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Abstract

We introduce a number of new results in the context of multi-
view geometry from general algebraic curves. We start with
the recovery of camera geometry from matching curves. We
first show how one can compute, without any knowledge
on the camera, the homography induced by a single planar
curve. Then we continue with the derivation of the extended
Kruppa’s equations which are responsible for describing
the epipolar constraint of two projections of a general al-
gebraic curve. As part of the derivation of those constraints
we address the issue of dimension analysis and as a result
establish the minimal number of algebraic curves required
for a solution of the epipolar geometry as a function of their
degree and genus.

We then establish new results on the reconstruction of
general algebraic curves from multiple views. We address
three different representations of curves: (i) the regular
point representation in which we show that the reconstruc-
tion from two views of a curve of degree � admits two so-
lutions, one of degree � and the other of degree ��� � ��.
Moreover using this representation, we address the prob-
lem of homography recovery for planar curves. (ii) dual
space representation (tangents) for which we derive a lower
bound for the number of views necessary for reconstruction
as a function of the curve degree and genus, and (iii) a new
representation (to computer vision) based on the set of lines
meeting the curve which does not require any curve fitting in
image space, for which we also derive lower bounds for the
number of views necessary for reconstruction as a function
of curve degree alone.

�This work is partially supported by the Emmy Noether Institute for
Mathematics and the Minerva Foundation of Germany, by the Excellency
Center of the Israel Science Foundation ”Group Theoretic Methods in the
Study of Algebraic Varieties” and by EAGER (European network in Alge-
braic Geometry).

1. Introduction

A large body of research has been devoted to the problem of
analyzing the 3D structure of the scene from multiple views.
The necessary multi-view theory is by now well understood
when the scene consists of point and line features — a sum-
mary of the past decade of work in this area can be found in
[20, 10] and references to earlier work in [9].

The theory is somewhat fragmented when it comes to
curve features, especially non-planar algebraic curves of
general degree. Given known projection matrices [35, 29,
30] show how to recover the 3D position of a conic section
from two and three views, and [37] show how to recover the
homography matrix of the conic plane, and [16, 41] shows
how to recover a quadric surface from projections of its oc-
cluding conics.

Reconstruction of higher-order curves were addressed
in [26, 25, 4, 33, 34]. In [4] the matching curves are
represented parametrically where the goal is to find a re-
parameterization of each matching curve such that in the
new parameterization the points traced on each curve are
matching points. The optimization is over a discrete pa-
rameterization, thus, for a planar algebraic curve of degree
�, which is represented by����� � �� points, one would
need��� � �� minimal number of parameters to solve for
in a non-linear bundle adjustment machinery — with some
prior knowledge of a good initial guess. In [33, 34] the
reconstruction is done under infinitesimal motion assump-
tion with the computation of spatio-temporal derivatives
that minimize a set of non-linear equations at many different
points along the curve. In [25] only planar algebraic curves
were considered, whereas in [26], the plane of non-planar
algebraic curve 3D reconstruction is addressed.

On the problem of recovering the camera geometry (pro-
jection matrices, epipolar geometry, multi-view tensors)
from matching projections of algebraic curves, the litera-
ture is sparse. [23, 25] show how to recover the fundamental
matrix from matching conics with the result that 4 match-
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ing conics are minimally necessary for a unique solution.
[25] generalize this result to higher order curves, but con-
sider only planar curves and [26] generalizes this result to
non-planar curves.

In this paper we address the general issue of multi-view
geometry of algebraic curves from both angles: (i) recover-
ing camera geometry (fundamental matrix or homography
in the case of planar curve), and (ii) reconstruction of the
curve from its projections across two or more views. Short
versions of this work were published in [25, 26].

The necessary mathematical background is rather broad
and the reader is referred to the Appendix for a formal math-
ematical introduction and to Section 2 for an informal intro-
duction to the main introductory concepts. In Section 3 we
start with the derivation of theextended Kruppa’s equations
which govern the epipolar constraint of two projections of
a general algebraic curve. We first address the case of pla-
nar curves. In that context, we also show how to recover
the homography generated by a single planar curve. Then
we turn our attention to the general case. Furthermore as
part of the derivation of the extended Kruppa’s equations in
the general case, we address the issue of dimension analy-
sis and as a result establish the minimal number of algebraic
curves required for a solution of the epipolar geometry as a
function of their degree and genus.

On the reconstruction front (section 4), we address three
different representations of curves: (i) the regular point rep-
resentation for which we show that two views of a curve
of degree� admit two solutions, one of degree� and the
other of degree��� � �� (moreover, using this representa-
tion, we address the problem of homography matrix recov-
ery for planar curves), (ii) dual space representation (image
measurements are tangent lines) for which we derive a for-
mula for the minimal number of views necessary for recon-
struction as a function of the curve degree and genus, and
(iii) a new representation (with regard to computer vision)
based on the set of lines meeting the curve which does not
require any curve fitting in image space, for which we also
derive formulas for the minimal number of views necessary
for reconstruction as a function of curve degree alone.

For the latter two representations we also address the
problem of recovering a curved trajectory from a moving
camera (as in [38] for conics). We derive formulas which
specify the minimal number of views necessary for recon-
struction as a function of curve degree and/or genus.

Beyond the technical contributions of this paper, our
work paves the way to introducing a more powerful lan-
guage, based on algebraic geometry, for handling curved
objects for which the standard linear projective tools which
have become popular in the computer vision literature be-
come a particular case. The standard tool of projective ge-
ometry allow the consideration of points and lines as fun-
damental features, whereas with the tools of algebraic ge-

ometry one can introduce higher level features with higher
configurational complexity.

2. Informal Mathematical Back-
ground

2.1. Algebraic varieties

The central concept to be used in this paper is the definition
of an affine variety. This is the locus of common zeros of
a family of polynomials. More precisely, consider a fam-
ily of polynomials in� variables. The locus of their com-
mon zeros defines an algebraic variety in the�-dimensional
affine space. When the polynomials are all homogeneous,
this variety can also be regarded as being embedded in the
�� �-dimensional projective space, and is called aprojec-
tive variety.

A variety can be formed as the union of subvarieties, and
when these subvarieties are independent they are called the
components of the variety. The variety is said to beirre-
ducible if it has only one component (the variety itself).

Thedimension of a variety can be defined in several dif-
ferent ways. The topological definition of dimension is the
supremum of the lengths of chains of embedded irreducible
components. However it can been proven that this definition
is equivalent to the intuitive concept of dimension which is
the number of independent parameters necessary to describe
the variety.

2.2. Relation between affine and projective va-
rieties

As mentioned above, an affine varieties is defined by a set
of polynomials equations in� variables. Such a set defines
an affine variety in the��dimensional affine space. On
the other hand to define projective varieties, we need ho-
mogeneous polynomials. Consider a set of homogeneous
polynomials in��� variables. This set defines a projective
variety in the��dimensional projective space. However
one can also consider this set defines an affine variety in
the������dimensional affine space. This latter variety is
called theaffine cone over the former projective variety.

There exists also another relation, of major importance,
between affine and projective varieties. Consider a projec-
tive variety, say�� � ��, defined by homogeneous equa-
tions ������ ���� ����� � �. If the hyperplane at infinity
in �� is defined by���� � �, then variety defined by
������ ���� ��� �� � � is an affine variety, say��, included
in ��dimensional affine space.�� is called theprojective
closure of ��. �� can be regarded as the affine piece of��
and the varieties defined by������ ���� ��� �� � � is made
of the points infinity of��.
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2.3. Complex or real varieties
When dealing with applications, the varieties can also de-
fined by equations with real coefficients. However algebraic
varieties are well behaved when regarded as complex vari-
eties. So we shall consider all of them as varieties defined
by equations with complex coefficients. This allows using
all the power of algebraic geometry. For the computations,
however, after the results is obtained over the complex num-
bers, we eventually consider only the real solutions.

2.4. Algebraic Planar Curves
A curve is a one-dimensional variety. The particular case of
planar and spatial curves is of special interest for us. When
embedded in a projective plane, a curve is the zero locus
of a single homogeneous polynomial in three variables. Let
� be such a polynomial, then� can factored as follows:
� �

�
��, where�� are irreducible polynomials. In this

case, the components of the curve are simply the subcurves
defined by�� � �. In order to avoid multiple components,
we will consider only the case where� is square-free, that
is when�� �� �� for 	 �� 
. Note that when the polynomial�
is irreducible then the curve is an irreducible variety in the
sense defined above.

Thedegree of a planar curve is simply the degree of its
defining polynomial. To better understand the geometric
meaning of this notion, consider a curve� embedded in the
projective plane defined by���� �� �� � �. Let� be a line
generated by two points� and�. A point � � � � 
� on
� is located on the curve if��
� � ��� � 
�� has a root.
Since the degree of� , as function of
, is the degree of� ,
the degree of� is the number of points a general line in the
plane meets the curve.

