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Abstract. Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most
widely used techniques in computer vision. Applications range from optical flow and tracking to layered motion,
mosaic construction, and face coding. Numerous algorithms have been proposed and a wide variety of extensions
have been made to the original formulation. We present an overview of image alignment, describing most of the
algorithms and their extensions in a consistent framework. We concentrate on the inverse compositional algorithm,
an efficient algorithm that we recently proposed. We examine which of the extensions to Lucas-Kanade can be used
with the inverse compositional algorithm without any significant loss of efficiency, and which cannot. In this paper,
Part 1 in a series of papers, we cover the quantity approximated, the warp update rule, and the gradient descent
approximation. In future papers, we will cover the choice of the error function, how to allow linear appearance
variation, and how to impose priors on the parameters.
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1. Introduction

Image alignment consists of moving, and possibly de-
forming, a template to minimize the difference between
the template and an image. Since the first use of im-
age alignment in the Lucas-Kanade optical flow al-
gorithm (Lucas and Kanade, 1981), image alignment
has become one of the most widely used techniques
in computer vision. Besides optical flow, some of its
other applications include tracking (Black and Jepson,
1998; Hager and Belhumeur, 1998), parametric and
layered motion estimation (Bergen et al., 1992), mo-
saic construction (Shum and Szeliski, 2000), medical
image registration (Christensen and Johnson, 2001),
and face coding (Baker and Matthews, 2001; Cootes
et al., 1998).

The usual approach to image alignment is gradi-
ent descent. A variety of other numerical algorithms

such as difference decomposition (Gleicher, 1997) and
linear regression (Cootes et al., 1998) have also been
proposed, but gradient descent is the defacto standard.
Gradient descent can be performed in variety of dif-
ferent ways, however. One difference between the var-
ious approaches is whether they estimate an additive
increment to the parameters (the additive approach
(Lucas and Kanade, 1981)), or whether they estimate
an incremental warp that is then composed with the
current estimate of the warp (the compositional ap-
proach (Shum and Szeliski, 2000)). Another difference
is whether the algorithm performs a Gauss-Newton, a
Newton, a steepest-descent, or a Levenberg-Marquardt
approximation in each gradient descent step.

We propose a unifying framework for image align-
ment, describing the various algorithms and their ex-
tensions in a consistent manner. Throughout the frame-
work we concentrate on the inverse compositional
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algorithm, an efficient algorithm that we recently pro-
posed (Baker and Matthews, 2001). We examine which
of the extensions to Lucas-Kanade can be applied to
the inverse compositional algorithm without any sig-
nificant loss of efficiency, and which extensions require
additional computation. Wherever possible we provide
empirical results to illustrate the various algorithms and
their extensions.

In this paper, Part 1 in a series of papers, we be-
gin in Section 2 by reviewing the Lucas-Kanade algo-
rithm. We proceed in Section 3 to analyze the quan-
tity that is approximated by the various image align-
ment algorithms and the warp update rule that is used.
We categorize algorithms as either additive or compo-
sitional, and as either forwards or inverse. We prove
the first order equivalence of the various alternatives,
derive the efficiency of the resulting algorithms, de-
scribe the set of warps that each alternative can be
applied to, and finally empirically compare the algo-
rithms. In Section 4 we describe the various gradient de-
scent approximations that can be used in each iteration,
Gauss-Newton, Newton, diagonal Hessian, Levenberg-
Marquardt, and steepest-descent (Press et al., 1992).
We compare these alternatives both in terms of speed
and in terms of empirical performance. We conclude
in Section 5 with a discussion. In future papers in this
series (which will be made available on our website
http://www.ri.cmu.edu/projects/project 515.html), we
will cover the choice of the error function, how to al-
low linear appearance variation, and how to add priors
on the parameters.

2. Background: Lucas-Kanade

The original image alignment algorithm was the Lucas-
Kanade algorithm (Lucas and Kanade, 1981). The goal
of Lucas-Kanade is to align a template image T (x) to an
input image I (x), where x = (x, y)T is a column vector
containing the pixel coordinates. If the Lucas-Kanade
algorithm is being used to compute optical flow or to
track an image patch from time t = 1 to time t = 2,
the template T (x) is an extracted sub-region (a 5 × 5
window, maybe) of the image at t = 1 and I (x) is the
image at t = 2.

Let W(x; p) denote the parameterized set of allowed
warps, where p = (p1, . . . pn)T is a vector of parame-
ters. The warp W(x; p) takes the pixel x in the coordi-
nate frame of the template T and maps it to the sub-pixel
location W(x; p) in the coordinate frame of the image
I . If we are computing optical flow, for example, the

warps W(x; p) might be the translations:

W(x; p) =
(

x + p1

y + p2

)
(1)

where the vector of parameters p = (p1, p2)T is then
the optical flow. If we are tracking a larger image patch
moving in 3D we may instead consider the set of affine
warps:

W(x; p) =
(

(1 + p1) · x + p3 · y + p5

p2 · x + (1 + p4) · y + p6

)

=
(

1 + p1 p3 p5

p2 1 + p4 p6

)( x
y
1

)
(2)

where there are 6 parameters p = (p1, p2, p3, p4, p5,

p6)T as, for example, was done in Bergen et al. (1992).
(There are other ways to parameterize affine warps.
Later in this framework we will investigate what is
the best way.) In general, the number of parameters n
may be arbitrarily large and W(x; p) can be arbitrar-
ily complex. One example of a complex warp is the
set of piecewise affine warps used in Active Appear-
ance Models (Cootes et al., 1998; Baker and Matthews,
2001) and Active Blobs (Sclaroff and Isidoro, 1998).

2.1. Goal of the Lucas-Kanade Algorithm

The goal of the Lucas-Kanade algorithm is to mini-
mize the sum of squared error between two images,
the template T and the image I warped back onto the
coordinate frame of the template:

∑
x

[I (W(x; p)) − T (x)]2 . (3)

Warping I back to compute I (W(x; p)) requires inter-
polating the image I at the sub-pixel locations W(x; p).
The minimization of the expression in Eq. (3) is per-
formed with respect to p and the sum is performed
over all of the pixels x in the template image T (x).
Minimizing the expression in Eq. (1) is a non-linear
optimization task even if W(x; p) is linear in p because
the pixel values I (x) are, in general, non-linear in x.
In fact, the pixel values I (x) are essentially un-related
to the pixel coordinates x. To optimize the expression
in Eq. (3), the Lucas-Kanade algorithm assumes that
a current estimate of p is known and then iteratively
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solves for increments to the parameters �p; i.e. the
following expression is (approximately) minimized:

∑
x

[I (W(x; p + �p)) − T (x)]2 (4)

with respect to �p, and then the parameters are up-
dated:

p ← p + �p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector �p is below
a threshold ε; i.e. ‖�p‖ ≤ ε.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + �p)) to give:

∑
x

[
I (W(x; p)) + ∇I

∂W
∂p

�p − T (x)

]2

. (6)

In this expression, ∇I = ( ∂ I
∂x , ∂ I

∂y ) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

 ∂Wx

∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn


 . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector �p is below a user specified
threshold ε. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to �p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

�p − T (x)

]
(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

�p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates �p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at
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Figure 2. A schematic overview of the Lucas-Kanade algorithm (Lucas and Kanade, 1981). The image I is warped with the current estimate
of the warp in Step 1 and the result subtracted from the template in Step 2 to yield the error image. The gradient of I is warped in Step 3, the
Jacobian is computed in Step 4, and the two combined in Step 5 to give the steepest descent images. In Step 6 the Hessian is computed from
the steepest descent images. In Step 7 the steepest descent parameter updates are computed by dot producting the error image with the steepest
descent images. In Step 8 the Hessian is inverted and multiplied by the steepest descent parameter updates to get the final parameter updates �p
which are then added to the parameters p in Step 9.

W(x; p) and the Jacobian ∂W
∂p at p, they both in gen-

eral depend on p. For some simple warps such as the
translations in Eq. (1) and the affine warps in Eq. (2)
the Jacobian can sometimes be constant. See for ex-
ample Eq. (8). In general, however, all 9 steps of the
algorithm must be repeated in every iteration because
the estimates of the parameters p vary from iteration to
iteration.

2.3. Requirements on the Set of Warps

The only requirement on the warps W(x; p) is that they
are differentiable with respect to the warp parameters p.
This condition is required to compute the Jacobian ∂W

∂p .
Normally the warps are also (piecewise) differentiable
with respect to x, but even this condition is not strictly
required.
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + �p)) − T (x) ]2 with respect to

�p and then updates the estimates of the parameters in
Step 9 p ← p + �p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑
x

[I (W(W(x; �p); p)) − T (x)]2 (12)

with respect to �p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; �p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; �p) rather than an additive
update to the parameters �p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in �p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; �p) ≡ W(W(x; �p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; �p)

=




(1 + p1) · ((1 + �p1) · x + �p3 · y + �p5)
+ p3 · (�p2 · x + (1 + �p4) · y + �p6)
+ p5

p2 · ((1 + �p1) · x + �p3 · y + �p5)
+ (1 + p4) · (�p2 · x + (1 + �p4) · y
+ �p6) + p6




,

(15)
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i.e. the parameters of W(x; p) ◦ W(x; �p) are:




p1 + �p1 + p1 · �p1 + p3 · �p2

p2 + �p2 + p2 · �p1 + p4 · �p2

p3 + �p3 + p1 · �p3 + p3 · �p4

p4 + �p4 + p2 · �p3 + p4 · �p4

p5 + �p5 + p1 · �p5 + p3 · �p6

p6 + �p6 + p2 · �p5 + p4 · �p6




, (16)

a simple bilinear combination of the parameters of
W(x; p) and W(x; �p).

3.1.2. Derivation of the Compositional Algorithm.
To derive the equivalent of the Lucas-Kanade algo-
rithm in the compositional approach, we apply the first
order Taylor expansion to Eq. (12) to obtain:

∑
x

[
I (W(W(x; 0); p)) + ∇I (W)

∂W
∂p

�p − T (x)

]2

.

(17)

In this expression I (W)(x) denotes the warped image
I (W(x; p)). It is possible to further expand:

∇I (W) ≡ ∂ I (W)

∂x
= ∂ I

∂x
∂W
∂x

= ∇I
∂W
∂x

(18)

but this turns out to be not worth doing because the
warped image I (W) is computed in Step 1 of the Lucas-
Kanade algorithm anyway (see Fig. 1) so its gradient
can easily be used instead.

In order to proceed we make one assumption. We as-
sume that W(x; 0) is the identity warp; i.e. W(x; 0) = x.
If the identity warp is in the set of warps being consid-
ered, we can re-parameterize the warps to ensure that
W(x; 0) = x. We are therefore only really assuming
that the identity warp is in the set being considered.
Assuming W(x; 0) = x, Eq. (17) simplifies to:

∑
x

[
I (W(x; p)) + ∇I (W)

∂W
∂p

�p − T (x)

]2

. (19)

There are then 2 differences between Eqs. (19) and (6),
the equivalent equation in the Lucas-Kanade deriva-
tion. The first difference is that the gradient of I (x)
(evaluated at W(x; p)) is replaced with the gradient of
I (W). These gradients are different. The second differ-
ence is hidden by the concise notation. The Jacobian
∂W
∂p is evaluated at (x; p) in Eq. (6), but it is evaluated

Figure 3. The compositional algorithm used in Shum and Szeliski
(2000) is similar to the Lucas-Kanade algorithm. The only differ-
ences are: (1) the gradient of I (W(x; p)) is used in Step 3 rather
than the gradient of I evaluated at W(x; p), (2) the Jacobian can be
pre-computed because it is evaluated at (x; 0) and so is constant, and
(3) the warp is updated by composing the incremental warp W(x; �p)
with the current estimate in Step 9.

at (x; 0) in Eq. (19) because that is where the Taylor
expansion was performed. The Jacobian is therefore a
constant and can be pre-computed. It is also generally
simpler analytically (Shum and Szeliski, 2000).

The compositional algorithm is therefore almost ex-
actly the same as the additive algorithm (the Lucas-
Kanade algorithm). The only three differences are:
(1) the gradient of I (W(x; p)) should be used in Step 3,
(2) the Jacobian can be pre-computed because it is
evaluated at (x; 0) rather than being re-computed in
each iteration in Step 4, and (3) the warp is updated
W(x; p) ← W(x; p) ◦ W(x; �p) in Step 9. The com-
positional algorithm is summarized in Fig. 3.

