebraic. For further details, the
reader should consult [36]. Here it is sufficient to provide a
partial definition of it.

Definition 10 For a planar algebraic curve, which degree
is d and which only singularities are nodes, the genus is
defined as being the following humber:

(d-1)(d-2)

5 — (#nodes),

g:

where #nodes isthe number of nodes.

A.3. Algebraic spatial curves

An algebraic spatial curve is defined as being the intersec-
tion of two or more algebraic surfaces. In a more formal
way, it is defined by a set of homogeneous equations:

Fz(X,Y,Z,T) =0

In the body of this article, this representation is
ferred as the point-based representation. A pétnt=
[X,Y,Z,T]" on the curve is said to be singular
grads (F;) = 0 for all 4.

re-

if:



A.3.1 Dual curve

Let X be an irreducible curve irP3, defined by the
following family of polynomials: {F;};. The dual curve
X* c P3** (where P3* is the dual projective three-
dimensional space) is a surface (see [18]) given by the
polynomial ¥ € C[A, B,C,D]. The computation off
from X is done by the following elimination problem:

Eliminate X,Y, Z, \; fromthe following system:

Fi(X,Y, 7,1) - 0
A
B - EAlgraq:’(Fl(Xa Ya Z7 1)) = 0
c
AX +BY +CZ+D _—

whereP = [X,Y, Z]T. This system simply expresses the
fact the tangent plane to the curve at a pdiktY, Z, 1]
must be a linear combination of the gradients (that is the
normals) of the surfaces defining the curve. The practical
computation is done by an elimination engine, sagliaier
basis engine for instance [5, 12, 13].

The conversion from the dual curve to the original curve
is done by a similar elimination problem since the duality is
an involution, that is the dual curve of the dual curve is the
curve itself. Hence ift € C[A, B, C, D] is the polynomial
defining the dual curv&’* C P3*, the original curveX is
recovered as follows:

Eliminate A, B, C, A from the following system:

YT(A,B,C,1) =0
X
Y | — Agrady(Y(4,B,C,1)) = 0
Z
AX+BY +CZ+T = 0,

wherell = [4, B,C]T.

A.3.2 Curverepresentationin G(1, 3)

It is well known that a line iflP? can be represented by its
Pliicker coordinates as point Bf lying on special quadric,
called the Grassmannian of lines Bf and denoted by
G(1,3) [3, 10, 18]. Therefore we shall denote bya line in
P3 and byf, its Plticker coordinates which makes it a point
of P. We proceed to show that a curvelid can be repre-
sented as a subvariety 6{1, 3) which leads to very useful
applications.

A smooth irreducible curv& which degree ig and em-
bedded irfP? is entirely determined by the set of lines meet-
ing it [18]. We define the following set of lines:

A={LCPILNX %0}

The following facts are well known [18]:
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1. Ais anirreducible subvariety d¥(1, 3).

2. There exists a homogeneous polynomiaivhich de-
gree isd, such that:

Z(T)NG(1,3) = A,
whereZ(T) = {L € P5|(L) = 0}.

3. I'is defined modulo thé—th graded piece of the ideal
definingG(1, 3), that is moduld (G(1, 3)) 4.

4. The dimension of the@—th graded piece of the ho-
mogeneous coordinate ring dk(1,3), that is of
S(G(1,3))q is ford > 2:

d+5 d—2+5
w=(00)-(0580)

5. It is sufficient to pickiV; generic points o\ to find

I modulo(G(1,3))4. Each such poinL yields one
linear equation o'

(L) =0.

Definition 11 Any element of the equivalence class of T is
said to be the Chow polynomial of the curve X .

The previous properties provides us with a way to com-
putel from a set of discrete measurements extracted from
image sequences. However we proceed to show, how one
can recovel” from the usual point based representation of
the curve. Le{ F;} the family of polynomials defining the
curve. The computation df is done as follows:

Eliminate X, Y, Z from the following system:

F(X,Y,Z,1) = 0

~

Lv 0,

=N

whereL = [L1,Ls, L3, Ly, Ls, Lg] € P represents a line
meeting the curve and is the join operator (see [3, 10]).
The join of L and the poinf® = [X,Y, Z, 1]* vanishes to
express the fact th& lies on the line represented lfy

When giverl as a result of the previous elimination, we
shall compute its normal form (to get a canonical represen-
tation ofI") with respect to the equation definifi1, 3):

L1L6 — L2L5 + L3L4 - 0

Given the Chow polynomial, it is easy to obtain the
point-based representation. Uébe the Chow polynomial
of the curve. Follow the following procedure:



1. Pick three generic point§);, @2, @3 on the plane at
infinity (last coordinate zero).

2. Consider a poinP = [X,Y, Z, 1]7 in the affine piece
of P3. The pointP is lying on X if any linear combi-
nation of the three lineéPQ;);=1 2,3 is a zero of the
Chow polynomial. This yield{*!?) equations defin-
ing completely the curvé.
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