Now suppose that the point� is on the curve�. Consider
then a first order Taylor expansion of��
�. We get:��
� �
���� � 
�������. Then two cases must be considered. If
����� � �, the point� is called asingular point of the
curve�. Otherwise the point is said to beregular or simple.
We shall say that the line� is tangent to the curve� at� if
� is regular and
 � � is a double root of��
�.

An important concept is the multiplicity of a singularity.
Consider a singular point� of �, then themultiplicity of �
is the smallest integer� such that there exists a triple of
integers�	� 
� �� such that	� 
 � � � � and

���

���������
�� ��

The concept of tangent can be generalized so that a point
of multiplicity � has� tangents. We shall say that a mul-
tiple point is ordinary if all its tangents are distinct. An
ordinary multiple point of multiplicity� is called anode. It
has two distinct tangent.

A planar algebraic curve, say�, has a natural dual object.
The set of tangents to simple points of the curve is also an

algebraic curve embedded in the dual plane. It is called the
dual curve. Hence there exists a polynomial���� �� �� such
that ��� �� �� is a zero of� if it represents the coordinates
of line tangent to� at a simple point. The degree of� and
it dual curve�� are easily related when the only singular
points of� are nodes. In that case the degree of the dual
curve� is:

� � ���� ��� ��	�������

where� is the degree of� and�	������ is the number of
nodes.

Consider once again the function��
� defined above.
When the Taylor expansion of� vanishes up to third order,
the tangent line� intersects the curve� at three coincident
points. In that case, the tangency point is said to be aninflex-
ion point. It turns out that inflexion points can be recovered
with the Hessian curve (see Appendix for further details).

Finally a topological invariant of the curve can be de-
fined. It is called thegenus of the curve. When the only
singularities of the curve are nodes and the degree of the
curve is�, the genus� is given by:

� �
��� ����� ��

�
� �	�������

where�	������ is the number of nodes as defined above.

2.5. Algebraic Spatial Curves
A spatial algebraic curve is the intersection of two or more
algebraic surfaces. We will consider only projective spatial
curves where such a curve is defined by two or more poly-
nomial homogeneous equations:

������� �� � � � ��

As in the case of planar curves, there is a natural concept
of duality. Thedual curve is the set of planes tangent to the
curve at a simple point, that is a point� for which there ex-
ists	, such that������ �� �. It turns out that the dual curve
is also an algebraic variety of the dual three-dimension pro-
jective space,��� (Figure 1). Moreover in general the dual
curve is simply a surface of���. The relation between a
curve and its dual curve is bijective in the sense that a curve
is completely determined by its dual curve. Therefore a spa-
tial algebraic curve can be represented either as the solution
of a family of equation or by its dual curve.

There exists a third and very useful representation of spa-
tial algebraic curves. A line in�� can be regarded as a point
in �� via its Plücker coordinates. If you consider the set of
all lines intersecting a spatial algebraic curve, it turns out to
be an algebraic variety of��, which completely determines
the original curve (Figure 2).

To obtain a more in-depth understanding of this repre-
sentation of varieties, we shall first recall that the Pl¨ucker
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Figure 1:The dual curve is the set of planes tangent to the curve
at simple points.

Figure 2:The set of lines intersecting a spatial curve completely
determines the curve itself.

coordinates of a line satisfies a special quadratic equation,
defining a quadric in��. On the other hand every point of
this quadric can be interpreted as the Pl¨ucker coordinates of
a line embedded in��. Therefore the set of lines of�� is
isomorphic (in any suitable sense) to a quadric in�

�. This
quadric is called the Grassmannian of lines of�� and is de-
noted by� ��� ��.

Consider next an irreducible algebraic curve embedded
in ��. We have mentioned that the set of lines which in-
tersect this curve is an algebraic variety of��. More pre-
cisely, this variety is the intersection of the Grassmannian
� ��� �� with a hypersurface of��. More formally, let�
be the family of hypersurfaces that represent the variety of
lines intersecting the curve in��. All the elements of�
intersect in the same sub-variety over� ��� ��. Therefore
picking any element of� fully determines the variety of
intersecting lines of the curve, which fully determines the
curve itself. We can translate this fact in terms of polyno-
mial equations. Each element of the family� is defined by
a polynomial. All these polynomials are identical modulo
the defining equation of the Grassmannian� ��� ��. Each
of these polynomials is called theChow polynomial of the
curve.

3. Recovering the epipolar geometry
from curve correspondences

Recovering epipolar geometry from curve correspondences
requires the establishment of an algebraic relation between

the two image curves, involving the fundamental matrix.
Hence such an algebraic relation may be regarded as an ex-
tension of Kruppa’s equations. In their original form, these
equations have been introduced to compute the camera-
intrinsic parameters from the projection of the absolute
conic onto the two image planes [31]. However it is ob-
vious that they still hold if one replaces the absolute conic
by any conic that lies on a plane that does not meet any of
the camera centers. In this form they can be used to recover
the epipolar geometry from conic correspondences [23, 25].
Furthermore it is possible to extend them to any planar al-
gebraic curve [25]. Moreover a generalization for arbitrary
algebraic spatial curves is possible and is a step toward the
recovery of epipolar geometry from matching curves [26].

We start by the case of planar curves which is much more
simple than the general case.

We shall use the following notations in this section.�

will denote a spatial curve, either planar or not, whereas the
image curves will be denoted by��� 	 � �� � and defined
by polynomials��� 	 � �� �. The dual image curves� �

� are
defined by the polynomials��. The camera matrices will
always be denoted by��. �� �� and�� are respectively the
fundamental matrix, the first and the second epipole. We
will also need to consider the two following mappings, that
we call in the sequel the epipolar mappings,� 
 �� ��	�
and� 
 �� ��. Both are defined on the first image plane;
� associates a point to its epipolar line in the first image,
while � sends it to its epipolar line in the second image.

3.1. The case of planar curves
The spatial curve� is assumed to be planar and might have
singular points.

3.1.1 Introductory properties

Let 	 be the homography induced by the plane of curve
in space. Given a point� in the first image lying on��,
	�, also denoted ���, must lie in the second image curve
��. Since these curves are irreducible, there exists a simple
relation between��, �� and :



� ��� �� �� ��� ��� �� ��� � 
����� �� �� (1)

Now we proceed to prove some further elementary prop-
erties about two views of a planar curve. Those properties
will be necessary in the sequel. We shall denote by!� the set
of epipolar lines, in image	, tangent to� � at regular points.

Proposition 1 The two sets !� and !� are projectively iso-
morphic. Furthermore the elements of !� and !� are in cor-
respondence through the homography	.

Proof: The line joining�� and�, is tangent to�� at � if

 � � is a double root of the equation:���� � 
��� � �.
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This is equivalent to say that grad�����
��� � �. More-

over if �� �� 	�, grad������
� �� � grad������

�	�� �
d��� ���� Æ d ������ � d��� Æ  ������� � 
d�������� �

grad�����

���.
Therefore the line generated by�� and� is tangent to��

if and only if the line given by�� 	 	� is tangent to��.
Given a line
 
 !�, its corresponding line
� 
 !� is given
by:	�� 
 � 
�. 1

Note that since epipolar lines are transformed in the same
way through any regular homography, the two sets! � and!�
are in fact projectively related by any homography.

Proposition 2 The inflexions (respectively the singulari-
ties) of the two image curves are projectively related by the
homography through the plane of the curve in space.

Proof: The simple relation (1) implies this double property:�
��

	
�
	�

���
	
�
	�

���
	
�
	�

���

�
�� � 	�

�
��

	
�
	�

�	��
	
�
	�

�	��
	
�
	�

�	��

�
��

� 	�
�
	��	��

���� �	� � 	�
�
	��	��

�	���	

�

The first relations implies the conservation of the singulari-
ties by homography, whereas the second relation implies the
conservation of the whole Hessian curve by homography.

Using further derivation, we immediately get:

Proposition 3 The multiplicity and the number of distinct
tangents at a singularity is the same in both images.

3.1.2 Extended Kruppa’s equations

Roughly speaking, the extended Kruppa’s equations state
that the sets of epipolar lines tangent to the curve in each im-
age are projectively related. A similar observation has been
made in [2] for epipolar lines tangent to apparent contours
of objects, but it was used within an optimization scheme.
Here we are looking for closed-form solutions, where no
initial guesses are required. In order to develop such a
closed-form solution for the computation of the epipolar
geometry, we need a more quantitative approach, which is
given by the following theorem:

Theorem 1 For a generic position of the camera centers,
the dual image curves and the epipolar mappings are re-
lated as follows. There exists a non-zero scalar 
 
 � , such
as for all � in the first image plane, the following equality
holds:

�������� � 
�������� (2)

1By duality �� sends the lines of the second image plane into the
lines of the first image plane. Here we have showed that�� induces to
one-to-one correspondence between�� and��.