3.1.3. Requirements on the Set of Warps. Instead of
simply adding the additive updates �p to the current
estimate of the parameters p as in the Lucas-Kanade al-
gorithm, the incremental update to the warp W(x; �p)
must be composed with the current estimate of the warp
W(x; p) in the compositional algorithm. This operation
typically involves multiplying two matrices to compute
the parameters of the composed warp, as in Eq. (16) for
affine warps. For more complex warps the composi-
tion of the two warps can be more involved (Baker and
Matthews, 2001). We therefore have two requirements
on the set of warps: (1) the set of warps must con-
tain the identity warp and (2) the set of warps must be
closed under composition. The set of warps must there-
fore form a semi-group. This requirement is not very
strong. Most warps used in computer vision, including
homographies and 3D rotations (Shum and Szeliski,
2000), naturally form semi-groups.



Lucas-Kanade 20 Years On: A Unifying Framework 227

Table 2. The computation cost of the compositional algorithm. The one time pre-computation cost of
evaluating the Jacobian in Step 4 is O(n N ). After that, the cost of each iteration is O(n2 N + n3).

Pre-computation
Step 4 Total

O(n N ) O(n N )

Per-iteration
Step 1 Step 2 Step 3 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(N ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n2) O(n2 N + n3)

3.1.4. Computational Cost of the Compositional
Algorithm. The computational cost of the composi-
tional algorithm is almost exactly the same as that of
the Lucas-Kanade algorithm. See Table 2 for a sum-
mary and Baker and Matthhews (2002) for the details.
The only steps that change are Steps 3, 4, and 9. Most
notably, the cost of composing the two warps in Step 9
depends on W but for most warps the cost is O(n2) or
less, including for the affine warps in Eq. (16).

3.1.5. Equivalence of the Additive and Compositional
Algorithms. We now show that the additive and com-
positional approaches are equivalent in the sense that,
to a first order approximation in �p, they take the same
steps in each iteration; i.e. the updates to the warps are
approximately the same. In the additive formulation in
Eq. (6) we minimize:

∑
x

[
I (W(x; p)) + ∇I

∂W
∂p

�p − T (x)

]2

(20)

with respect to �p and then update p ← p + �p. The
corresponding update to the warp is:

W(x; p) ← W(x; p + �p) ≈ W(x; p) + ∂W
∂p

�p

(21)

after a Taylor expansion is made. In the compositional
formulation in Eq. (19) we minimize:

∑
x

[
I (W(x; p) + ∇I (W)

∂W
∂p

�p − T (x)

]2

. (22)

which, using Eq. (18), simplifies to:

∑
x

[
I (W(x; p)) + ∇I

∂W
∂x

∂W
∂p

�p − T (x)

]2

. (23)

In the compositional approach, the update to the warp
is W(x; p) ← W(x; p) ◦ W(x; �p). To simplify this
expression, note that:

W(x; �p) ≈ W(x; 0) + ∂W
∂p

�p = x + ∂W
∂p

�p

(24)

is the first order Taylor expansion of W(x; �p) and that:

W(x; p) ◦ W(x; �p) = W(W(x; �p); p). (25)

Combining these last two equations, and applying the
Taylor expansion again, gives the update in the com-
positional formulation as:

W(x; p) ← W(x; p) + ∂W
∂x

∂W
∂p

�p (26)

to first order in �p. The difference between the addi-
tive formulation in Eqs. (20) and (21), and the com-
positional formulation in Eqs. (23) and (26) is that
∂W
∂p is replaced by ∂W

∂x
∂W
∂p . Equations (20) and (22)

therefore generally result in different estimates for �p.
(Note that in the second of these expressions ∂W

∂p is
evaluated at (x; 0), rather than at (x; p) in the first
expression.)

If the vectors ∂W
∂p in the additive formulation and

∂W
∂x

∂W
∂p in the compositional formulation both span the

same linear space, however, the final updates to the
warp in Eqs. (21) and (26) will be the same to first
order in �p and the two formulations are equivalent
to first order in �p; i.e. the optimal value of ∂W

∂p �p
in Equation (20) will approximately equal the optimal
value of ∂W

∂x
∂W
∂p �p in Eq. (22). From Eq. (21) we see

that the first of these expressions:

∂W
∂p

= ∂W(x; p + �p)

∂�p
(27)
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and from Eq. (26) we see that the second of these ex-
pressions:

∂W
∂x

∂W
∂p

= ∂W(x; p) ◦ W(x; p + �p)

∂�p
. (28)

The vectors ∂W
∂p in the additive formulation and ∂W

∂x
∂W
∂p

in the compositional formulation therefore span the
same linear space, the tangent space of the manifold
W(x; p), if (there is an ε > 0 such that) for any �p
(‖�p‖ ≤ ε) there is a �p′ such that:

W(x; p + �p) = W(x; p) ◦ W(x; p + �p′). (29)

This condition means that the function between �p and
�p′ is defined in both directions. The expressions in
Eq. (27) and (28) therefore span the same linear space.
If the warp is invertible Eq. (29) always holds since
�p′ can be chosen such that:

W(x; p + �p′) = W(x; p)−1 ◦ W(x; p + �p).

(30)

In summary, if the warps are invertible then the two
formulations are equivalent. In Section 3.1.3, above,
we stated that the set of warps must form a semi-group
for the compositional algorithm to be applied. While
this is true, for the compositional algorithm also to be
provably equivalent to the Lucas-Kanade algorithm,
the set of warps must form a group; i.e. every warp
must be invertible.

3.2. Inverse Compositional Image Alignment

As a number of authors have pointed out, there is a huge
computational cost in re-evaluating the Hessian in ev-
ery iteration of the Lucas-Kanade algorithm (Hager and
Belhumeur, 1998; Dellaert and Collins, 1999; Shum
and Szeliski, 2000). If the Hessian were constant it
could be precomputed and then re-used. Each iteration
of the algorithm (see Fig. 1) would then just consist of
an image warp (Step 1), an image difference (Step 2),
a collection of image “dot-products” (Step 7), multi-
plication of the result by the Hessian (Step 8), and the
update to the parameters (Step 9). All of these opera-
tions can be performed at (close to) frame-rate (Dellaert
and Collins, 1999).

Unfortunately the Hessian is a function of p in both
formulations. Although various approximate solutions

can be used (such as only updating the Hessian every
few iterations and approximating the Hessian by as-
suming it is approximately constant across the image
(Shum and Szeliski, 2000)) these approximations are
inelegant and it is often hard to say how good approx-
imations they are. It would be far better if the problem
could be reformulated in an equivalent way, but with a
constant Hessian.

3.2.1. Goal of the Inverse Compositional Algorithm.
The key to efficiency is switching the role of the image
and the template, as in Hager and Belhumeur (1998),
where a change of variables is made to switch or in-
vert the roles of the template and the image. Such a
change of variables can be performed in either the ad-
ditive Hager and Belhumeur (1998) or the composi-
tional approach (Baker and Matthews, 2001). (A re-
stricted version of the inverse compositional algorithm
was proposed for homographies in Dellaert and Collins
(1999). Also, something equivalent to the inverse com-
positional algorithm may have been used in Gleicher
(1997). It is hard to tell. The “difference decompo-
sition” algorithm in La Cascia et al. (2000) uses the
additive approach however.) We first describe the in-
verse compositional approach because it is simpler. To
distinguish the previous algorithms from the new ones,
we will refer to the original algorithms as the forwards
additive (i.e. Lucas-Kanade) and the forwards compo-
sitional algorithm. The corresponding algorithms after
the inversion will be called theinverse additive and in-
verse compositional algorithms.

The proof of equivalence between the forwards com-
positional and inverse compositional algorithms is in
Section 3.2.5. The result is that the inverse composi-
tional algorithm minimizes:

∑
x

[ T (W(x; �p)) − I (W(x; p)) ]2 (31)

with respect to �p (note that the roles of I and T are
reversed) and then updates the warp:

W(x; p) ← W(x; p) ◦ W(x; �p)−1. (32)

The only difference from the update in the forwards
compositional algorithm in Eq. (13) is that the incre-
mental warp W(x; �p) is inverted before it is composed
with the current estimate. For example, the parameters
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of the inverse of the affine warp in Eq. (2) are:

1

(1 + p1) · (1 + p4) − p2 · p3

×




−p1 − p1 · p4 + p2 · p3

−p2

−p3

−p4 − p1 · p4 + p2 · p3

−p5 − p4 · p5 + p3 · p6

−p6 − p1 · p6 + p2 · p5




. (33)

If (1+ p1) · (1+ p4)− p2 · p3 = 0, the affine warp is de-
generate and not invertible. All pixels are mapped onto
a straight line in I . We exclude all such affine warps
from consideration. The set of all such affine warps is
then still closed under composition, as can be seen by
computing (1 + p1) · (1 + p4) − p2 · p3 for the pa-
rameters in Eq. (16). After considerable simplification,
this value becomes [(1 + p1) · (1 + p4) − p2 · p3] ·
[(1 + �p1) · (1 + �p4) − �p2 · �p3] which can only
equal zero if one of the two warps being composed is
degenerate.

3.2.2. Derivation of the Inverse Compositional
Algorithm. Performing a first order Taylor expansion
on Eq. (31) gives:

∑
x

[
T (W(x; 0)) + ∇T

∂W
∂p

�p − I (W(x; p))

]2

.

(34)

Assuming again without loss of generality that W(x; 0)
is the identity warp, the solution to this least-squares
problem is:

�p = H−1
∑

x

[
∇T

∂W
∂p

]T

[I (W(x; p)) − T (x)]

(35)

where H is the Hessian matrix with I replaced by T :

H =
∑

x

[
∇T

∂W
∂p

]T [
∇T

∂W
∂p

]
(36)

and the Jacobian ∂W
∂p is evaluated at (x; 0). Since there is

nothing in the Hessian that depends on p, it is constant
across iterations and can be pre-computed. Steps 3–6 of

Figure 4. The inverse compositional algorithm (Baker and
Matthews, 2001) is derived from the forwards compositional algo-
rithm by inverting the roles of I and T similarly to the approach in
Hager and Belhumeur (1998). All of the computationally demanding
steps are performed once in a pre-computation step. The main algo-
rithm simply consists of image warping (Step 1), image differencing
(Step 2), image dot products (Step 7), multiplication with the inverse
of the Hessian (Step 8), and the update to the warp (Step 9). All of
these steps are efficient O(n N + n3).

the forwards compositional algorithm in Fig. 3 there-
fore need only be performed once as a pre-computation,
rather than once per iteration. The only differences be-
tween the forwards and inverse compositional algo-
rithms (see Figs. 3 and 4) are: (1) the error image is com-
puted after switching the roles of I and T , (2) Steps 3,
5, and 6 use the gradient of T rather than the gradient
of I and can be pre-computed, (3) Eq. (35) is used to
compute �p rather than Eq. (10), and finally (4) the in-
cremental warp is inverted before it is composed with
the current estimate in Step 9.

Note that inversion of the Hessian could be moved
from Step 8 to Step 6. Moreover, the inverse Hessian
can be pre-multiplied by the steepest-descent images.
We have not described these minor improvements in
Fig. 4 so as to present the algorithms in a unified
way.

3.2.3. Requirements on the Set of Warps. Besides the
semi-group requirement of the forwards compositional
algorithm the inverse compositional algorithm also re-
quires that the incremental warp W(x; �p) be inverted
before it is composed with the current estimate. The
inverse compositional algorithm can therefore only be
applied to sets of warps that form a group. Fortunately,
most warps used in computer vision, including homo-
graphies and 3D rotations (Shum and Szeliski, 2000),
do form groups. One notable exception are the piece-
wise affine warps used in Active Appearance Models
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Table 3. The computation cost of the inverse compositional algo-
rithm. The one time pre-computation cost of computing the steepest
descent images and the Hessian in Steps 3-6 is O(n2 N ). After that,
the cost of each iteration is O(n N +n2) a substantial saving over the
Lucas-Kanade and compositional algorithms.

Pre-computation

Step 3 Step 4 Step 5 Step 6 Total

O(N ) O(n N ) O(n N ) O(n2 N ) O(n2 N )

Per iteration

Step 1 Step 2 Step 7 Step 8 Step 9 Total

O(n N ) O(N ) O(n N ) O(n3) O(n2) O(n N + n3)

(AAMs) (Cootes et al., 1998), Active Blobs (Sclaroff
and Isidoro, 1998), and Flexible Appearance Mod-
els (FAMs) (Baker and Matthews, 2001). In Baker
and Matthews (2001) we showed how to extend the
inverse compositional algorithm to piecewise affine
warps. Similar extensions may be applicable to other
non-group sets of warps.

3.2.4. Computational Cost of the Inverse Composi-
tional Algorithm. The inverse compositional algo-
rithm is far more computationally efficient than either
the Lucas-Kanade algorithm or the compositional al-
gorithm. See Table 3 for a summary and (Baker and
Matthews, 2002) for the details. The most time con-
suming step, the computation of the Hessian in Step 6
can be performed once as a pre-computation. (This pre-
computation means that the Hessian and the steepest-
descent images need to be stored. For typical prob-
lems n < 10, N ≈ 100 × 100 the steepest-descent
images easily fit in the processor cache. Moreover, the
steepest-descent images are processed sequentially and
so even for very large problems the computation is
rarely slowed down by memory issues.) The only addi-
tional cost is inverting W(x; �p) and composing it with
W(x; p). These two steps typically require time O(n2),
as for the affine warp in Eqs. (15) and (33). Potentially
these 2 steps could be fairly involved, as in Baker and
Matthews (2001), but the extra computation is almost
always negligible.

3.2.5. Equivalence of the Forwards and Inverse Com-
positional Algorithms. We now show that the inverse
compositional algorithm is equivalent to the forwards
compositional algorithm introduced in Section 3.1.
Since the forwards compositional algorithm was al-
ready shown to be equivalent to the Lucas-Kanade al-
gorithm in Section 3.1.5, it follows that the inverse

compositional algorithm is equivalent to it also. The
proof of equivalence here takes a very different form to
the proof in Section 3.1.5. The first step is to note that
the summations in Eqs. (12) and (31) are discrete ap-
proximations to integrals. Equation (12) is the discrete
version of:∫

T
[ I (W(W(x; �p); p)) − T (x) ]2 dx (37)

where the integration is performed over the tem-
plate T . Setting y = W(x; �p), or equivalently x =
W(y; �p)−1, and changing variables, Eq. (37) be-
comes:∫

W(T )
[I (W(y; p)) − T (W(y; �p)−1)]2

∣∣∣∣∂W−1

∂y

∣∣∣∣ dy

(38)

where the integration is now performed over the im-
age of T under the warp W(x; �p) which we denote:
W(T ) = {W(x; �p) | x ∈ T }. Since W(x; 0) is the
identity warp, it follows that:∣∣∣∣∂W−1

∂y

∣∣∣∣ = 1 + O(�p). (39)

The integration domain W(T ) is equal to T =
{W(x; 0) | x ∈ T } to a zeroth order approximation
also. Since we are ignoring higher order terms in �p,
Eq. (38) simplifies to:∫

T
[T (W(x; �p)−1) − I (W(x; p))]2 dx. (40)

In making this simplification we have assumed that
T (W(y; �p)−1) − I (W(y; p)), or equivalently T (y) −
I (W(y; p)), is O(�p). (This assumption is equiva-
lent to the assumption made in Hager and Belhumeur
(1998) that the current estimate of the parameters is
approximately correct.) The first order terms in the
Jacobian and the area of integration can therefore be
ignored. Equation (40) is the continuous version of
Eq. (31) except that the term W(x; �p) is inverted.
The estimate of �p that is computed by the inverse
compositional algorithm using Eq. (31) therefore gives
an estimate of W(x; �p) that is the inverse of the in-
cremental warp computed by the compositional algo-
rithm using Eq. (12). Since the inverse compositional
algorithm inverts W(x; �p) before composing it with
W(x; p) in Step 9, the two algorithms take the same
steps to first order in �p.
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3.3. Inverse Additive Image Alignment

A natural question which arises at this point is whether
the same trick of changing variables to convert Eq. (37)
into Eq. (38) can be applied in the additive formulation.
The same step can be applied, however the change of
variables takes the form y = W(x; p +�p) rather than
y = W(x; �p). The simplification to the Jacobian in
Eq. (39) therefore cannot be made. The term ∂W−1

∂y has
to be included in an inverse additive algorithm in some
form or other.

3.3.1. Goal of the Inverse Additive Algorithm. An
image alignment algorithm that addresses this diffi-
culty is the Hager-Belhumeur algorithm (Hager and
Belhumeur, 1998). Although the derivation in Hager
and Belhumeur (1998) is slightly different from the
derivation in Section 3.2.5, the Hager-Belhumeur algo-
rithm does fit into our framework as an inverse additive
algorithm. The initial goal of the Hager-Belhumeur al-
gorithm is the same as the Lucas-Kanade algorithm;
i.e. to minimize

∑
x [ I (W(x; p + �p)) − T (x) ]2 with

respect to �p and then update the parameters p ←
p + �p. Rather than changing variables like in
Section 3.2.5, the roles of the template and the image
are switched as follows. First the Taylor expansion is
performed, just as in Section 2.1:

∑
x

[
I (W(x; p)) + ∇I

∂W
∂p

�p − T (x)

]2

. (41)

The template and the image are then switched by de-
riving the relationship between ∇I and ∇T . In Hager
and Belhumeur (1998) it is assumed that the current
estimates of the parameters are approximately correct:
i.e.

I (W(x; p)) ≈ T (x) (42)

This is equivalent to the assumption we made in
Section 3.2.5 that T (W(y; �p)−1) − I (W(y; p)) is
O(�p). Taking partial derivatives with respect to x and
using the chain rule gives:

∇I
∂W
∂x

≈ ∇T . (43)

Inverting ∂W
∂x and substituting Eq. (43) into Eq. (41)

gives:

∑
x

[
I (W(x; p)) + ∇T

(
∂W
∂x

)−1
∂W
∂p

�p − T (x)

]2

.

(44)

To completely change the role of the template and the
image I , we replace �p with −�p. The final goal of
the Hager-Belhumeur algorithm is then to iteratively
solve:

∑
x

[
T (x) + ∇T

(
∂W
∂x

)−1
∂W
∂p

�p − I (W(x; p))

]2

.

(45)

and update the parameters p ← p − �p.

3.3.2. Derivation of the Inverse Additive Algorithm.
It is obviously possible to write down the solution to
Eq. (45) in terms of the Hessian, just like in Section 2.2.
In general, however, the Hessian depends on p through
( ∂W

∂x )−1 and ∂W
∂p . So, in the naive approach, the Hessian

will have to be re-computed in each iteration and the
resulting algorithm will be just as inefficient as the orig-
inal Lucas-Kanade algorithm.

To derive an efficient inverse additive algorithm,
Hager and Belhumeur assumed that the warp W has
a particular form. They assumed that the product of the
two Jacobians can be written as:

(
∂W
∂x

)−1
∂W
∂p

= �(x)�(p) (46)

where �(x) is a 2×k matrix that is just a function of the
template coordinates and �(p) is a k × n matrix that is
just a function of the warp parameters (and where k is
some positive integer.) Not all warps can be written in
this form, but some can; e.g. if W is the affine warp of
Eq. (2):

(
∂W
∂x

)−1

=
(

1 + p1 p3

p2 1 + p4

)−1

= 1

(1 + p1) · (1 + p4) − p2 · p3

×
(

1 + p4 −p3

−p2 1 + p1

)
(47)
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and so:

(
∂W
∂x

)−1
∂W
∂p

= 1

(1 + p1) · (1 + p4) − p2 · p3

×
(

1 + p4 −p3

−p2 1 + p1

)(
x 0 y 0 1 0

0 x 0 y 0 1

)
.

(48)

Since diagonal matrices commute with any other ma-
trix, and since the 2 × 6 matrix ∂W

∂p can be thought of
3 blocks of 2 × 2 matrices, the expression in Eq. (48)
can be re-written as:

1

det

(
x 0 y 0 1 0

0 x 0 y 0 1

)

×




1 + p4 −p3 0 0 0 0

−p2 1 + p1 0 0 0 0

0 0 1 + p4 −p3 0 0

0 0 −p2 1 + p3 0 0

0 0 0 0 1 + p4 −p3

0 0 0 0 −p2 1 + p3




(49)

where det = (1 + p1) · (1 + p4) − p2 · p3. The product
of the two Jacobians has therefore been written in the
form of Eq. (46). Equation (45) can then be re-written
as:

∑
x

[T (x) + ∇T �(x)�(p)�p − I (W(x; p))]2 .

(50)

Equation (50) has the closed form solution:

�p = H−1
∑

x

[∇T �(x)�(p)]T [I (W(x; p)) − T (x)]

(51)
where H is the n × n (first order approximation to the)
Hessian matrix:

H =
∑

x

[∇T �(x)�(p)]T[∇T �(x)�(p)]. (52)

Since �(p) does not depend upon x, the Hessian can
be re-written as:

H = �(p)T

( ∑
x

[∇T �(x)]T [∇T �(x)]

)
�(p)

(53)

Denoting:

H∗ =
∑

x

[∇T �(x)]T [∇T �(x)] (54)

and assuming that �(p) is invertible (Hager and
Belhumeur actually consider a slightly more general
case. The interested reader is referred to Hager and
Belhumeur (1998) for more details.), we have:

H−1 = �(p)−1 H−1
∗ �(p)−T. (55)

Inserting this expression into Eq. (51) and simplifying
yields:

�p = �(p)−1 H−1
∗

×
∑

x

[∇T �(x)]T [I (W(x; p)) − T (x)] .

(56)

Equation (56) can be split into two steps:

�p∗ = H−1
∗

∑
x

[∇T �(x)]T [I (W(x; p)) − T (x)]

(57)
and:

�p = �(p)−1�p∗ (58)

where nothing in the first step depends on the current es-
timate of the warp parameters p. The Hager-Belhumeur
algorithm consists of iterating applying Eq. (57) and
then updating the parameters p ← p − �(p)−1�p∗.
For the affine warp of Eq. (2):

�(p)−1

=




1 + p1 p3 0 0 0 0

p2 1 + p4 0 0 0 0

0 0 1 + p1 p3 0 0

0 0 p2 1 + p4 0 0

0 0 0 0 1 + p1 p3

0 0 0 0 p2 1 + p4




.

(59)

The Hager-Belhumeur inverse additive algorithm is
summarized in Fig. 5. The main differences from the
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Figure 5. The Hager-Belhumeur inverse additive algorithm (Hager
and Belhumeur, 1998) is very similar to the inverse compositional
algorithm in Fig. 4. The two main differences are that � is used
instead of the Jacobian and the warp is updated using �(p) rather
than by inverting the incremental warp and composing it with the
current estimate. Otherwise, the similarly between the two algorithms
is apparent. The computational cost of the two algorithms is almost
exactly identical. The problem with the Hager-Belhumeur algorithm,
however, is that it can only be applied to (the very few) warps for
which the assumption in Eq. (46) holds.

inverse compositional algorithm in Fig. 4 are: (1) in-
stead of evaluating the Jacobian in Step 4 the term �(x)
is evaluated instead, (2) modified steepest descent im-
ages are computed in Step (5), (3) the modified Hessian
H∗ is computed in Step 6, (3) Eq. (57) is used to com-
pute �p∗ in Steps 7 and 8, and finally (4) the warp is
updated p ← p − �(p)−1�p∗ in Step 9 rather than
inverting the incremental warp and composing it with
the current estimate of the warp.

3.3.3. Requirements on the Set of Warps. Besides
being far more complex to derive, the other major disad-
vantage of the Hager-Belhumeur algorithm compared
to the inverse compositional algorithm is that it can
only be applied to a very small set of warps. The prod-
uct of the two Jacobians has to be able to be written
in the form of Eq. (46) for the Hager-Belhumeur algo-
rithm to be used. This requirement is very restrictive.
It is also very hard to say whether the algorithm can
be used with any particular set of warps. In Hager and
Belhumeur (1998) the authors do show that their algo-
rithm can be used with 2D translations, 2D similarity
transformations, 2D affine warps, and a small number
of esoteric non-linear warps. The Hager-Belhumeur al-
gorithm may be applicable to other sets of warps, but
it is impossible to say whether it can be or not without
performing analysis similar to that in Eqs. (47)–(49).
In comparison the inverse compositional algorithm can

Table 4. The computation cost of the Hager-Belhumeur algorithm.
Both the pre-computation cost and the cost per iteration are almost
exactly the same as the inverse compositional algorithm when k = n.