Proof: First it is clear, by proposition 1, that both sides of
the this equations define the same algebraic set, that is the
union of the tangent lines to�� passing through the first
epipole��. This set has been denoted by!�. Moreover by
propositions 2 and 3 the two dual curves have same degree,
which is a necessary condition for the equation to hold. It is
left to show that each tangent appears with the same multi-
plicity in each side. It is easily checked by a short compu-
tation: �������� � ����� 		�� � ��� ���� 	  ���� ��
�� Æ �
 ������. 2 Then it is sufficient to see that the dual
formulation of equation (1) is given by�� Æ �
 ��� �� ��.

3.1.3 Recovering epipolar geometry from matching
conics

Let�� (respectively��) be the full rank (symmetric) ma-
trix of the conic in the first (respectively second) image. The
equations of the dual curves are����� �� �� � 
���

�
 � �
and����� �� �� � 
���

�
 � � where
 � ��� �� ��� , ��
�

and��
� are the adjoint matrices of�� and�� (see [39]).

Hence the extended Kruppa’s equations reduce in that
case to the classical ones:

����
��

�� �������
������� (3)

From equation (3), one can extract a set, denoted��, of
six equations on�, �� and an auxiliary unknown
. By
eliminating
 it is possible to get five bi-homogeneousequa-
tions on� and��.

Theorem 2 The six equations, ��, are algebraically inde-
pendent.

Proof: Using the following regular isomorphism:
��� ��� 
� ��� ���

���
��
� ������ 
� � �
��� 
�,

where�� �
�
�� and��

� �
�
��
�, the original equations

are mapped into the upper-triangle of
�
 � 
�����.
Given this simplified form, it is possible of compute a
Gröbner basis [5]. Then we can compute the dimension
of the affine variety in the variables�
��� 
�, defined by
these six equations. The dimension is 7, which shows that
the equations are algebraically independent.

Note that the equations�� imply that��� � � (one can
easily deduce it from the equation 33). In order to count
the number of matching conics, in generic positions, that
are necessary and sufficient to recover the epipolar geom-
etry, we eliminate
 from �� and we get a set� that de-
fines a variety� of dimension 7 in a 12-dimensional affine
space, whose points are������. The equations in� are bi-
homogeneous in� and�� and� can also be regarded as a

2Indeed for a regular��� matrix�: ����� � ��������� ���
��. Then since�� is a homogeneous polynomial, the last equality is true
up to the scale factor,�������������.

3It is clear that we have:����
���� � �. For any matrix�, we have:

ker��� � � im���� . In addition,�� is invertible. Hence��� � �.
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variety of dimension 5 into the bi-projective space�����,
where������ lie. Now we project� into ��, by eliminat-
ing �� from the equations, we get a new variety�
 which is
still of dimension 5 and which is contained into the variety
defined by��"��� � �, whose dimension is 74. There-
fore two pairs of matching conics in generic positions define
two varieties isomorphic to�
 which intersect in a three-
dimensional variety (
�
�� � �). A third conic in generic
position will reduce the intersection to a one-dimensional
variety (
 � � � � � �). A fourth conic will reduce the
system to a zero-dimensional variety. These results can be
compiled into the following theorem:

Theorem 3 �Four conics� or �three conics and a point�
or �two conics and three points� or
�one conic and five points�
in generic positions are sufficient to compute the epipolar
geometry.

A similar result has been formulated independently in
[23].

3.1.4 Recovering epipolar geometry from higher order
planar curves

Now we proceed to analysis the case of planar algebraic
curves which degree� � �. Since one cannot get a three-
dimensional reconstruction from a single planar algebraic
curve, a further analysis of the dimension of the set of so-
lutions of the extended Kruppa’s equations, in that case, is
not really relevant. Therefore we concentrate on recover-
ing the epipolar geometry through the computation of the
homography induced by the plane of the curve in space.

We will show next that a single matching pair of planar
curves, which genus� � �(which implies that the degree
� � �), is sufficient for uniquely recovering the homog-
raphy matrix induced by the plane of the curve in space,
whereas two pairs of matching curves (residing on distinct
planes) are sufficient for recovering the fundamental matrix.

From equation (1), we get
	
���
�


 � � equations on the
entries of the homography matrix. Let� the variety in� �

defined by these equations. We give a sufficient conditions
for � to be discrete.

Proposition 4 For � being a finite set, it is sufficient that
� � �.

Proof: The homography matrix must leave the Weierstrass
points ([15, 19]) globally invariant. The number of Weier-
strass point is always finite and is at least�� � �. Then for
� � �, there are enough Weierstrass points to constraint the
homography matrix up to a finite-fold ambiguity.

Hence follows immediately:

4Since it must be contained into the projection to�� of the hypersurface
defined by�������� � �

Theorem 4 Two planar algebraic curves which genus are
greater or equal to � and that are lying on two generic
planes are sufficient to recover the epipolar geometry.

However solving equations (1) requires big machinery
either symbolic or numerical. Moreover the computation of
Weierstrass points, introduced in the proof of the previous
proposition, is quite heavy. Hence we propose a simpler
algorithm that works for a large category of planar curves.
This simpler algorithm is true for non-oversingular curves,
e.g. when a technical condition about the singularities of
the curve holds. A curve of degree�, whose only singular
points are either nodes or cusps, satisfy the Pl¨ucker’s for-
mula (see [43]):

����� �� � 	� �Æ � �#�

where	 is the number of inflexion points,Æ is the number
of nodes, and# is the number of cusps. For our purpose, a
curve is said to benon-oversingular when its only singular-
ities are nodes and cusps and when	�� � �, where� is the
number of all singular points.

Since the inflexion and singular points in both images are
projectively related through the homography matrix (propo-
sition 2), one can compute the homography through the
plane of the curve in space as follows:

1. Compute the Hessian curves in both images.

2. Compute the intersection of the curve with its Hessian
in both images. The output is the set of inflexion and
singular points.

3. Discriminate between inflexion and singular points by
the additional constraint for each singular point�:
grad���� � �.

At first sight, there are	� � �� possible correspondences
between the sets of inflexion and singular points in the two
images. But it is possible to further reduce the combinatory
by separating the points into two categories. The points are
normalized such that the last coordinates is� or �. Then
separate real points from complex points. It is clear that real
points are mapped to real points. Now by genericity (the
plane of the curve in space does not pass through the cam-
era centers), complex points are mapped to complex points.
Indeed consider the point� � �$� %� !� � 	��� Æ� ��, where
! 
 ��� ��. Let � � �&����� be the homography matrix.
Then�� � �&���$ � 	�� � &���% � 	Æ� � &��!� &���$ �
	���&���%�	Æ��&��!� &���$�	���&���%�	Æ��&��!�.
In order�� to be a real point, two algebraic conditions on
the� and� must be satisfied. This cannot hold in general.
Therefore we can conclude that each category of the first
image must be matched with the same category in the sec-
ond image. This should be used to reduce the combinatory.
Then the right solution can be selected as it should be the
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one that makes the system of equations extracted from (1)
the closest to zero or the one that minimizes the Hausdorff
distance (see [22]) between the set of points from the second
image curve and the reprojection of the set of points from
the first image curve into the second image. For better re-
sults, one can compute the Hausdorff distance on inflexion
and singular points separately, within each category.

3.2. The case of non-planar
Here� be a smooth irreducible curve in��, whose degree
is � � �. Since the case of planar curve has been treated
above,� is assumed to be anon-planar curve. Before
defining and proving the extended Kruppa’s equations for
arbitrary curve, we need to establish a number of facts about
the projection of a spatial curve onto a plane by a pinhole
camera.

3.2.1 Single view of a spatial curve

Let � be the camera matrix,� the camera center,� the
retinal plane and� the image curve. Our first concern is
the study of the singularities of the� .

Proposition 5 The curve � will always contain singulari-
ties.

Proof: Singularities correspond to optical rays that meet the
curve� in at least two distinct points or are tangent to X.
Let � ��� �� denote the Grassmannian of lines in��. Con-
sider the subvariety'� of � ��� �� generated by the set of
chords and tangents of� , a chord being a line meeting�
at least twice. Let���� � �����( be the union of lines
that are elements of'� . It is well known that���� is an
irreducible subvariety of�� and that��������� � �, un-
less� is planar, which has been excluded (see [18]). Hence
���� � �� and� 
 ����, that is, at least one chord is
passing through�.

The process of singularity formation with projection is
illustrated in the figure 3. In the proposition below we will
investigate the nature of those singularities.

Proposition 6 For a generic position of the camera center,
the only singularities of � will be nodes.

Proof: This is a well known result. See [21] for further
details.

We define theclass of the planar curve to be the degree
of its dual curve. Let� be the class of� . We prove that�
is constant for a generic position of the camera center.

Proposition 7 For a generic position of �, the class of �
is constant.

Figure 3: A singularity of the image curve corresponds to an
optical ray meeting the curve in space at least twice.

Proof: For each position of� �
 �, we get a particular
curve� or equivalently� �, which is the dual curve of� .
Let � be this family of dual curves parameterized by�.
Then� � ��� � ��. Then it is known that� is flat [21,
18, 8, 7] over an open set of��. Since�� is irreducible, this
open set must be dense. On the other hand, the degree is
constant for a flat family of varieties. Hence the degree of
� � is constant for a generic position of�.