Precomputation

Step 3 Step 4 Step 5 Step 6 Total

O(N ) O(k N ) O(k N ) O(k2 N ) O(k2 N )

Periteration

Step 1 Step 2 Step 7 Step 8 Step 9 Total

O(n N ) O(N ) O(k N ) O(k3) O(k2) O(n N + k N + k3)

be applied to any set of warps which form a group, a
very weak requirement. Almost all warps used in com-
puter vision form groups. Moreover, the inverse com-
positional algorithm can be extended to apply to many
warps that don’t form a group (Baker and Matthews
2001).

3.3.4. Computational Cost of the Inverse Additive
Algorithm. The computational cost of the Hager-
Belhumeur algorithm is similar to that of the inverse
compositional algorithm. In most of the steps, the
cost is a function of k rather than n, but most of the
time k = n in the Hager-Belhumeur algorithm anyway.
When k = n the algorithms take almost exactly the
same time. See Table 4 for a summary and (Baker and
Matthews, 2002) for the details.

3.3.5. Equivalence of the Inverse Additive and Com-
positional Algorithms for Affine Warps. In Sec-
tions 3.1.5 and 3.2.5 we showed that the inverse compo-
sitional algorithm was equivalent to the Lucas-Kanade
algorithm. The Hager-Belhumeur algorithm is also
equivalent to the Lucas-Kanade algorithm in the same
sense. See Hager and Belhumeur (1998) for the details.
The inverse compositional algorithm and the Hager-
Belhumeur algorithm should therefore also take the
same steps to first order in �p. The most interesting
set of warps for which we can validate this equivalence
is the set of 2D affine warps introduced in Eq. (2). The
Hager-Belhumeur algorithm cannot be applied to ho-
mographies and other more interesting sets of warps.

Comparing Eqs. (8) and (49) we see that for the
affine warp �(x) = ∂W

∂p . The only difference therefore
between the Hager-Belhumeur algorithm and the in-
verse compositional algorithm is in Step 9, the update
to the parameters. The update for the Hager-Belhumeur
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algorithm is:

p ← p

−




1 + p1 p3 0 0 0 0

p2 1 + p4 0 0 0 0

0 0 1 + p1 p3 0 0

0 0 p2 1 + p4 0 0

0 0 0 0 1 + p1 p3

0 0 0 0 p2 1 + p4




�p∗

(60)

where �p∗ for the Hager-Belhumeur algorithm equals
�p for the inverse compositional algorithm since
Steps 1–8 of the two algorithms are the same for
affine warps. If W(x; �p) is the incremental warp in
the inverse compositional algorithm the parameters of
W(x; �p)−1 are:

1

(1 + �p1) · (1 + �p4) − �p2 · �p3

×




−�p1 − �p1 · �p4 + �p2 · �p3

−�p2

−�p3

−�p4 − �p1 · �p4 + �p2 · �p3

−�p5 − �p1 · �p5 + �p3 · �p6

−�p6 − �p1 · �p6 + �p2 · �p5




=




−�p1

−�p2

−�p3

−�p4

−�p5

−�p6




(61)

to first order in �p. Substituting this expression
into Eq. (16) shows that the parameters of W(x; p) ◦
W(x; �p)−1 are the same as the parameters on the right
hand side of Eq. (60). The Hager-Belhumeur algorithm
and the inverse compositional algorithm therefore take
the same steps to first order in �p for affine warps,
where both algorithms can be applied. Of course there
are many types of warps, such as homographies and
3D rotations (Shum and Szeliski, 2000), for which the
Hager-Belhumeur algorithm cannot be applied, even
though the inverse compositional algorithm can be
(Baker and Matthews, 2001).

3.4. Empirical Validation

We have proved mathematically that all four image
alignment algorithms take the same steps to first order
in �p, at least on sets of warps where they can all be

used. The following experiments were performed to
validate the equivalence of the four algorithms.

3.4.1. Example Convergence Rates. We experi-
mented with the image I (x) in Fig. 2. We manually
selected a 100 × 100 pixel template T (x) in the center
of the face. We then randomly generated affine warps
W(x; p) in the following manner. We selected 3 canon-
ical points in the template. We used the bottom left cor-
ner (0, 0), the bottom right corner (99, 0), and the cen-
ter top pixel (49, 99) as the canonical points. We then
randomly perturbed these points with additive white
Gaussian noise of a certain variance and fit for the affine
warp parameters p that these 3 perturbed points define.
We then warped I with this affine warp W(x; p) and
run the four image alignment algorithms starting from
the identity warp.

Since the 6 parameters in the affine warp have dif-
ferent units, we use the following error measure rather
than the errors in the parameters. Given the current
estimate of the warp, we compute the destination of
the 3 canonical points and compare them with the cor-
rect locations. We compute the RMS error over the 3
points of the distance between their current and cor-
rect locations. (We prefer this error measure to nor-
malizing the units so the errors in the 6 parameters are
comparable.)

We used a similar experimental procedure for homo-
graphies. The only difference is that we used 4 canon-
ical points at the corners of the template, bottom left
(0, 0), bottom right (99, 0), top left (0, 99), and top
right (99, 99) rather than the 3 canonical points used
for affine warps.

In Fig. 6 we include examples of the algorithms con-
verging. The RMS error in the canonical point locations
is plot against the iteration number. In Fig. 6(a), (c),
and (e) we plot results for affine warps. In Fig. 6(b),
(d), and (f) we plot results for homographies. As can be
seen, the algorithms converge at the same rate validat-
ing their equivalence. The inverse additive algorithm
cannot be used for homographies and so only 3 curves
are shown in Fig. 6(b), (d), and (f). See Appendix A for
the derivation of the inverse compositional algorithm
for the homography.

3.4.2. Average Rates of Convergence. We also com-
puted the average rate of convergence over a large num-
ber (5000) of randomly generated inputs. To avoid the
results being biased by cases where one or more of the
algorithms diverged, we checked that all 4 algorithms
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(a) Example Convergence for an Affine Warp (b) Example Convergence for a Homography

2 4 6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

R
M

S
 P

oi
nt

 E
rr

or

Forwards Additive
Forwards Compositional
Inverse Additive
Inverse Compositional

2 4 6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

R
M

S
 P

oi
nt

 E
rr

or

Forwards Additive
Forwards Compositional
Inverse Compositional

(c) Example Convergence for an Affine Warp (d) Example Convergence for a Homography
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(e) Example Convergence for an Affine Warp (f) Example Convergence for a Homography

Figure 6. Examples of the four algorithms converging. The RMS error in the location of 3 canonical points in the template (4 for the
homographies) is plot against the algorithm iteration number. In all examples the algorithms converge at the same rate validating their equivalence.
Only 3 plots are shown for the homography in (b), (d), and (f) because the inverse additive algorithm cannot be applied to homographies.

converged before including the sample in the average.
We say that an algorithm has diverged in this experi-
ment if the final RMS error in the canonical point loca-
tion is larger than it was in the input. The average rates
of convergence are shown in Fig. 7 where we plot three
curves for three different variances of the noise added to

the canonical point locations. As can be seen, the 4 al-
gorithms (3 for the homography) all converge at almost
exactly the same rate, again validating the equivalence
of the four algorithms. The algorithms all require be-
tween 5 and 15 iterations to converge depending on the
magnitude of the initial error. (Faster convergence can
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(a) Average Convergence Rates for Affine (b) Average Convergence Rates for Homography

Figure 7. The average rates of convergence computed over a large number of randomly generated warps. We plot three curves for three
difference variances of the noise added to the canonical point locations to generate the input warps. The four algorithms all converge at the same
rate again validating their equivalence.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Point Sigma

%
 C

on
ve

rg
ed

Forwards Additive
Forwards Compositional
Inverse Additive
Inverse Compositional

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Point Sigma

%
 C

on
ve

rg
ed

Forwards Additive
Forwards Compositional
Inverse Compositional

(a) Frequency of Convergence for Affine Warps (b) Frequency of Convergence for Homographies

Figure 8. The average frequency of convergence computed over a large number of randomly generated warps. We compute the frequency of
convergence for different variances of the noise added to the canonical point locations. The four algorithms all converge equally often validating
their equivalence.

be obtained by processing hierarchically on a Gaussian
pyramid (Bergen et al., 1992.)

3.4.3. Average Frequency of Convergence. What
about the case that the algorithms diverge? We ran a
second similar experiment over 5000 randomly gen-
erated inputs. In this case, we counted the number of
times that each algorithm converged. In this second ex-
periment, we say that an algorithm converged if after
15 iterations the RMS error in the canonical point loca-
tions is less than 1.0 pixels. We computed the percent-
age of times that each algorithm converged for various

different variances of the noise added to the canonical
point locations. The results are shown in Fig. 8. Again,
the four algorithms all perform much the same, vali-
dating their equivalence. When the perturbation to the
canonical point locations is less than about 4.0 pixels,
all four algorithms converge almost always. Above that
amount of perturbation the frequency of convergence
rapidly decreases.

None of the algorithms used a multi-scale pyramid
to increase their robustness. This extension could be
applied to all of the algorithms. Our goal was only to
validate the equivalence of the base algorithms. The
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(a) Average Convergence Rates for “Simon” image (b) Frequency of Convergence for “Simon” image
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(c) Average Convergence Rates for “Knee” image (d) Frequency of Convergence for “Knee” image
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(e) Average Convergence Rates for “Car” image (f) Frequency of Convergence for “Car” image

Figure 9. The average rates of convergence and average frequencies of convergence for the affine warp for three different images: “Simon”
(an image of the face of the first author), “Knee” (an image of an x-ray of a knee), and “Car” (an image of car.) These results demonstrate the
same qualitative behavior as those in Figs. 7 and 8. Most importantly, the four algorithms all converge equally fast and diverge equally often.
Their equivalence is therefore further validated. However, there is considerable variation in performance with the image. The performance of
all four algorithms is far worse on “Car” than on the other images.

effect of using a multi-scale pyramid will be studied in
a future paper.

3.4.4. Variability with the Input Image. To investi-
gate the variability of the algorithms with the input

image, we re-ran the experiments in Sections 3.4.2 and
3.4.3 for three more images: “Simon” (an image of
the face of the first author), “Knee” (an image of an
x-ray of a knee), and “Car” (an image of car.) The re-
sults are contained in Fig. 9. For lack of space we only
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Table 5. Timing results for our Matlab implementation of the four algorithms in milliseconds. These
results are for the 6-parameter affine warp using a 100 × 100 pixel template on a 933 MHz Pentium-IV.

Step 3 Step 4 Step 5 Step 6 Total

Pre-computation:
Forwards Additive (FA) – – – – 0.0

Forwards Compositional (FC) – 17.4 – – 17.4

Inverse Additive (IA) 8.30 17.1 27.5 37.0 89.9

Inverse Compositional (IC) 8.31 17.1 27.5 37.0 90.0

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

Per iteration:

FA 1.88 0.740 36.1 17.4 27.7 37.2 6.32 0.111 0.108 127

FC 1.88 0.736 8.17 – 27.6 37.0 6.03 0.106 0.253 81.7

IA 1.79 0.688 – – – – 6.22 0.106 0.624 9.43

IC 1.79 0.687 – – – – 6.22 0.106 0.409 9.21

include the results for the affine warp. The results for
the homography are similar and can be reconstructed
from the implementation of our algorithms that we are
making available online. See Section 6. Qualitatively
the results for these three new images are the same
as before. Most importantly, the four algorithms all
converge equally fast and diverge equally often. Their
equivalence is therefore further validated. There is con-
siderable variation in performance across the images,
however. In particular, the performance of all four al-
gorithms for the “Car” image is far worse than for
the other three images, both in terms of average rate
of convergence and in terms of average frequency of
divergence.

3.4.5. The Effect of Additive Intensity Noise. The
results that we have presented so far have not included
any noise on the images themselves (just on the canon-
ical point locations which is not really noise but just
a way of generating random warps.) The image I (x)
is warped with W(x; p) to generate the input image,
a process which introduces a very small amount of re-
sampling noise, but that re-sampling noise is negligible.

We repeated the above experiments, but with addi-
tive, white Gaussian noise added to the images. We
considered 3 cases: (1) noise added to the image I (x),
(2) noise added to the template T (x), and (3) noise
added to both I (x) and T (x). The results for additive
noise with standard deviation 8 grey levels is shown in
Fig. 10.

The first thing to note is that noise breaks the equiv-
alence of the forwards and inverse algorithms. This is

not too surprising. In the proof of equivalence it is as-
sumed that T (y)− I (W(y; p)) is O(�p). This is not true
in the presence of noise. Since the forwards algorithms
compute the gradient of I and the inverse algorithms
compute the gradient of T , it is not surprising that when
noise is added to I the inverse algorithms converge bet-
ter (faster and more frequently), and conversely when
noise is added to T the forwards algorithms converge
better. When equal noise is added to both images,
the forwards algorithms perform marginally better than
the inverse algorithms because the inverse algorithms
are only first-order approximations to the forwards al-
gorithms.

Overall we conclude that the forwards algorithms are
ever so slightly more robust to additive noise. However,
in many applications such as in face modeling (Baker
and Matthews, 2001), the template image T (x) can be
computed as an average of a large number of images
and should be less noisy than the input image I (x). In
such cases, the inverse algorithms will be more robust
to noise.

3.4.6. Timing Results. We implemented the four al-
gorithms in Matlab. The Matlab implementation of
image warping (Step 1, also used in Step 3 in the
forwards additive algorithm) is very slow. Hence we
re-implemented that step in “C.” The timing results
for the 6-parameter affine warp using a 100 × 100
pixel grey-scale template on a 933 MHz Pentium-IV
are included in Table 5. As can be seen, the two in-
verse algorithms shift much of the computation into
pre-computation and so are far faster per iteration. The
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Figure 10. The effect of intensity noise on the rate of convergence and the frequency of convergence for affine warps. The results for
homographies are similar and omitted for lack of space. In all cases, additive, white Gaussian noise with standard deviation 8.0 grey levels is
added to one or both of the template T (x) and the warped input image I (x). The results show that the forwards algorithms are more robust to
noise on the template and the inverse algorithms are more robust to noise on the input image. Overall, the forwards algorithms are slightly more
robust to noise added to both the template and the input image.

forwards compositional algorithm is also somewhat
faster than the forwards additive algorithm since it does
not need to warp the image gradients in Step 3 and the
image gradients are computed on the template rather
than the input image which is generally larger.

3.5. Summary

We have outlined three approaches to image alignment
beyond the original forwards additive Lucas-Kanade
algorithm. We refer to these approaches as the forwards
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Table 6. A framework for gradient descent image alignment algorithms. Gradient descent image
alignment algorithms can be either additive or compositional, and either forwards or inverse. The
inverse algorithms are computationally efficient whereas the forwards algorithms are not. The various
algorithms can be applied to different sets of warps. Most sets of warps in computer vision form groups
and so the forwards additive, the forwards compositional, and the inverse compositional algorithms
can be applied to most sets of warps. The inverse additive algorithm can only be applied to a very
small class of warps, mostly linear 2D warps.

Algorithm For example Complexity can be applied to

Forwards Additive Lucas-Kanade (1981) O(n2 N + n3) Any warp

Forwards Compositional Shum-Szeliski (2000) O(n2 N + n3) Any semi-group

Inverse Additive Hager-Belhumeur (1998) O(nN + n3) Simple linear 2D +
Inverse Compositional Baker-Matthews (2001) O(nN + k N + k3) Any group

compositional, the inverse additive, and the inverse
compositional algorithms. In Sections 3.1.5, 3.2.5, and
3.3.5 we proved that all four algorithms are equivalent
in the sense that they take the same steps in each iter-
ation to first order in �p. In Section 3.4 we validated
this equivalence empirically.

The four algorithms do differ, however, in two other
respects. See Table 6 for a summary. Although the
computational requirements of the two forwards al-
gorithms are almost identical and the computational
requirements of the two inverse algorithms are also al-
most identical, the two inverse algorithms are far more
efficient than the two forwards algorithms. On the other
hand, the forwards additive algorithm can be applied
to any type of warp, the forwards compositional algo-
rithm can only be applied to sets of warps that form
semi-groups, and the inverse compositional algorithm
can only be applied sets of warps that form groups. The
inverse additive algorithm can be applied to very few
warps, mostly simple 2D linear warps such as transla-
tions and affine warps.

A natural question which arises at this point is which
of the four algorithms should be used. If efficiency is
not a concern, either of the two forwards algorithms
could be used, depending on which is more conve-
nient. There is little difference between the two algo-
rithms. The forwards compositional algorithm has the
slight advantage that the Jacobian is constant, and is in
general simpler so is less likely to be computed erro-
neously (Shum and Szeliski, 2000). The composition
of the incremental warp with the current estimate is
slightly more involved than simply adding the param-
eter updates, however. Overall, there is not much to
distinguish the two forwards algorithms.

If obtaining high efficiency is important, the choice
is between the inverse compositional algorithm and

the inverse additive. The better choice here is clearly
the inverse compositional algorithm. The derivation of
the inverse compositional algorithm is far simpler, and
it is far easier to determine if, and how, the inverse
compositional algorithm can be applied to a new set
of warps. Since on warps like affine warps the algo-
rithms are almost exactly the same, there is no reason
to use the inverse additive algorithm. The inverse com-
positional algorithm is equally efficient, conceptually
more elegant, and more generally applicable than the
inverse additive algorithm.

4. The Gradient Descent Approximation

Most non-linear optimization and parameter estimation
algorithms operate by iterating 2 steps. The first step
approximately minimizes the optimality criterion, usu-
ally by making some sort of linear or quadratic approx-
imation around the current estimate of the parameters.
The second step updates the estimate of the parameters.
The inverse compositional algorithm, for example, ap-
proximately minimizes the expression in Eq. (31) and
updates the parameters using Eq. (32).

In Sections 2 and 3 above we outlined 4 equivalent
quantity approximated-parameter update rule pairs.
The approximation that we made in each case is known
as the Gauss-Newton approximation. In this section we
first re-derive the Gauss-Newton approximation for the
inverse compositional algorithm and then consider sev-
eral alternative approximations. Afterwards we apply
all of the alternatives to the inverse compositional algo-
rithm, empirically evaluating them in Section 4.6. We
conclude this section with a summary of the gradient
descent options in Section 4.7 and a review of several
other related algorithms in Section 4.8.
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4.1. The Gauss-Newton Algorithm

The Gauss-Newton inverse compositional algorithm
attempts to minimize Eq. (31):∑

x

[F(x; �p)]2 ≡
∑

x

[T (W(x; �p)) − I (W(x; p))]2

(62)

where F(x; �p) = T (W(x; �p)) − I (W(x; p)) using a
first order Taylor expansion of F(x; �p):

∑
x

[
F(x; 0) + ∂ F

∂p
�p

]2

≡
∑

x

[
T (W(x; 0)) + ∇T

∂W
∂p

�p − I (W(x; p))

]2

.

(63)

Here F(x; 0) = T (W(x; 0)) − I (W(x; p)) = T (x) −
I (W(x; p)), ∂ F

∂p = ∇T ∂W
∂p , and we use the expression

∂ F
∂p to denote the partial derivative of F with respect
to its second vector argument �p. The expression in
Eq. (63) is quadratic in �p and has the closed form
solution:

�p = −H−1
∑

x

[
∂ F

∂p

]T

F(x; 0)

≡ H−1
∑

x

[
∇T

∂W
∂p

]T

[I (W(x; p)) − T (x)]

(64)

where H is the first order (Gauss-Newton) approxima-
tion to the Hessian matrix:

H =
∑

x

[
∂ F

∂p

]T[
∂ F

∂p

]

≡
∑

x

[
∇T

∂W
∂p

]T[
∇T

∂W
∂p

]
. (65)

One simple way to see that Eqs. (64) and (65) are the
closed-form solution to Eq. (63) is to differentiate the
expression in Eq. (63) with respect to �p and set the
result to zero:

2
∑

x

[
∂ F

∂p

]T[
F(x; 0) + ∂ F

∂p
�p

]
= 0. (66)

Rearranging this expression gives the closed form re-
sult in Eqs. (64) and (65).

4.2. The Newton Algorithm

Rather than writing F(x; �p) = T (W(x; �p)) −
I (W(x; p)) and performing a first order Taylor expan-
sion on F(x; �p), in the derivation of the Newton
algorithm (Gill et al., 1986; Press et al., 1992) we
write G(x; �p) = 1

2 [F(x; �p)]2 = 1
2 [T (W(x; �p)) −

I (W(x; p))]2 and perform a second order Taylor
expansion:

∑
x

G(x; �p) =
∑

x

G(x; 0) +
∑

x

∂G

∂p
�p

+ 1

2

∑
x

�pT ∂2G

∂p2
�p (67)

where:

∑
x

∂G

∂p
=

∑
x

(
∂G

∂p1

∂G

∂p2
· · · ∂G

∂pn

)
(68)

is the gradient of
∑

x G(x; �p) and:

∑
x

∂2G

∂p2
=

∑
x




∂2G
∂p1∂p1

∂2G
∂p1∂p2

· · · ∂2G
∂p1∂pn

∂2G
∂p2∂p1

∂2G
∂p2∂p2

· · · ∂2G
∂p2∂pn

...
...

...
∂2G

∂pn∂p1

∂2G
∂pn∂p2

· · · ∂2G
∂pn∂pn




(69)

is the Hessian of
∑

x G(x; �p).

4.2.1. Relationship with the Hessian in the Gauss-
Newton Algorithm. Before we complete the deriva-
tion of the Newton algorithm, we briefly explain
the relationship between this Hessian and the “first
order approximation to the Hessian” in the Gauss-
Newton approach. Also see (Gill et al., 1986)
Section 4.7.2. Expanding Eq. (63) gives the quadratic
expression:

1

2

∑
x

[
F(x; 0) + ∂ F

∂p
�p

]2

= 1

2

∑
x

[
F2(x; 0) + 2F(x; 0)

∂ F

∂p
�p

+ �pT ∂ F

∂p

T ∂ F

∂p
�p

]
. (70)
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Comparing Eqs. (67) and (70) we see that the differ-
ences between the Newton and Gauss-Newton approx-
imations are that the gradient is ∂G

∂p = F(x; 0) ∂ F
∂p and

the Hessian is approximated:

∂2G

∂p2
= ∂ F

∂p

T ∂ F

∂p
. (71)

This approximation is a first order approximation in
the sense that it is an approximation of the Hessian of
G in terms of the gradient of F . The Hessian of F is
ignored in the approximation. The full expression for
the Hessian of G is:

∂2G

∂p2
= ∂ F

∂p

T ∂ F

∂p
+ F

∂2 F

∂p2
. (72)

4.2.2. Derivation of the Gradient and the Hessian. If
G(x; �p) = 1

2 [T (W(x; �p)) − I (W(x; p))]2 then the
gradient is:

∂G

∂p
=

[
∇T

∂W
∂p

]
[T (W(x; �p)) − I (W(x; p))] (73)

where for convenience we use ∂G
∂p to denote the par-

tial derivative of G with respect to its second vector
argument �p. The Hessian:

∂2G

∂p2
=

[
∂W
∂p

]T[
∂2T

∂x2

][
∂W
∂p

]

× [T (W(x; �p)) − I (W(x; p))]

+ ∇T

[
∂2W
∂p2

]
[T (W(x; �p)) − I (W(x; p))]

+
[
∇T

∂W
∂p

]T[
∇T

∂W
∂p

]
(74)

where:

∂T

∂x
=

(
∂2T
∂x2

∂2T
∂x∂y

∂2T
∂x∂y

∂2T
∂y2

)
(75)

is the matrix of second derivatives of the template T
and:

∇T

[
∂2W
∂p2

]
= ∂T

∂x




∂2Wx
∂p1∂p1

· · · ∂2Wx
∂p1∂pn

...
...