Note that using Proposition 6, it is possible to give a for-
mula for� as a function of the degree� and the genus� of
� . For a generic position of�, � will have same degree
and genus as� . As mentionned above, we have:

� � ���� ��� ��)nodes��

� �
��� ����� ��

�
� �)nodes��

where)nodes denotes the number of nodes of� (note that
this includes complex nodes). Hence the genus, the degree
and the class are related by:

� � ��� �� � ��

3.2.2 Extended Kruppa’s equations

We are ready now to investigate the recovery of the epipo-
lar geometry from matching curves. The major result here
is that theExtended Kruppa’s Equations still hold in the
general case of non-planar algebraic curves.

Theorem 5 Extended Kruppa’s equations
For a generic position of the camera centers with respect
to the curve in space, there exists a non-zero scalar 
, such
that for all points � in the first image, the following equality
holds:

�������� � 
�������� (4)
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Once again observe that if� is a conic and�� and��

the matrices that respectively represent�� and��, the ex-
tended Kruppa’s equations reduce to the classical Kruppa’s
equations, that is:�������

�
������

�� ����
��, where��

� and
��
� are the adjoint matrices of�� and��.
Proving these extended Kruppa’s equations requires the

establishment of these three steps:

1. �� and�� have equal degrees, that is, the image curves
have the sameclass.

2. If !� is the set of epipolar lines tangent to the curve in
image	, then!� and!� must be projectively isomor-
phic.

3. Moreover in each corresponding pair of epipolar lines,
�
� 
�� 
 !�� !�, the multiplicity of
 and
� as points of
the dual curves� �

� and� �
� must be the same.

The first step is obviously necessary for the equation (4)
to hold. It is true, as stated in Proposition 7. As previously,
let � be the common degree of�� and��. The second
point is necessary to prove that both sides of equation (4)
represent the same geometric set, that is here the union of
lines in!�. This point holds thanks to the following lemma:

Lemma 1 The sets of epipolar lines tangent to the image
curve in each image are projectively related.

Proof: This is due to the fact that a pair of corresponding
epipolar lines is the trace in the images of a plane contain-
ing the baseline joining the two camera centers. Hence the
two lines are tangent to the image curves if and only if the
plane they define (which contains the baseline) is tangent
to the curve in space. Therefore the two sets!� and!� are
composed of the traces in the images of the planes contain-
ing the baseline and tangent to the curve in space. Hence
these two sets are projectively related.

Finally we can prove Theorem 5.
Proof: Since each side of equation (4) represents the union
of lines in !�, it can be factorized into linear factors, satis-
fying the following:

������� �� ��� �
�
�

�$���� $��� � $����
��

������� �� ��� �
�
�


��$���� $��� � $����
�� �

where
�

� &� �
�

� *� � �. It is left to prove that for all	,
&� � *�. Observe that&� + �, when the epipolar line is tan-
gent to the image curve in at least two distinct points. Hence
one must prove that the number of tangency points for each
element of!� is the same for its corresponding element in
!�. This number must also be the number of tangency points
of the plane, defined by these two corresponding elements

in !� and!�. Hence this third assertion holds using the same
argument as in Lemma 1.

By eliminating the scalar
 from the extended Kruppa’s
equations (4) we obtain a set of bi-homogeneous equations
in � and��. Hence they define a variety in�� � ��. This
gives rise to an important question. How many of those
equations are algebraically independent, or in other words
what is the dimension of the set of solutions? This is the
issue of the next section.

3.2.3 Dimension of the set of solutions

Let �,���� ����� be the set of bi-homogeneous equations
on� and��, extracted from the extended Kruppa’s equa-
tions (4). Our first concern is to determine whether all so-
lutions of equation (4) are admissible, that is whether they
satisfy the usual constraint��� � �. Indeed we prove the
following statement:

Proposition 8 As long as there are at least 2 distinct lines
through �� tangent to ��, equation (4) implies that rank� �
� and ��� � �.

Proof: The variety defined by�������� is then a union of
at least 2 distinct lines through��. If equation (4) holds,
�������� must define the same variety.

There are 2 cases to exclude: If rank� � �, then the
curve defined by�������� is projectively equivalent to the
curve defined by��, which is� �

� . In particular, it is irre-
ducible.

If rank� - � or rank� � � and��� �� �, then there
is some�, not a multiple of��, such that�� � �. Then
the variety defined by�������� is a union of lines through
�. In neither case can this variety contain two distinct lines
through��, so we must have rank� � � and��� � �.

As a result, in a generic situation every solution of
�,���� ����� is admissible. Let� be the subvariety of
�� � �� � �� defined by the equations�,���� ����� to-
gether with��� � � and���� � �� , where�� is the
second epipole. We next compute the lower bound on the
dimension of� , after which we would be ready for the cal-
culation itself.

Proposition 9 If � is non-empty, the dimension of � is at
least ���.

Proof: Choose any line
 in �
� and restrict�� to the affine

piece�� � 
. Let ��� �� be homogeneous coordinates on
. If
��� � �, the two sides of equation (4) are both unchanged
by replacing� by � � $��. So equation (4) will hold for
all � if it holds for all � 
 
. Therefore equation (4) is
equivalent to the equality of 2 homogeneous polynomials
of degree� in � and�, which in turn is equivalent to the
equality of�� � �� coefficients. After eliminating
, we
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have� algebraic conditions on������ ��� in addition to
��� � �, ���� � �� .

The space of all epipolar geometries, that is, solutions
to ��� � �, ���� � �� , is irreducible of dimension 7.
Therefore,� is at least�����-dimensional.

For the calculation of the dimension of� we introduce
some additional notations. Given a triplet������ ��� 

�� � �� � ��, let ��������� (respectively���������) be
the tangency points of the epipolar lines through� � (respec-
tively ��) to the first (respectively second) image curve. Let
������ ��� be the 3d points projected onto��������� and
���������. Let � be the baseline joining the two camera
centers. We next provide a sufficient condition for� to be
discrete.

Proposition 10 For a generic position of the camera cen-
ters, the variety � will be discrete if, for any point
������ ��� 
 � , the union of � and the points ������ ���
is not contained in any quadric surface.

Proof: For generic camera positions, there will be� dis-
tinct points��������� and���������, and we can regard
���, ��� locally as smooth functions of��, ��.

We let. be the affine variety in� ��� ��� � defined by
the same equations as� . Let� � ������ ��� be a point of
. corresponding to a non-isolated point of� . Then there
is a tangent vector/ � �������� to . at� with � not a
multiple of�.

If 0 is a function on. , �����0� will denote the deriva-
tive of0 in the direction defined by/ at�. For

0������� ��� � �������
����������

the extended Kruppa’s equations imply that0� vanishes
identically on. , so its derivative must also vanish. This
yields

�����0�� � �����������
�����

� �������� � ����������������

� ��

(5)

We shall prove that��������� is in the linear span of���
and��. (This means that when the epipole moves slightly,
��� moves along the epipolar line, see figure 4.)

Consider#�"� � �������� � "���, where� is the poly-
nomial defining the image curve��. Since������ � "�� 

��, # � �, so the derivative#���� � �. On the other hand,
#���� � ������������ � grad������

����������.
Thus we have grad������

���������� � �. But also
grad������

���� � � and grad������
� �� � �. Since

grad������ �� � (��� is not a singular point of the curve),
this shows that���������, ���, and�� are linearly depen-
dent. ��� and�� are linearly independent, so���������
must be in their linear span.

Figure 4:The point������� is a smooth function of��. When
�� moves slightly,������� moves along the epipolar line.

We have that������� � �������� � �, so
�������������� � �: the third term of equation (5) van-
ishes. In a similar way, the first term of equation (5) van-
ishes, leaving

�������� � ��

The derivative of0������ ��� � ��� must also vanish,
which yields:

��
���� � ��

From the first equality, we deduce that for every��, we
have:

��
��

�
� ����� � ��

From the second equality, we deduce that every point�

lying on the baseline must satisfy:

����
� ���� � ��

The fact that� is not a multiple of � implies that
��

� ��� �� �, so together these two last equations mean
that the union� � ���� lies on a quadric surface. Thus if
there is no such quadric surface, every point in� must be
isolated.

Observe that this result is consistent with the previous
proposition, since there always exist a quadric surface con-
taining a given line and six given points. However in gen-
eral there is no quadric containing a given line and seven
given points. Therefore we can conclude with the following
theorem.

Theorem 6 For a generic position of the camera centers,
the extended Kruppa’s equations define the epipolar geom-
etry up to a finite-fold ambiguity if and only if � � �.

Since different curves in generic position give rise to in-
dependent equations, this result means that the sum of the
classes of the image curves must be at least� for � to be a
finite set. Observe that this result is consistent with the fact
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that four conics (� � � for each conic) in general position
are sufficient to compute the fundamental matrix, as shown
in [23, 25]. Now we proceed to translate the result in terms
of the geometric properties of� directly using the degree
and the genus of� , related to� by the following relation:
� � �������. Here are some examples for sets of curves
that allow the recovery of the fundamental matrix:

1. Four conics (� � �� � � �)in general position.

2. Two rational cubics (� � �� � � �) in general position.

3. A rational cubic and two conics in general position.

4. Two elliptic cubics (� � �� � � �) in general position
(see also [25]).

5. A general rational quartic (� � �� � � �), and a gen-
eral elliptic quartic (� � �� � � �).

4. 3D Reconstruction
We turn our attention to the problem of reconstructing an
algebraic curve from two or more views, given known cam-
era matrices (epipolar geometries are known). The basic
idea is to intersect together the cones defined by the camera
centers and the image curves. However this intersection can
be computed in three different spaces, giving rise to differ-
ent algorithms and applications. Given the representation in
one of those spaces, it is possible to compute the two other
representations [24].

We shall mention that in [14] a scheme is proposed to re-
construct an algebraic curve from a single view by blowing-
up the projection. This approach results in a spatial curve
defined up to an unknown projective transformation. In fact
the only computation this reconstruction allows is the recov-
ery of the projective properties of the curve. Moreover this
reconstruction is valid for irreducible curves only. However
reconstructing from two projections not only gives the pro-
jective properties of the curve, but also the relative depth of
it with respect to others objects in the scene and furthermore
the relative position between irreducible components.

4.1. Homography recovery for planar curve
We begin by restricting our attention to planar curves. We
proceed to the recovery of the homography matrix induced
by the plane of the curve in space. This approach reduces
the reconstruction problem to finding the roots of a uni-
variate polynomial. Let��� 	 � �� � be the first and second
epipole. Let� be any homography, which can be extracted
from the epipolar geometry by� � ������, where����� is
the matrix representing the cross-product by��. Then the
homography through the plane of the curve in space can be
written as:	 � �����

� (see [40, 28]). We define1 to be

such that:	�� � 1��. 5 As seen in equation (1), the two
image curves and the homography	 are related as follows:



���� ����� � 
���	��

This implies:


grad����� � 	�grad�������

for any� in the first image. Let�� � grad������� 	 � �� �.
Thus the previous expression, applied to��, can be re-
written as follows:


�� � 1������ � ���� ����

We define% to be % � ��� �� � ������� and 2 to be
2 � �

���� . Hence� � �
�
�2�� � �����. Thus	 �

�� �
�
���2�

�
� � ���� � ��� �

�
���

�
� ���

�
�
���

�
� . Substi-

tuting this expression of	 into equation (1) yields:


����� � ������
�

%
���

�
� ����

2

%
���

�
� ���

Then after elimination of
, we get a set of
	
���
�


 � �
equations of degree� in 2. Hence the problem is equiva-
lent to find the common solutions to this set of equations.
This can be achieved by picking one equation, solving it
and keeping only solutions that are solutions of the whole
system.

Now we turn back our attention to the general case. We
shall investigate three different types of representation, each
leading to a particular reconstruction algorithm.

4.2. Reconstruction in Point Space
4.2.1 The general case

Let the camera projection matrices be����� and ��� ���,
where� � � 	��
�

������, see [28]. Hence the two cones de-
fined by the image curves and the camera centers are given
by: ����� � ���������� and����� � ������ �����.
The reconstruction is defined as the curve whose equations
are�� � � and�� � �. It is clear that the original
space curves is contained within the intersection on these
two viewing cones. However since each cone has degree
� (the same than the space curve), by Bezout theorem, the
intersection must have degree��. This implies that the in-
tersection contains more than just the original space curve.
It turns out, by the following theorem, that this intersection
contains, in general, only two irreducible components (sep-
arated curves). One has degree� and the other has degree
��� � ��. Therefore if� � �, since the original space has

5Note that it is not possible to normalize� such that��� � ��, be-
cause� is given as a function of	 by� � 	���
� , which constraints
its norm.
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degree�, we can extract the right component which is the
answer of the reconstruction problem. When� � � (the
curve is a conic), however, the reconstruction problem ad-
mits two solutions, which are both conics, and a third view
is necessary to select the right conic.

Theorem 7 For a generic position of the camera centers,
that is when no epipolar plane is tangent twice to the curve
� , the curve defined by ��� � ���� � �� has two ir-
reducible components. One has degree � and is the actual
solution of the reconstruction. The other one has degree
���� ��.

Proof: For a line
 � ��, we write3�
� for the pencil of
planes containing
. For a point� 
 ��, we write3���
for the pencil of lines through�. There is a natural iso-
morphism between3����, the epipolar lines in image	, and
3���, the planes containing both camera centers. Consider
the following covers of��:

1. �
��� 3��� �� ��, taking a point� 
 � to the epipo-

lar plane that it defines with the camera centers.

2. ��
���� 3���� �� 3��� �� ��, taking a point� 
 �� to

its epipolar line in the first image.

3. ��
���� 3���� �� 3��� �� �

�, taking a point� 
 �� to
its epipolar line in the second image.

If 4� is the projection� � ��, then2 � 2�4�. Let � the
union set of branch points of2� and2�. It is clear that the
branch points of2 are included in�. Let ' � �� � �,
pick " 
 ', and write�� � 2���'�, �
 � 2���"�. Let
1��

be the monodromy:5��'� "� �� Perm��
�, where
Perm��� is the group of permutations of a finite set�. It
is well known that the path-connected components of� are
in one-to-one correspondence with the orbits of the action
of im�1��

� on�
. Since� is assumed to be irreducible,
it has only one component and im�1��

� acts transitively
on�
. Then if im�1��

� is generated by transpositions, this
will imply that im�1��

� � Perm��
�. In order to show that
im�1��

� is actually generated by transpositions, consider a
loop in�� centered at", say6
. If 6
 does not go round any
branch point, then6
 is homotopic to the constant path in'
and then1��

��6
�� � �. Now in�, there are three types of
branch points:

1. branch points that come from nodes of��: these are
not branch points of2,

2. branch points that come from nodes of��: these are
not branch points of2,

3. branch points that come from epipolar lines tangent ei-
ther to�� or to��: these are genuine branch points of
2.

If the loop 6
 goes round a point of the first two types,
then it is still true that1��

��6
�� � �. Now suppose that
6
 goes round a genuine branch point of2, say* (and goes
round no other points in�). By genericity,* is a simple two-
fold branch point, hence1��

��6
�� is a transposition. This
shows that im�1��

� is actually generated by transpositions
and so im�1��

� � Perm��
�.
Now consider�� , the curve defined by��� � ���� �

��. By Bezout’s Theorem�� has degree��. Let �� 
 ��. It is
projected onto a point�� in ��, such that2����� � 2�����.
Hence �� �� �� ��� ��; restricting to the inverse image
of the set', we have ���

�� �� �� �� . We can there-
fore identify ��
 with �
 � �
. The monodromy1 ���

can
then be given by1 ���

��� �� � �1��
���� 1��

����. Since
im�1��

� � Perm��
�, the action of im�1 ���
� on�
 ��


has two orbits, namely���� ��� �� �
 and���� ���� �� ��.
Hence �� has two irreducible components. One has degree
� and is� , the other has degree�� � � � ���� ��.

Solving the system defined by����� � � and����� �
� can be done by Gr¨obner basis computation. Then as men-
tioned above, for� � �, the actual solution can be extracted.
However the case of planar curves can be treated more eas-
ily.

4.2.2 The case of planar curves

An explicit elimination can be done to get a system on the
plane parameters only, which can be useful to refine the so-
lution of the homography found in section 4.1. Let	 be the
plane of curve in space, defined by the equation ��� � �.

Theorem 8 The plane equation  ��� � � satisfies the fol-
lowing constraint. There exists a scalar � and a polynomial
7, such that:

7 �  � �� � ���.

Proof: �� and�� can be regarded as regular functions on
the plane. Since they are irreducible polynomials and van-
ish on the plane on the same irreducible curve and nowhere
else, they must be equal up to a scalar in the coordinate ring
of the plane, e.g. they are equal up to a scalar modulo .

Let ��� � $���%�� �����Æ�� , where� �
����� �� � �� . The theorem 8 provides� �

	
���
�



equa-

tions on�� $� %� �� Æ� �7���������, where�7��� are the coef-
ficients of7. Now we proceed to show an explicit way to
perform the elimination of the auxiliary unknowns:�� �7 ��.
Let' be the surface, whose equation is� � ������ � �.
The points� that lie on the plane	 are characterized by the
fact that when regarded as points of', their tangent planes
are exactly	. This is expressed by the following system of
equations:
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���
���

 ��� � �
�% 	�

	�
� $ 	�

	�
���� � �

�� 	�
	�

� $ 	�
	�

���� � �
�Æ 	�

	�
� $ 	�

	�
���� � �

.