∂2Wx
∂pn∂p1

· · · ∂2Wx
∂pn∂pn




+ ∂T

∂y




∂2Wy

∂p1∂p1
· · · ∂2Wy

∂p1∂pn

...
...

∂2Wy

∂pn∂p1
· · · ∂2Wy

∂pn∂pn


. (76)

Equations (73) and (74) hold for arbitrary �p. In the
Newton algorithm, we just need their values at �p = 0.
When �p = 0, the gradient simplifies to:

∂G

∂p
=

[
∇T

∂W
∂p

]
[T (x) − I (W(x; p))] (77)

and the Hessian simplifies to:

∂2G

∂p2
=

([
∂W
∂p

]T[
∂2T

∂x2

][
∂W
∂p

]
+ ∇T

[
∂2W
∂p2

])

× [T (x) − I (W(x; p))]

+
[
∇T

∂W
∂p

]T[
∇T

∂W
∂p

]
. (78)

These expressions depend on the Jacobian ∂W
∂p and the

Hessian ∂2W
∂p2 of the warp. For the affine warp of Eq. (2)

these values are:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
and

∂2W
∂p2

= 0.

(79)

See Appendix A for the derivation of the equivalent
expressions for the homography.

4.2.3. Derivation of the Newton Algorithm. The
derivation of the Newton algorithm begins with
Eq. (67), the second order approximation to
G(x; �p) = 1

2 [T (W(x; �p)) − I (W(x; p))]2. Differ-
entiating this expression with respect to �p and equat-
ing the result with zero yields (Gill et al., 1986; Press



Lucas-Kanade 20 Years On: A Unifying Framework 243

Figure 11. Compared to the Gauss-Newton inverse compositional algorithm in Fig. 4, the Newton inverse compositional algorithm is consid-
erably more complex. The Hessian varies from iteration to iteration and so has to be re-computed each time. The expression for the Hessian is
also considerably more complex and requires the second order derivatives of both the template T and the warp W(x; p). The computational cost
of the Newton inverse compositional algorithm is O(n2 N + n3) and the pre-computation cost is O(n2 N ).

et al., 1992):

[ ∑
x

∂G

∂p

]T

+
∑

x

∂2G

∂p2
�p = 0. (80)

The minimum is then attained at:

�p = −
[ ∑

x

∂2G

∂p2

]−1[ ∑
x

∂G

∂p

]T

(81)

where the gradient ∂G
∂p and the Hessian ∂2G

∂p2 are given
in Eqs. (77) and (78). Ignoring the sign change and the
transpose, Eqs. (77), (78), and (81) are almost iden-
tical to Eqs. (35) and (36) in the description of the
inverse compositional algorithm in Section 3.2. The
only difference is the second order term (the first term)
in the Hessian in Eq. (78); if this term is dropped the

Table 7. The computation cost of the Newton inverse compositional algorithm. The
one time pre-computation cost in Steps 3–5 is O(n2 N ). After that, the cost of each
iteration is O(n2 N + n3), substantially more than the cost of the Gauss-Newton
inverse compositional algorithm described in Fig. 4, and asymptotically the same as
the original Lucas-Kanade algorithm described in Fig. 1 in Section 2.

Pre-computation

Step 3 Step 4 Step 5 Total

O(N ) O(n2 N ) O(n2 N ) O(n2 N )

Per iteration

Step 1 Step 2 Step 6 Step 7 Step 8 Step 9 Total

O(n N ) O(N ) O(n2 N ) O(n N ) O(n3) O(n2) O(n2 N + n3)

equations result in exactly the same expression for �p.
When the second order term is included, the Hessian is
no longer independent of the parameters p because it
depends on p through I (W(x; p)). The Hessian there-
fore has to be re-computed in each iteration. The
Newton inverse compositional algorithm is outlined in
Fig. 11.

4.2.4. Computational Cost of the Newton Inverse
Compositional Algorithm. The computational cost
of the Newton inverse compositional algorithm is
far more than the Gauss-Newton version because the
Hessian has to be re-computed every iteration. The sec-
ond order approximation to the Hessian is also more
complex and requires that the second order derivatives
of the template and the warp be pre-computed. See
Table 7 for a summary and (Baker and Matthews, 2002)
for the details.
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4.3. Steepest Descent

The difference between the Gauss-Newton algorithm
and the Newton algorithm is the approximation made
to G(x; �p) = 1

2 [T (W(x; �p)) − I (W(x; p))]2. The
Gauss-Newton algorithm performs a first order Taylor
expansion on F(x; �p) = T (W(x; �p)) − I (W(x; p)),
the Newton algorithm performs a second order expan-
sion on G(x; �p) = 1

2 [T (W(x; �p)) − I (W(x; p))]2.
The Gauss-Newton algorithm effectively approximates
the full Newton Hessian:

∂2G

∂p2
=

([
∂W
∂p

]T[
∂2T

∂x2

][
∂W
∂p

]
+ ∇T

[
∂2W
∂p2

])

× [T (x) − I (W(x; p))]

+
[
∇T

∂W
∂p

]T[
∇T

∂W
∂p

]
(82)

with the first order term:[
∇T

∂W
∂p

]T[
∇T

∂W
∂p

]
. (83)

The advantage of this approximation is that the Hessian
is then constant and can be pre-computed, unlike in the
Newton algorithm where it has to be re-computed every
iteration.

A natural question that follows is then, are there other
approximations to the Hessian that result in other effi-
cient gradient descent algorithms? The simplest possi-
bility is to approximate the Hessian as proportional to
the identity matrix. If we approximate:[ ∑

x

∂2G

∂p2

]−1

= c I (84)

where I is the n × n identity matrix, we obtain the
steepest-descent algorithm. Substituting this expres-
sion into Eq. (81) yields:

�p = −c

[∑
x

∂G

∂p

]T

; (85)

i.e. the parameters are updated with a multiple of the
gradient of the error G(x; �p).

4.3.1. Derivation of the Steepest Descent Algorithm.
One remaining question is how to choose c? Should
it be a constant, or should it vary from iteration to it-
eration? In general, choosing c is quite involved (Gill

et al., 1986). One simple way to choose c is to substitute
Eq. (85) back into Eq. (67) to yield:

∑
x

G(x; �p) =
∑

x

G(x; 0) − c

[∑
x

∂G

∂p

]

×
[∑

x

∂G

∂p

]T

+ 1

2
c2

[∑
x

∂G

∂p

]

×
[∑

x

∂2G

∂p2

] [∑
x

∂G

∂p

]T

. (86)

Differentiating this expression with respect to c to ob-
tain the minimum value yields:

c =
[ ∑

x
∂G
∂p

][ ∑
x

∂G
∂p

]T

[ ∑
x

∂G
∂p

][ ∑
x

∂2G
∂p2

][ ∑
x

∂G
∂p

]T (87)

where, as before:

∂G

∂p
=

[
∇T

∂W
∂p

]
[T (x) − I (W(x; p))]. (88)

This is why we called ∇T ∂W
∂p the steepest descent im-

ages and
∑

x[∇T ∂W
∂p ]T[T (x)− I (W(x; p))] the steepest

descent parameter updates in the Lucas-Kanade algo-
rithm in Section 2.

This approach to determining c has the obvious prob-
lem that it requires the Hessian

∑
x

∂2G
∂p2 . Using the full

Newton approximation to the Hessian therefore results
in a slow algorithm. One solution is to use the Gauss-
Newton approximation to the Hessian in Eq. (87) to
compute c. Since the Hessian is just being used to esti-
mate a single number, it is not vital that its estimate is
perfect. Another solution is to use an adaptive algorithm
to compute c. For example, an approach like the one
used in the Levenberg-Marquardt Algorithm described
in Section 4.5 could be used. In this paper, we use the
first solution because it compares more naturally with
the other algorithms. The Gauss-Newton steepest de-
scent inverse compositional algorithm is summarized
in Fig. 12.

4.3.2. Computational Cost of the Gauss-Newton
Steepest Descent Algorithm. The computational cost
of the Gauss-Newton steepest descent algorithm is al-
most exactly the same as the original inverse composi-
tional algorithm. See Table 8 for a summary and Baker
and Matthews (2002) for the details.
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Table 8. The computation cost of the GN steepest descent inverse
compositional algorithm. The only change from the original inverse
compositional algorithm is in Step 8. Instead of inverting the Hessian,
Eq. (87) is used to compute the value of c. This takes time O(n2)
rather than time O(n3). The cost per iteration is therefore O(n N +n2)
rather than O(n N + n3). The pre-computation time is still O(n2 N ).

Pre-computation

Step 3 Step 4 Step 5 Step 6 Total

O(N ) O(n N ) O(n N ) O(n2 N ) O(n2 N )

Per iteration

Step 1 Step 2 Step 7 Step 8 Step 9 Total

O(n N ) O(N ) O(n N ) O(n2) O(n2) O(n N + n2)

Figure 12. The Gauss-Newton steepest descent inverse composi-
tional algorithm estimates the parameter updates �p as constant
multiples of the gradient

∑
x[ ∂G

∂p ]T rather than multiplying the gra-
dient with the inverse Hessian. The computation of the constant mul-
tiplication factor c requires the Hessian however, estimated here
with the Gauss-Newton approximation. The steepest descent in-
verse compositional algorithm is slightly faster than the original
inverse compositional algorithm and takes time O(n N + n2) per
iteration.

4.4. The Diagonal Approximation to the Hessian

The steepest descent algorithm can be regarded as ap-
proximating the Hessian with the identity matrix. The
next simplest approximation is to make a diagonal ap-
proximation to the Hessian:

Diag

[
∂2G

∂p2

]
=

∑
x




∂2G
∂p1∂p1

0 · · · 0

0 ∂2G
∂p2∂p2

· · · 0

...
...

...

0 0 · · · ∂2G
∂pn∂pn




.

(89)

Figure 13. The Newton inverse compositional algorithm with the
diagonal approximation to the Hessian is almost exactly the same as
the full Newton version in Fig. 11. The only difference is that only
the elements on the leading diagonals of the Hessian are computed in
Steps 4, 5, and 6, and used to compute the update to the parameters
in Step 8. The result is a far more efficient algorithm. See Table 9 for
a summary.

If only the elements on the leading diagonal are ever
computed, the computational cost of all steps, both the
pre-computation cost and in each iteration, becomes
at most O(n N ) rather than O(n2 N ). If we denote the
vector:

Diag

[∑
x

∂2G

∂p2

]−1

=
(

1∑
x

∂2G
∂p1∂p1

,
1∑

x
∂2G

∂p2∂p2

, . . . ,
1∑

x
∂2G

∂pn∂pn

)T

(90)

the update to the warp parameters in Eq. (81) becomes:

�p = −Diag

[∑
x

∂2G

∂p2

]−1

·
[∑

x

∂G

∂p

]T

(91)

where the product · between these two vectors de-
notes element-wise multiplication and where the gra-
dient and Hessian are given by Eqs. (77) and (78).
The diagonal approximation to the Hessian can then
be used directly in the Newton algorithm. See Fig. 13
for a summary. This approximation is commonly used
in optimization problems with a large number of
parameters. Examples of this diagonal approxima-
tion in vision include stereo (Szeliski and Golland,
1998) and super-resolution (Baker and Kanade,
2000).
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Table 9. The computational cost of the Newton inverse compositional algorithm with the
diagonal approximation to the Hessian. See Fig. 13 for the algorithm. Because only n elements
in the Hessian ever need to be computed, Steps 4, 5, and 6 take time O(nN ) rather than O(n2 N ).
Step 8 is also slightly quicker. Overall, the pre-computation only takes time O(nN ) and the
cost per iteration is only O(nN + n2).

Pre-computation

Step 3 Step 4 Step 5 Total

O(N ) O(nN ) O(nN ) O(nN )

Per iteration

Step 1 Step 2 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(n) O(n2) O(nN + n2)

4.4.1. Computational Cost of the Diagonal Approx-
imation to the Hessian. The diagonal approxima-
tion to the Hessian makes the Newton inverse com-
positional algorithm far more efficient. The cost is
comparable with the Gauss-Newton inverse composi-
tional algorithm. Because there are only n elements
on the leading diagonal, Steps 4, 5, and 6 only take
time O(nN ) rather than O(n2 N ). See Table 9 for a
summary and (Baker and Matthews, 2002) for the
details.