.
On the other hand, on the plane���� � ����� �

������ � �. Therefore� � �
����

����

for any� on the
plane that is not located on the curve itself. Therefore we
get the following system:


���
���

 ��� � �

�%���
	
�

	�
���

	
�

	�
�� $����

	
�

	�
���

	
�

	�
����� � �

�����
	
�

	�
���

	
�

	�
�� $����

	
�

	�
���

	
�

	�
����� � �

�Æ���
	
�

	�
���

	
�

	�
�� $����

	
�

	�
���

	
�

	�
����� � �

Since the plane we are looking for does not pass through
the point��� �� �� ��� which is the first camera center,Æ can
be normalized to 1. Thus for a point� on the plane, we
have: � � ��$� � %� � ���. By substituting this
expression of� into the previous system, we get a new
system that vanishes over all values of����� ��. There-
fore its coefficients must be zero. This provides us with a
large set of equations on�$� %� ��, that can be used to refine
the solution obtained by the homography based approach.
Moreover once the plane is computed, its intersection with
one of the image cones can be computed, the outcome be-
ing the equation of the curve on the plane. For that pur-
pose, one has to eliminate� between the two equations:
$� � %� � �� � � � � and������� � �. When a
projective calibration only is known, then the first camera
matrix is �����. Thus this yields immediately the equation
of the curve on	.

4.3. Reconstruction in the Dual Space
As above, let� be the curve in space, that we want to re-
construct. Let�� be the dual variety of� , that is, the set
of planes tangent to� . Since� is supposed not to be a
line, the dual variety� � must be a hypersurface of the dual
space [18]. Hence let� be a minimal degree polynomial
that represents��. Our first concern is to determine the
degree of�.

Proposition 11 The degree of � is �, that is, the common
degree of the dual image curves.

Proof: Since�� is a hypersurface of���, its degree is the
number of points where a generic line in��� meets��.
By duality it is the number of planes in a generic pencil
that are tangent to� . Hence it is the degree of the dual
image curve. Another way to express the same fact is the
observation that the dual image curve is the intersection of
�� with a generic plane in���. Note that this provides a

new proof that the degree of the dual image curve is constant
for a generic position of the camera center.

The reconstruction problem can be regarded in two dif-
ferent ways leading to two different applications. In the first
approach, we get an algorithm to reconstruct a curve from
a set of views, while in the second approach we show how
to recover an arbitrary trajectory of a moving point from a
moving camera.

For the reconstruction of� � from multiple view, we will
need to consider the mapping from a line
 of the image
plane to the plane that it defines with the camera center. Let
1 
 
 �� �� 
 denote this mapping [11]. There exists a
link involving�, 1 and�, the polynomial of the dual image
curve:��1�
�� � � whenever��
� � �. Since these two
polynomials have the same degree (because1 is linear) and
� is irreducible, there exist a scalar
 such that

��1�
�� � 
��
��

for all lines
 
 ���. Eliminating
, we get����������
� � �

linear equations on�. Since the number of coefficients in
� is ���������������

� , we can state the following result:

Proposition 12 The reconstruction in the dual space can
be done linearly using at least � � ��������

������ views.

Proof: The least number of views must satisfy
�� ����������

� � �� � ���������������
� � �.

The lower bounds on the number of views� for few ex-
amples are given below:

1. for a conic locus,� � �,

2. for a rational cubic,� � �,

3. for an elliptic cubic,� � �,

4. for a rational quartic,� � �,

5. for a elliptic quartic,� � �.

Moreover it is worth noting that the fitting of the dual
image curve is not necessary. It is sufficient to extract
tangents to the image curves at distinct points. Each tangent

 contributes to one linear equation on�: ��1�
�� � �.
However one cannot obtain more than����������

� � �
linearly independent equations per view.

Consider next a single moving camera viewing a moving
point. Assume that at a time", only the tangent of the trajec-
tory is extracted from the image. As mentioned previously,
each such tangent
 yields a linear constraint on�.

Proposition 13 The reconstruction of the trajectory of a
moving point can be done by tangential measurements from
a moving camera using at least � � ���������������

� � �
images.
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Note that in the case of conics were presented in [38].
Here we summarize the minimal value of� in few cases:

1. for a moving point on a conic locus,� � �,

2. for a moving point on a rational cubic,� � ��,

3. for a moving point on an elliptic cubic,� � ��,

4. for a moving point on a rational quartic,� � ��.

4.4. Reconstruction in � ��� ��

The spatial curve� admits� as a Chow polynomial. Let�
be the common degree of� and�. Let� be the polynomial
defining the image curve,� . Consider the mapping that as-
sociates to an image point its optical ray:8 
 � �� ���,
where�� is a� � � matrix, which entries are polynomials
functions of� [11]. Hence the polynomial��8���� van-
ishes whenever���� does. Since they have same degree
and� is irreducible, there exists a scalar
 such as for every
point� 
 ��, we have:

��8���� � 
�����

This yields
	
���
�


� � linear equations on�.
Hence a similar statement to that in Proposition 12 can

be made:

Proposition 14 The reconstruction in � ��� �� can be done
linearly using at least � � �

�
�����������

�
views.

For some examples, below are the minimal number of views
for a linear reconstruction of the curve in� ��� ��:

1. for a conic locus,� � �,

2. for a cubic,� � �,

3. for a quartic,� � �.

As in the case of reconstruction in the dual space, it
is not necessary to explicitly compute� . It is enough to
pick points on the image curve. Each point yields a linear
equation on�: ��8���� � �. However for each view, one
cannot extract more than���

� � �
�� independent linear

equations.

Consider next a single moving camera viewing a moving
point. As mentioned previously, each point contributes one
linear equations on�. Hence the following result follows.

Proposition 15 The recovery of the trajectory of a moving
point by point based measurements from a single moving
camera can be done linearly using at least � � �

���
� �

�
��

� � ��
���

� � �
��� � such measurements.

The lower bounds on� for few examples:

Figure 5:The two images of a cubic curve.

1. for a moving point on a conic locus,� � ��,

2. for a moving point on a cubic,� � 
�,

3. for a moving point on a quartic,� � ��
.

5. Experiments
5.1. Experiments on real images
5.1.1 Homography recovery from a single planar curve

by point extraction

In the first experiment, we consider the problem of recover-
ing the homography matrix induced by a planar cubic across
two images (see Figure 5) using the method described in
3.1.4 (i.e. without prior knowledge of the epipolar geome-
try). The cubic equations of the image curves were recov-
ered by least-squares fitting. The recovered homography
was then used to re-project the curve from one image onto
the other. The reprojection error was at subpixel values (see
Figure 6).

5.1.2 Recovering homography from planar curves cor-
respondences

Given two images of the same curve of order� (see Fig-
ure 7) and the epipolar geometry, we start by computing the
plane and the homography matrix, using the algebraic ap-
proach described in 4.1. In order to refine the solution we
place it into the final system, obtained at the end of 4.2.2 and
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Figure 6: The reprojected curve is overlaid on the second im-
age cubic. The bottom display shows an enlarged section of the
curve and the overlaid reprojected curve — the error is at subpixel
values.

Figure 7: The curves of order� as an input of the recon-
struction algorithm.

then use a local optimization algorithm. To demonstrate the
accuracy of the algorithm, the reprojection of the curve in
the second image is shown in the figure 8. The 3D rendering
of the correct solution is shown 9.

Finally, the equation of the correct solution on its plane
is given by:
���� �� �� � �������	�
���	
�

��������	
�
����
�
 � 
�
������	��	�
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The curve is drawn on figure 10.

5.1.3 Epipolar geometry from points and conic corre-
spondences

We proceeded to the recovery of the epipolar geometry from
conics and points correspondences extracted from real im-
ages. The extraction has been done manually and the conics
were fitted by classical least square optimization.

The recovery of the epipolar geometry has been done us-
ing four conics and 1 point. First the fundamental matrix is
computed using three conics and 1 point, which leads to a fi-
nite number of solutions (see theorem 3). The computation
is too intense for the standard computer algebra packages.
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Figure 8: Reprojection of the curve onto the second image.
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Figure 9: The curve of order� as an output of the recon-
struction algorithm.
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Figure 10: The original curve.

Figure 11: The two images that were used. The epipoles
and the corresponding epipolar lines tangents to the conics
are drawn on the images.

We have found thatFast Gb 6, a powerful software tool
for Gröbner basis computation, introduced by J.C. Faugere
[12, 13] is one of the few packages that can handle this kind
of computation. Then the additional conic is used to select
the right solution.

The images used for the experiments together with re-
sults and comments are presented in figure 11

5.1.4 3D reconstruction using the Grassmannian
� ��� ��

For the next experiment, we consider seven images of an
electric wire — one of the views is shown in figure 12 and
the image curve after segmentation and thinning is shown
in figure 13. Hence for each of the images, we extracted a
set of points lying on the thread. No fitting is performed in
the image space. For each image, the camera matrix is cal-
culated using the calibration pattern. Then we proceeded to
compute the Chow polynomial� of the curve in space. The
curve� has degree�. Once� is computed, a reprojection
is easily performed, as shown in figure 14.

6Logiciel conçu et réalisé au laboratoire LIP6 de l’universit´e Pierre et
Marie CURIE.
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Figure 12: An electric thread.

Figure 13: An electric thread after segmentation and thin-
ning.

5.2. Experiments on synthetic data
5.2.1 Recovering epipolar geometry from conics corre-

spondences

We compute the fundamental matrix from 3 conics and 2
points in a synthetic experiment. Once again the computa-
tion were made byFGb. The conics in the first image are:

����� �� �� � �� � �� � ���

����� �� �� � ��� � �� � �� ��

����� �� �� � ���� ���� ��� ��	 �� � � ����	 � � �� �

The conics in the second image are:
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Given just the constraints deduced from the conics, the
system defines, as expected, a one-dimensional variety in
�� � ��. When just one point is introduced, we get a zero-
dimensional variety, whose degree is
��. When two points

Figure 14: Reprojection on a new image.

are introduced, the system reduces to the following:
�����
�����

� ��� �� � � ��� �� � � ��� �� � � ��� �� � � ��� �� � �
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Then it is easy to get the right answer for the fundamental
matrix:

�
������
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� �
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� �

�
������

5.2.2 Recovering epipolar geometry from spatial
curves correspondences

We proceed to the computation of the epipolar geometry
from a rational cubic and two conics. The curves are ran-
domly chosen, as well as the camera.

Hence the cubic is defined by the following system:
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The first and the second conic are respectively defined
by:
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Figure 15: A spatial quartic
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The camera matrices are given by:
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Then we form the Extended Kruppa’s Equations for each
curve. From a computational point of view, it is crucial
to enforce the constraint that each
 is different from zero.
Mathematically this means that the computation is done in
the localization with respect to each
.

As expected, we get a zero-dimension variety which de-
gree is one. Thus there is a single solution to the epipolar
geometry given by the following fundamental matrix:

� �
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5.2.3 Reconstruction of spatial curves

We start with a synthetic experiment followed later by a real
image one. Consider the curve� , drawn in figure 15, de-
fined by the following equations:

����� �� �� "� � �� � �� � "�

����� �� �� "� � �"� �� � ��"��

The curve� is smooth and irreducible, and has degree�

and genus�. We define two camera matrices:

�� �

�
� � � � 
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�
�
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�
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� � � ���

�
�

The reconstruction of the curve from the two projections
has been made in the point space, usingFGb 7, a power-
ful software tool for Gr¨obner basis computation [12, 13].
As expected there are two irreducible components. One has
degree� and is the original curve, while the second has de-
gree��.

6. Summary and Discussion
In this paper we have focused on general algebraic curves
as the building blocks from which the camera geometries
are to be recovered and as the scene building blocks for the
purpose of reconstruction from multiple views. The new
results derived in this paper include:

1. Extended Kruppa’s equations for the recovery of
epipolar geometry from two projections of algebraic
curves.

2. Dimension analysis for the minimal number of alge-
braic curves required for a solution of the epipolar ge-
ometry.

3. Homography recovery from two views of a general
planar curve, when the epipolar geometry is either
known or not.

4. The reconstruction from two views of an irreducible
curve of degree� is a curve which contains two irre-
ducible components one of degree� and the other of
degree��� � �� — a result that leads to a unique re-
construction of the original curve, for� + �.

5. Formula for the minimal number of views required for
the reconstruction of the dual curve.

6. Formula for the minimal number of views required
for the reconstruction of the curve representation in
� ��� ��.

Most of the algorithms presented in this work lead to
solving a system of polynomial equations. As previously
mentioned, there exist two main approaches to handle this
problem: (i) computing a Gr¨obner basis of the ideal defined
by the equations, (ii) processing in the dual space via the

7Logiciel conçu et réalisé au laboratoire LIP6 de l’universit´e Pierre et
Marie CURIE.
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computation of resultants (see [5, 6] for a detailed presenta-
tion). There exists a third method, known as the homotopy
method, whose field of applications is broader than the res-
olution of polynomial systems [1]. However it is generally
admitted that the symbolic methods, namely those based on
Gröbner basis or resultants, provide better results.

Note that numerical optimization tools like Newton-
Raphson or Levenberg-Marquet optimization are not con-
sidered here because (i) zero-dimensional polynomial sys-
tems which are not overdetermined have more than one root
and these optimization methods are designed to extract a
single solutions, (ii) the convergence to a solution with these
tools is well behaved only when one starts in a small enough
neighborhood of the solution.

The use of symbolic tools (either Gr¨obner basis or resul-
tant) for computer vision applications is not without chal-
lenges. First, symbolic computations require large amounts
of available computational and memory resources. There
is the issue of computational efficiency, scalability to large
problems and the questions of effectiveness in the presence
of measurement errors. The full answer to these questions
is far beyond the scope of this work. The field of symbolic
computations for solving polynomial systems is a very ac-
tive field of research where major progress has been made
in the past decade [6, 17, 42]. For example, throughout
this paper, the experiments were performed with one of the
latest symbolic tools “FastGB” developed by Jean-Charles
Faugere for efficient and robust Gr¨obner basis computation.
With those latest tools, such as FastGB, one can achieve
a high degree of scalability and efficiency in the computa-
tions.

Finally the problem of the sensitivity to noise is related
to perturbation theory. It is necessary to note that since the
computations are symbolic, they do not add any perturba-
tion to the solution. Therefore, as opposed to numerical
methods, there is no additional error due to possible trunca-
tion during the computations. However, there is very little
research on measurement error sensitivity and their prop-
agation throughout the symbolic computations. Such re-
search would be of great interest to the computer vision
community, however, this topic is largely open. Neverthe-
less, a first step in this direction has been done by the intro-
duction of a hybrid of symbolic and numeric computations,
especially for the case of zero-dimensional system (which
is the case of interest in vision) solved by resultant based
methods [42, 32].
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A. Technical background
This section provides a brief introduction to algebraic ge-
ometry, and algebraic curves in particular, necessary for the
overall understanding of our work.

The ground field is assumed to be the field of complex
number. This is important from a theoretical point of view,
since the field of complex number is algebraically closed.
However from a practical point of view, we are interested in
the real locus of all varieties. Therefore all the algorithms
must eventually extract only the real points.

A.1. Algebraic variety
A.1.1 Affine variety

Definition 1 Given a polynomial � in the polynomial ring
� ��� � ����� ���, we say that a point 9 in the ��dimensional
affine space � � , regarded as a ��tuple �9�� ������ 9��, is a
zero of � if � �9 � � �.

Definition 2 An algebraic variety in the affine space � �

is a subset of � � being the common zeros of a family of
polynomial ����:

������� � �9 
 �
� ����9 � � � for all i�
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It is clear that the variety will not be affected if we add
to the family all the combinations:

�
�:���, where all but

a finite number of:� are zeros. Hence a variety of� � is
always defined by the ideal ([27]) generated by its defining
family. We immediately deduce that:

Proposition 16 The union of two varieties is a variety. The
intersection of any family of varieties is a variety. The empty
set and the whole space are varieties.

Then the varieties are the closed sets of a topology called
theZariski topology.

Given an ideal; in � ��� � ���� ���, we shall denote by
��;� the variety it defines. Since the polynomial ring is
noetherian, we get:

Proposition 17 A variety is always defined by a finite set of
equations, namely the generators of the ideal, which defines
the variety.

As each ideal defines a variety, any subset' of � � de-
fines an ideal as follows:

;�'� � �� 
 � ��� � ���� �����9 
 '� � �9 � � ��

There is a relationship between ideals of� ��� � ���� ���
and varieties of� � . The following properties can be
proven:

Proposition 18 1. If '� � '� are two subsets of � � ,
then ;�'�� � ;�'��.

2. If ;� � ;� are two ideals of � ��� � ���� ���, then
��;�� � ��;��.

3. For any two subsets '� and '� of � � , we have: ;�'��
'�� � ;�'�� � ;�'��.

4. For any ideal ; � � ��� � ���� ���, ;���;�� ��
; , the radical of ; , defined by

�
; � �� 


� ��� � ���� ��� � 
7� � � 
 ;�.

5. For any subset ' 
 � � , ��;�'�� � ', the closure of
'.

Note that the fourth point is a direct consequence of the
Hilbert’s Nullstellensatz:

Theorem 9 When the ground field is algebraically closed
(which is the case for complex varieties), the following
holds. Let ; be an ideal of � ��� � ���� ���, and let � 

� ��� � ���� ��� which vanishes at all points of ��;�. Then
� � 
 ; for some integer 7 + �.

We end this very short introduction by defining irre-
ducibity and dimension.

Definition 3 A variety is said to be irreducible, if it can-
not be expressed as the union of two non-empty proper sub-
varieties.

Definition 4 The dimension of a variety � if the supremum
of all integers � such that there exists a chain �� � �� �
���� � �� of distinct irreducible sub-varieties of � .