4.5. The Levenberg-Marquardt Algorithm

Of the various approximations, generally the steep-
est descent and diagonal approximations work better
further away from the local minima, and the Newton
and Gauss-Newton approximations work better close
to the local minima where the quadratic approximation
is good (Gill et al., 1986; Press et al., 1992). Another as-
pect that none of the algorithms that we have discussed
so far take into account is whether the error gets better
or worse after each iteration. If the error gets worse, a
gradient descent algorithm might want to try a smaller
step in the same direction rather than making the error
worse.

One algorithm that tries to combine the diagonal ap-
proximation with the full Hessian to get the best of
both worlds is the well known Levenberg-Marquardt
algorithm. Either the Gauss-Newton Hessian or the
Newton Hessian can be used. We will use the Gauss-
Newton approximation to get an efficient algorithm.
The Gauss-Newton Levenberg-Marquardt algorithm
uses the Hessian:

HLM =
∑

x

[
∇T

∂W
∂p

]T [
∇T

∂W
∂p

]

+ δ
∑

x




(
∇T ∂W

∂p1

)2
0 · · · 0

0
(
∇T ∂W

∂p2

)2 · · · 0
...

...
...

0 0 · · · (
∇T ∂W

∂pn

)2




(92)

where ∇T ∂W
∂pi

= ∂T
∂x

∂Wx
∂pi

+ ∂T
∂y

∂Wy

∂pi
, δ > 0, and the warp

update parameters are estimated:

�p = −HLM
−1

∑
x

[
∇T

∂W
∂p

]
[T (x) − I (W(x; p))] .

(93)

For very small δ 
 1, the Levenberg-Marquardt
Hessian HLM is approximately the Gauss-Newton
Hessian. For large δ � 1, the Hessian is approximately
the Gauss-Newton diagonal approximation to the
Hessian, but with a reduced step size of 1

δ
. Levenberg-

Marquardt starts with a small initial value of δ, say
δ = 0.01. After each iteration, the parameters are
provisionally updated and the new error evaluated. If
the error has decreased, the value of delta is reduced,
δ → δ/10, say. If the error has increased, the provi-
sional update to the parameters is reversed and δ in-
creased, δ → δ × 10, say. The Levenberg-Marquardt
inverse compositional algorithm is summarized in
Fig. 14.
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Figure 14. The Gauss-Newton Levenberg-Marquardt inverse compositional algorithm. Besides using the Levenberg-Marquardt Hessian in
Step 8 and reordering Steps 1 and 2 slightly, the algorithm checks whether the error e has decreased at the end of each iteration in Step 10. If the
error decreased, the value of δ is reduced and the next iteration started. If the error increased, the value of δ is increased and the current update
reversed by “undoing” steps 9, 1, & 2. The computational cost of the Levenberg-Marquardt algorithm is detailed in Table 10. The algorithm is just
as efficient as the original Gauss-Newton inverse compositional algorithm and operates in time O(nN + n3) per iteration. The pre-computation
cost is O(n2 N ).

4.5.1. Computational Cost of the Levenberg-
Marquardt Inverse Compositional Algorithm.
Compared with the Gauss-Newton inverse composi-
tional algorithm, the Levenberg-Marquardt algorithm
requires that a number of steps be re-ordered, a couple
of steps to be extended, and two new steps added.
The re-ordering doesn’t affect the computation cost
of the algorithm; it only marginally increases the
pre-computation time, although not asymptotically.
The new Steps 0 and 10 both take very little time,
constant if implemented with pointers to the new and
old data. Overall the Levenberg-Marquardt algorithm
is just as efficient as the Gauss-Newton inverse

Table 10. The computation cost of the Levenberg-Marquardt inverse compositional algorithm.
A number of steps have been re-ordered, a couple of steps have been extended, and two new
steps have been introduced compared to the original algorithm in Fig. 4. However, overall the
new algorithm is just as efficient as the original algorithm taking time O(nN + n3) per iteration
and O(n2 N ) as a pre-computation cost.

Pre-computation

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Total

O(1) O(nN ) O(N ) O(N ) O(nN ) O(nN ) O(n2 N ) O(n2 N )

Per iteration

Step 7 Step 8 Step 9 Step 1 Step 2 Step 10 Total

O(nN ) O(n3) O(n2) O(nN ) O(N ) O(1) O(nN + n3)

compositional algorithm. See Table 10 for a summary
and Baker and Matthews (2002) for the details.

4.6. Empirical Validation

We have described six variants of the inverse com-
positional image alignment algorithm: Gauss-Newton,
Newton, Gauss-Newton steepest descent, diagonal
Hessian (Gauss-Newton and Newton), and Levenberg-
Marquardt. We now empirically compare these algo-
rithms. We only present results for the affine warp. The
results for the homography are similar and omitted for
lack of space.
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(a) Frequency of Convergence with No Noise (b) Frequency of Convergence with Noise SD 8.0

Figure 15. The average frequency of convergence of the six variants of the inverse compositional algorithm: Gauss-Newton, Newton, steepest
descent, diagonal Hessian approximation (Gauss-Newton and Newton), and Levenberg-Marquardt. We find that Gauss-Newton and Levenberg-
Marquardt perform the best, with Newton significantly worse. The three other algorithms all perform very poorly indeed.

4.6.1. Average Frequency of Convergence. We be-
gin with the average frequency of convergence rather
than the average rate of convergence to eliminate
some of the algorithms that perform very poorly. In
Fig. 15(a) we plot the average frequency of conver-
gence (computed over 5000 samples) with no inten-
sity noise. In Fig. 15(b) we plot the average frequency
of convergence (again computed over 5000 samples)
with pixel intensity noise standard deviation 8.0 grey
levels added to both the template and the input im-
age. As in Section 3.4, we say that an algorithm
failed to converge if after 15 iterations the RMS er-
ror in the canonical point locations is greater than 1.0
pixels.

The first thing to notice in Fig. 15 is that the
best performing algorithms are Gauss-Newton
and Levenberg-Marquardt. Perhaps surprisingly,
Levenberg-Marquardt doesn’t perform any better than
Gauss-Newton, even for larger displacements of the
canonical point locations.

The second thing to notice is that the Newton
algorithm performs significantly worse than Gauss-
Newton. In general, for many optimization problems
we expect the Newton algorithm to perform better
because it uses a more sophisticated estimate of the
Hessian. That expectation, however, relies on the as-
sumption that the estimate of the Hessian is noiseless.
In our case, the Gauss-Newton Hessian depends on
the gradient of the template T (x) and so is noisy. The
Newton Hessian also depends on the second derivatives
of the template. It appears that the increased noise in

estimating the second derivatives of the template out-
weighs the increased sophistication in the algorithm.
Overall, we conclude that the full Newton Hessian
should not be used.

The final thing to notice in Fig. 15 is that the steepest
descent and diagonal Hessian approximations perform
very poorly. We conclude that it is important to use a
full Hessian approximation. More will be said on the
performance of these three algorithms in Sections 4.6.3
and 4.6.4 below.

4.6.2. Average Convergence Rates. Since the steep-
est descent and diagonal Hessian algorithms converge
so rarely, we only plot the average rate of conver-
gence for the Gauss-Newton, Newton, and Levenberg-
Marquardt algorithms. The other three algorithms
converge very slowly, and sometimes oscillate. See
Section 4.6.3 for more discussion. In Fig. 16(a) we
plot the average rate of convergence with no inten-
sity noise and in Fig. 16(b) the average rate of con-
vergence with noise standard deviation 8.0 grey levels
added to both the template and the input image. The
results are consistent with the results in Section 4.6.1.
The Gauss-Newton and Levenberg-Marquardt algo-
rithms converge the quickest. The Newton algorithm
converges significantly slower on average, even with
no noise.

4.6.3. Performance of Steepest Descent and the Di-
agonal Hessian Approximations. The steepest de-
scent and diagonal Hessian approximations perform
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Figure 16. The average rates of convergence of the Gauss-Newton, Newton, and Levenberg-Marquardt algorithms. The other three algorithms
converge so slowly that the results are omitted. Gauss-Newton and Levenberg-Marquardt converge similarly, and the fastest. Newton converges
significantly slower.
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Figure 17. The performance of the diagonal approximation to the Hessian algorithms, both with and without the step size estimation step used
in the steepest descent algorithm. See Eqs. (87) and (88). With the step size estimation step, the performance of the diagonal Hessian algorithms
improves dramatically.

very poorly. One particular surprise in Fig. 15 is that
the steepest descent algorithm outperforms the Gauss-
Newton diagonal approximation to the Hessian. How is
this possible? It seems that the diagonal approximation
to the Hessian should always be better than approxi-
mating the Hessian with the identity.

The reason that the steepest descent algorithm per-
forms better than the diagonal Hessian approximation
algorithms is that it uses the Gauss-Newton Hessian
to determine the step size. See Eqs. (87) and (88). Al-
though it does better at estimating the direction of de-
scent, the diagonal approximation to the Hessian often

does a poor job of estimating the step size. As a result,
it can “oscillate” (or even diverge) if its estimate of the
step size is too big (which is the case here.)

It is possible to add a similar step size estimation
step to the diagonal Hessian approximation algorithms,
again using the Gauss-Newton Hessian. (Other step-
size estimation algorithms could also be used. See Gill
et al., 1986 for some possibilities.) The performance of
the diagonal Hessian algorithms improves dramatically
when this step is added. See Fig. 17 for a comparison
of the performance of the diagonal Hessian algorithms
with and without the step size estimation step.
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Figure 18. The performance of Gauss-Newton, steepest descent, and the Gauss-Newton diagonal approximation to the Hessian for two
parameterizations of affine warps: (1) the parameterization in Eqs. (1) and (2) a parameterization based on the location of three canonical points.
Gauss-Newton is relatively unaffected by the re-parameterization whereas the performance of the other algorithms is dramatically improved.

The diagonal approximation to the Hessian is used
in various vision algorithms such as stereo (Szeliski
and Golland, 1998) and super-resolution (Baker and
Kanade, 2000). Our results indicate that these algo-
rithms may be under-performing because of the opti-
mization algorithm used, especially if the step-size is
not chosen correctly.

4.6.4. Importance of Parameterization. Even after
correcting for the step size the performance of steepest
descent and the diagonal Hessian algorithms is still sur-
prisingly poor. One reason the performance is so poor
is the parameterization. There are, in general, multiple
ways to parameterize a set of warps. For affine warps
the parameterization in Eq. (1) is not the only way.
Another way to parameterize affine warps is by the
destination location of three canonical points, similar
to those used in our error measure.

Both steepest descent and the diagonal Hessian al-
gorithms are very dependent on the parameterization.
Even a linear re-parameterization like the one just
described can dramatically change the performance.
Gauss-Newton is much less dependent on the param-
eterization. To illustrate this point, we quickly reim-
plemented the algorithms using a parameterization
based on the destination of three canonical points.
With this new parameterization, steepest descent and
the diagonal Hessian algorithms perform far better,
although still a little worse than Gauss-Newton. See
Fig. 18.

This dramatic dependence on the parameterization
is another reason for not using steepest descent or
the diagonal approximations to the Hessian. It also
again brings into question the optimization algorithms
used in stereo (Szeliski and Golland, 1998) and super-
resolution (Baker and Kanade, 2000). More on the
question of how to best parameterize a set of warps
is left to a future paper in this series.

4.6.5. Timing Results. The timing results in millisec-
onds for our Matlab implementation of the six algo-
rithms are included in Table 11. These results are for
the 6-parameter affine warp using a 100 × 100 pixel
grey-scale template on a 933 MHz Pentium-IV. As can
be seen, all of the algorithms are roughly equally fast
except the Newton algorithm which is much slower.
The diagonal Newton algorithm is also a little slower
because it has to compute the Hessian matrix each itera-
tion. The diagonal Gauss-Newton and steepest descent
algorithms are a little faster to pre-compute, although
not per iteration.