A.1.2 Projective variety

As we defined an affine variety to be a subset of an affine
space� � , defined by polynomials equations, we shall de-
fine a projective variety to be a subset of a projective space
�� defined by����������� polynomials.

The properties of projective varieties are very similar to
those of affine varieties.

A.2. Algebraic planar curves
A.2.1 Definitions

Definition 5 A polynomial � is said to be square-free if it
cannot be written as a product like: � � �� , where � and
 are non constant polynomials.

Definition 6 A planar algebraic curve � is a subset of
points, whose projective coordinates satisfy an homoge-
neous square-free polynomial equation: ���� �� �� � �.
The degree of � is called the order or degree of �. The curve
is said to be irreducible, when the polynomial � cannot be
divided by a non-constant polynomial.

Note that when two polynomials define the same curve,
they must be equal up to a scalar. For convenience and
shorter formulation, we definea form � 
 � ��� �� �� of de-
gree � to be an homogeneous polynomial in �� �� � of total
degree �.

A.2.2 Tangency and singularities

Let � be a curve of degree� and let� be a given line. We
can represent the line parametrically by taking two fixed
points� and� on it, so that a general point� (except�
itself) on it is given by� � 
�. The intersections of� and
� are the points����, such that the parameters
 satisfy the
equation:

��
� � ��&� � 
*�� &� � 
*�� &� � 
*�� � �

Taking the first-order term of the a Taylor-Lagrange ex-
pansion:

��
� � ���� � 
�	

	�
���*� �

	

	�
���*� �

	

	�
���*��

� ���� � 
grad����
��

� �
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If ���� � �, � is located on the curve. Furthermore let
assume that grad����

�� � �, then the line� and the curve
� meet at� in two coincident points. A point is said to
be regular is grad���� �� �. Otherwise it is asingular (or
multiple) point. The set of singular points or singularities is
denoted by�	�����. When the point� is regular,the line �
is said to be tangent to the curve � at �.

Proposition 19 The set of singularities �	����� is finite.

Proof: A singular point� is such that: ���� � � and
grad���� � � . Thus it is located as the intersection of four
distinct curves. Hence there are at most a finite number of
such points.

Definition 7 Let � be a curve, defined by a polynomial � .
Let � be a point on �. The multiplicity of � is the smallest
� such as there exists �	� 
� �� 
 �� with 	 � 
 � � � �

and:
���

���������
��� �� ��

The multiplicity of � is denoted by ���� �� or simply ����
if there is no ambiguity.

Note that���� �� � � if � is a regular point of�. Oth-
erwise���� �� + �. If ���� �� � �, the point is called a
double point, if ���� �� � �, a triple point, etc. If the point
� is translated to the origin, then the affine part of the curve
is given by the following polynomial:

��

��� � �� � ���� � ���� ���

where�� is a form of degree� and� the multiplicity of�.
Since�� is a form in two variables, we can write it as a
product of linear factors�� �

�
6��� , where6� are distinct

lines. The lines6� are tangent to the curve at the singular
point �. A singular point is said to beordinary if all its
tangents are distinct. An ordinary double point is called a
node.

Definition 8 Given a planar algebraic curve �, the dual
curve is defined in the dual plane, as the set of all lines
tangent to � at simple points. The dual curve is algebraic
and thus can be described as the set of lines ��� �� ��, that
are the zeros of a form ���� �� �� � �.

Proposition 20 Let � be a curve of degree �, which only
singularities are nodes. The degree of the dual curve � is:

� � ��� � ��� ��	�������

where �	������ is the number of nodes.

A.2.3 Inflexions points and Hessian curves

We will also need to consider the notion of inflexion point:

Definition 9 An inflexion point � of a curve � is a simple
point of it whose tangent intersects the curve in at least three
coincident points. This means that the third order term of
the Taylor-Lagrange development of ��
� must vanish too.

It will be useful to compute the inflexion points. For this
purpose we define the Hessian curve���� of �, which is
given by the determinantal equation:

� 	�

	��	��

�� �

It can be proven (see [39]) that the points where a curve
� meets its Hessian curve���� are exactly the inflexion
points and the singular points. Since the degree of���� is
��� � ��, there are���� � �� inflexion and singular points
counting with the corresponding intersection multiplicities
(Bezout’s theorem, see [39]).

A.2.4 Genus and rational curves

The genus of the algebraic curve can be defined in numer-
ous manners. Some definitions are topological, some are
analytic, and some are algebraic. For further details, the
reader should consult [36]. Here it is sufficient to provide a
partial definition of it.

Definition 10 For a planar algebraic curve, which degree
is � and which only singularities are nodes, the genus is
defined as being the following number:

� �
��� ����� ��

�
� �	�������

where 	����� is the number of nodes.

A.3. Algebraic spatial curves

An algebraic spatial curve is defined as being the intersec-
tion of two or more algebraic surfaces. In a more formal
way, it is defined by a set of homogeneous equations:

������� �� � � � �

In the body of this article, this representation is re-
ferred as the point-based representation. A point� �
����� �� � �� on the curve is said to be singular if:
grad����� � � for all 	.

21



A.3.1 Dual curve

Let � be an irreducible curve in��, defined by the
following family of polynomials: �����. The dual curve
�� � ��� (where ��� is the dual projective three-
dimensional space) is a surface (see [18]) given by the
polynomial� 
 � �<�=�>�?�. The computation of�
from� is done by the following elimination problem:

Eliminate ���� �� 
� from the following system:

������� �� �� � ��
� <

=

>

�
���
�grad��������� �� ��� � �

<� �=� � >� �? � ��

where� � ����� ��� . This system simply expresses the
fact the tangent plane to the curve at a point����� �� ��
must be a linear combination of the gradients (that is the
normals) of the surfaces defining the curve. The practical
computation is done by an elimination engine, say Gr¨obner
basis engine for instance [5, 12, 13].

The conversion from the dual curve to the original curve
is done by a similar elimination problem since the duality is
an involution, that is the dual curve of the dual curve is the
curve itself. Hence if� 
 � �<�=�>�?� is the polynomial
defining the dual curve� � � ���, the original curve� is
recovered as follows:

Eliminate <�=�>� 
 from the following system:

��<�=�>� �� � ��
� �

�

�

�
�� 
grad����<�=�>� ��� � �

<� �=� � >� � � � ��

where� � �<�=�>�� .

A.3.2 Curve representation in � ��� ��

It is well known that a line in�� can be represented by its
Plücker coordinates as point of�� lying on special quadric,
called the Grassmannian of lines of�� and denoted by
� ��� �� [3, 10, 18]. Therefore we shall denote by� a line in
�� and by�� its Plücker coordinates which makes it a point
of ��. We proceed to show that a curve in�� can be repre-
sented as a subvariety of� ��� �� which leads to very useful
applications.

A smooth irreducible curve� which degree is� and em-
bedded in�� is entirely determined by the set of lines meet-
ing it [18]. We define the following set of lines:

� � �� � �
��� �� ��  �

The following facts are well known [18]:

1. � is an irreducible subvariety of� ��� ��.

2. There exists a homogeneous polynomial�, which de-
gree is�, such that:

���� � � ��� �� � ��

where���� � ��� 
 �������� � ��.

3. � is defined modulo the��th graded piece of the ideal
defining� ��� ��, that is modulo;�� ��� ���� .

4. The dimension of the��th graded piece of the ho-
mogeneous coordinate ring of� ��� ��, that is of
'�� ��� ���� is for � � �:

@� �

�
�� 


�

�
�
�
�� � � 


�� �

�
�

5. It is sufficient to pick@� generic points on� to find
� modulo;�� ��� ���� . Each such point�� yields one
linear equation on�:

����� � ��

Definition 11 Any element of the equivalence class of � is
said to be the Chow polynomial of the curve � .

The previous properties provides us with a way to com-
pute� from a set of discrete measurements extracted from
image sequences. However we proceed to show, how one
can recover� from the usual point based representation of
the curve. Let���� the family of polynomials defining the
curve. The computation of� is done as follows:

Eliminate ���� � from the following system:

������� �� �� � �

�� !

�
���

�

�

�

�

�
��� � ��

where�� � �(�� (�� (�� (�� (�� (�� 
 �
� represents a line

meeting the curve and! is the join operator (see [3, 10]).
The join of �� and the point� � ����� �� ��� vanishes to
express the fact that� lies on the line represented by��.

When given� as a result of the previous elimination, we
shall compute its normal form (to get a canonical represen-
tation of�) with respect to the equation defining� ��� ��:

(�(� � (�(� � (�(� � �

Given the Chow polynomial, it is easy to obtain the
point-based representation. Let� be the Chow polynomial
of the curve. Follow the following procedure:
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1. Pick three generic points,A�� A�� A� on the plane at
infinity (last coordinate zero).

2. Consider a point9 � ����� �� ��� in the affine piece
of ��. The point9 is lying on� if any linear combi-
nation of the three lines�9A��������� is a zero of the
Chow polynomial. This yields

	
���
�



equations defin-

ing completely the curve� .
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