4.7. Summary

In this section we investigated the choice of the gra-
dient descent approximation. Although image align-
ment algorithms have traditionally used the Gauss-
Newton first order approximation to the Hessian, this
is not the only possible choice. We have exhibited
five alternatives: (1) Newton, (2) steepest descent, (3)
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Table 11. Timing results for our Matlab implementation of the six algorithms in milliseconds. These results
are for the 6-parameter affine warp using a 100 × 100 pixel grey-scale template on a 933 MHz Pentium-IV.
Steps 0 and 10 for Levenberg-Marquardt are negligible and so are omitted for lack of space.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Total

Pre-computation

Gauss-Newton (GN) – – 8.31 17.1 27.5 37.0 90.0

Newton (N) – – 24.5 17.1 209 – 250

Steepest-Descent (SD) – – 8.36 17.0 27.5 36.6 89.5

Gauss-Newton Diagonal (Diag-GN) – – 8.31 17.1 27.5 4.48 57.4

Newton Diagonal (Diag-N) – – 24.4 17.1 78.4 – 120

Levenberg-Marquardt (LM) 1.83 0.709 8.17 17.1 27.6 40.8 96.2

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

Per iteration

GN 1.79 0.687 – – – – 6.22 0.106 0.409 9.21

N 1.76 0.713 – – – 39.5 5.99 0.106 0.414 48.5

SD 1.76 0.688 – – – – 6.22 0.140 0.409 9.22

Diag-GN 1.78 0.777 – – – – 6.16 0.107 0.414 9.23

Diag-N 1.88 0.692 – – – 8.20 6.53 0.107 0.417 17.8

LM 1.83 0.709 – – – – 6.06 0.319 0.348 9.26

Table 12. The six gradient descent approximations that we considered: Gauss-Newton, Newton, steepest descent,
Diagonal Hessian (Gauss-Newton & Newton), and Levenberg-Marquardt. When combined with the inverse composi-
tional algorithm the six alternatives are all efficient except Newton. When combined with the forwards compositional
algorithm, only the steepest descent and the diagonal Hessian algorithms are efficient. Only Gauss-Newton and
Levenberg-Marquardt converge well empirically.

Complexity w/ Complexity w/ Convergence Convergence
Algorithm inverse comp? forwards comp? rate frequency

Gauss-Newton O(nN + n3) O(n2 N + n3) Fast High

Newton O(n2 N + n3) O(n2 N + n3) Medium Medium

Steepest Descent O(nN + n2) O(nN + n2) Slow Low

Gauss-Newton Diagonal Hessian O(nN + n2) O(nN + n2) Slow Low

Newton Diagonal Hessian O(nN + n2) O(nN + n2) Slow Low

Levenberg-Marquardt O(nN + n3) O(n2 N + n3) Fast High

diagonal approximation to the Gauss-Newton Hessian,
(4) diagonal approximation to the Newton Hessian, and
(5) Levenberg-Marquardt. Table 12 contains a sum-
mary of the six gradient descent approximations we
considered.

We found that steepest descent and the diagonal ap-
proximations to the Hessian all perform very poorly,
both in terms of the convergence rate and in terms of
the frequency of convergence. These three algorithms
are also very sensitive to the estimation of the step
size and the parameterization of the warps. The New-

ton algorithm performs significantly worse than the
Gauss-Newton algorithm (although better than the
other three algorithms.) The most likely reason is the
noise introduced in computing the second derivatives
of the template. Levenberg-Marquardt can be imple-
mented just as efficiently as Gauss-Newton, but per-
forms no better than it.

We considered the six gradient descent approxima-
tions combined with the inverse compositional algo-
rithm. Except for the Newton algorithm all of the al-
ternatives are equally as efficient as the Gauss-Newton



252 Baker and Matthews

algorithm when combined with the inverse composi-
tional algorithm. Any of the alternatives could also
be used with the forwards additive or forwards com-
positional algorithms. In this case the Gauss-Newton
and Levenberg-Marquardt algorithms are less efficient.
Steepest descent and the diagonal Hessian algorithms
are still efficient however. The details of these deriva-
tions are omitted due to lack of space. The essence is
that only the diagonal of the Hessian ever needs to be
computed for these algorithms and so they are always
efficient.

4.8. Other Algorithms

Although we have considered six different gradient de-
scent approximations, these are not the only choices.
Numerous other algorithms can be used. Some of the
alternatives are as follows.

4.8.1. Other Approximations to the Hessian. The fo-
cus of Section 4 has been approximating the Hessian:
the Gauss-Newton approximation, the steepest descent
(identity) approximation, and the diagonal approxima-
tions. Other ways of approximating the Hessian have
also been considered. In Shum and Szeliski (2000) an
algorithm is proposed to estimate the Gauss-Newton
Hessian for the forwards compositional algorithm, but
in an efficient manner. One reason that computing the
Hessian matrix is so time consuming is that it is a
sum over the entire template. See Eq. (11). In Shum
and Szeliski (2000) it is suggested that this compu-
tation can be speeded up by splitting the template
into patches and assuming that the term summed in
Eq. (11) is constant over each patch. The computa-
tion of the Hessian can then be performed as a sum
over the (center pixels of the) patches rather than over
the entire template. A related approach is Dellaert and
Collins (1999) in which the Hessian (and steepest de-
scent images) are only computed over a subset of the
template.

4.8.2. Non Gradient Descent Algorithms. The
essence of the gradient descent approximation is to
find a linear relationship between the increments to
the parameters and the error image. See Eq. (10). In
the inverse compositional algorithm, we analytically
derived an algorithm in which this linear relationship
has constant coefficient. Since the coefficients are con-
stant they can be pre-computed. Other approaches con-

sist of assuming that linear relationship is constant
and: (1) using linear regression to find the coefficients
(Cootes et al., 1998) and (2) numerically estimating the
coefficients using a “difference decomposition” (Gle-
icher, 1997; Sclaroff and Isidoro, 1998; La Cascia et al.,
2000).

5. Discussion

We have described a unifying framework for image
alignment consisting of two halves. In the first half
we classified algorithms by the quantity approximated
and the warp update rule. Algorithms can be classi-
fied as either additive or compositional and as either
forwards or inverse. In the second half we consid-
ered the gradient descent approximation. We consid-
ered the Gauss-Newton approximation, the Newton ap-
proximation, the steepest descent approximation, two
diagonal Hessian approximations, and the Levenberg-
Marquardt approximation. These two choices are or-
thogonal. For example, one could derive a forwards
compositional steepest descent algorithm.

The results of the first half are summarized in Table 6.
All four algorithms empirically perform equivalently.
The only differences between the algorithms are their
computational complexity and the set of warps they
can be applied to. The results of the second half are
summarized in Table 12. The algorithms differ in both
their computational complexity and their empirical
performance.

Overall the choice of which algorithm to use depends
on two main things: (1) whether there is likely to me
more noise in the template or in the input image and
(2) whether the algorithm needs to be efficient or not.
If there is more noise in the template a forwards al-
gorithm should be used. If there is more noise in the
input image an inverse algorithm should be used. If an
efficient algorithm is required, the best options are the
inverse compositional Gauss-Newton and the inverse
compositional Levenberg-Marquardt algorithms. The
diagonal Hessian and steepest descent forwards algo-
rithms are another option, but given their poor con-
vergence properties it is probably better to use the in-
verse compositional algorithm even if the template is
noisy.

Besides the choices we have described in this paper,
there are several other ones that can be made by an im-
age alignment algorithm. These include the choice of
the error norm, whether to allow illumination or more
general appearance variation, whether to add priors on
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the parameters, and whether to use techniques to try to
avoid local minima. In future papers in this series we
will extend our framework to cover these choices and,
in particular, investigate whether the inverse composi-
tional algorithm is compatible with these extensions of
the Lucas-Kanade algorithm.

6. Matlab Code, Test Images, and Scripts

Matlab implementations of all of the algorithms
described in this paper are available on the
World Wide Web at: http://www.ri.cmu.edu/projects/
project 515.html. We have also included all of the test
images and the scripts used to generate the experimen-
tal results in this paper.

Appendix A: Inverse Compositional Derivations
for the Homography

A.1. Gauss-Newton Inverse
Compositional Algorithm

To apply the Gauss-Newton inverse compositional al-
gorithm (see Fig. 4 in Section 3.2) to a new set of warps,
we need to do four things: (1) specify the set of warps
W(x; p), (2) derive the Jacobian, (3) derive the expres-
sion for the composition of a warp and an incremental
warp W(x; p)◦W(x; �p), and (4) derive the expression
for the inverse of a warp W(x; p)−1. We now perform
these four steps for homographies. Homographies have
8 parameters p = (p1, p2, p3, p4, p5, p6, p7, p8)T and
can be parameterized:

W(x; p) = 1

1 + p7x + p8 y

( (1 + p1)x + p3 y + p5

p2x + (1 + p4)y + p6

)
.

(94)

There are other ways to parameterize homogra-
phies, however this way is perhaps the most com-
mon. The Jacobian of the homography in Eq. (94)
is:

∂W
∂p

= 1

1 + p7x + p8 y

×
(

x 0 y 0 1 0 −x[(1+p1)x+p3 y+p5]
1+p7x+p8 y

−y[(1+p1)x+p3 y+p5]
1+p7x+p8 y

0 x 0 y 0 1 −x[p2x+(1+p4)y+p6]
1+p7x+p8 y

−y[p2x+(1+p4)y+p6]
1+p7x+p8 y

)
.

(95)

The parameters of W(x; p) ◦ W(x; �p) are:

1

1 + p7�p5 + p8�p6

×




p1 + �p1 + p1�p1 + p3�p2 + p5�p7

− p7�p5 − p8�p6

p2 + �p2 + p2�p1 + p4�p2 + p6�p7

p3 + �p3 + p1�p3 + p3�p4 + p5�p8

p4 + �p4 + p2�p3 + p4�p4 + p6�p8

− p7�p5 − p8�p6

p5 + �p5 + p1�p5 + p3�p6

p6 + �p6 + p2�p5 + p4�p6

p7 + �p7 + p7�p1 + p8�p2

p8 + �p8 + p7�p3 + p8�p4




.

(96)

Finally, the parameters of W(x; p)−1 are:

1

det · [(1 + p1)(1 + p4) − p2 p3]

×




1 + p4 − p6 p8 − det

· [(1 + p1)(1 + p4) − p2 p3]

−p2 + p6 p7

−p3 + p5 p8

1 + p1 − p5 p7 − det

· [(1 + p1)(1 + p4) − p2 p3]

−p5 − p4 p5 + p3 p6

−p6 − p1 p6 + p2 p5

−p7 − p4 p7 + p2 p8

−p8 − p1 p8 + p3 p7




(97)

where det is the determinant:

det =

∣∣∣∣∣∣∣
1 + p1 p3 p5

p2 1 + p4 p6

p7 p8 1

∣∣∣∣∣∣∣ . (98)

A.2. Newton Inverse Compositional Algorithm

To be able to apply the Newton inverse compositional
algorithm (see Section 4.2) to the homography we also
need the Newton Hessian of the homography. The only
part of the Newton Hessian that has not be derived
before is ∂2W

∂p2 . This quantity has two components, one
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for each of the components of the warp W(x; p) =
(Wx (x; p), Wy(x; p))T. The x component is

∂2Wx

∂p2
= 1

(1 + p7x + p8 y)2




0 0 0 0 0 0 −x2 −xy

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −xy −y2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −x −y

0 0 0 0 0 0 0 0

−x2 0 −xy 0 −x 0 2x2[(1+p1)x+p3 y+p5]
1+p7x+p8 y

2xy[(1+p1)x+p3 y+p5]
1+p7x+p8 y

−xy 0 −y2 0 −y 0 2xy[(1+p1)x+p3 y+p5]
1+p7x+p8 y

2y2[(1+p1)x+p3 y+p5]
1+p7x+p8 y




(99)

and the y component is

∂2Wy

∂p2
= 1

(1 + p7x + p8 y)2




0 0 0 0 0 0 0 0

0 0 0 0 0 0 −x2 −xy

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −xy −y2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −x −y

0 −x2 0 −xy 0 −x 2x2[p2x+(1+p4)y+p6]
1+p7x+p8 y

2xy[p2x+(1+p4)y+p6]
1+p7x+p8 y

0 −xy 0 −y2 0 −y 2xy[p2x+(1+p4)y+p6]
1+p7x+p8 y

2y2[p2x+(1+p4)y+p6]
1+p7x+p8 y




. (100)
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