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Abstract are defined to have zero velocity. This representation em-
beds the motion constraints within the scene structure, and
We describe an algorithm for reconstructing a scene con- naturally leads to a factorization-based algorithm which re-
taining multiple moving objects. Given a monocular image constructs the scene structure, the trajectories of the moving
sequence, we recover the scene structure, the trajectories obbjects and the camera motion simultaneously. The num-
the moving objects and the camera motion simultaneouslyber of the moving objects is automatically detected without
The number of the moving objects is automatically detectedprior motion segmentation. We also discuss solutions to the
without prior motion segmentation. Assuming that the ob- degenerate cases. Experiments on synthetic and real images
jects are moving linearly with constant speeds, we proposeare presented.
a unified geometrical representation of the static scene and
the moving objects. This representation enables the em-1.1. Related work
bedding of the motion constraints into the scene structure,
which leads to a factorization-based algorithm. Experimen- ~ Zelnik-Manor and Irani [12, 5] propose using subspace
tal results on synthetic and real images are presented_ constraints on multi-frame information to Compute homog-
raphy and optical flows. Their work demonstrates that the
use of geometric constraints provides a good way to inte-
1. Introduction grate information over image sequences. The multibody
factorization method proposed by Costeira and Kanade [4]
We are interested in video sequences of scenes rich withreconstructs the motions and shapes of independently mov-
moving objects taken from a moving airborne platform. ing objects, but requires that each object havétipie fea-
Many interesting problems have been discussed on such seture points. Avidan and Shashua [2] recover the linear tra-
quences including scene reconstruction [1, 8], motion seg-jectory of a 3D point by line fitting. They assume that the
mentation [11, 9], reconstruction of moving trajectories [2] object is moving along a line, but they do not require the ob-
and camera motion recovery [7, 4]. Most of these methodsject to move with constant speed. They assume the camera
deal with the above problems separately. However, the in-motion is given as well as the prior motion segmentation,
formation integrated over the sequence provides constraintsind do not recover the scene structure.
on the scene structure, the trajectories of the moving objects
and the camera motion. We are therefore motivated to seeky Representation
a one step reconstruction algorithm.

In aerial video sequences, the mqv!ng objects are 'oﬁen We propose a unified representation of the static scene
far from the camera. It is therefore difficult to get multiple znd the moving objects. Assuming thatfeature points are
feature points from one moving object. Itis a good approxi- tracked ovem images, some of them static and the others
mation to abstract the moving objects as points. As pointedmoying linearly with constant speeds, we regard every point
outin [2], recovering the locations of the moving pointfrom 55 a moving point with constant velocity: the static points

amonocularimage sequence is impossible without assumpsjmply have zero velocity. Any point; is represented by,
tions about its trajectory. We assume that the objects are

moving linearly with constant speeds. This assumption is pj = sj +iv; (1)
reasonable for most moving objects, such as cars, planes
and people, especially for short time intervals. in a world coordinate system, wheie= 1---n andj =

We propose a unified representation of the static scenel - - -m. n is the number of frames and is the number of
and the moving objects in which each point has dtiah feature pointss; is the point position at frame (i.e., when
position and a constant velocity. Points on the static scenethe(0th frame is taken) and; is its motion velocity.



In this paper we use the orthographic camera model. I1t3. Reconstruction
is straightforward to extend the derivation to weak and para
perspective projections which are used in our experiments.
If a pointp; is observed in frame at image coordinates

In this section we describe our factorization-based algo-
rithm. Given tracked feature points, the algorithm decom-

(uij, vij), then,

uij = 1i-pj+iei

i; andj; are the rotation axes of thth camerat,; andt,;
are the translations. Therefore,

Ui; = iZ'~Sj—|—iiZ'~Vj + 1
vij = Jicsj iVt ty 3)
We put all the feature points coordinates;, v;;) in a
2n x m matrix W called themeasurement matrix

Uil 0 Ulm
Unp1 (2
w=1| " o )
Y11 o Ulm
Un1 Unm

Each column ofi¥ contains the observations for a single

point, and each row contains the obserwecbordinates or
v-coordinates for a single frame. We have,

W=MS+T[11 1] (5)

with the rotation matrix:

T
_ 1’1’11 m2 mn nl n2 nn
M= ! ! ! ! ! !
m 1 m 2 .. mn n 1 n2 .. nn
(6)
where
. ' ..
m;, = 1 m; = 111
S P @)
nZ - JZ nZ - ZJZ

and the shape matrix:
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The translation matrif is:
T
T= [txl tro - ton tyl tyZ co tyn] (9)

poses the measurement matrix to recover the scene struc-
ture, the trajectories of the moving objects and the camera
motion in a single step. The number of the moving objects is
automatically detected without prior motion segmentation.

3.1. Moving coordinate system

As the points are either static or moving linearly with
constant speeds, the center of gravity of all the points is
moving linearly with constant speed as well. The velocity
of the center of gravity is equal to the average of all the ve-
locities (v;). We transform the 3D representations to a mov-
ing world coordinate system with fixed orientation (such as
being aligned with the first camera) and the origin at the
center of gravity of all the points. Therefore,

(10)

From Equation (2), we have,
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We can compute the translation vector directly from equa-
tion (11):

(12)
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3.2. Decomposition
Once the translation vectdr is known, we subtract it

from W in Equation (5):

W o= w-T[1 1 - 1]
= MS=MAA"IS=MS

(13)
(14)

whereM = M A andS = A~1S. According to the repre-
sentations ofl/ and.S in Equations (6) and (8), we know

The constraints of the objects moving linearly with con- that the rank of the matri%/ is at most6 no matter how
stant speeds enables the unified representation of the motiomany moving objects are there. We perform a SVD/Bn

matrix M, composed of the rotation axesi{ andn;) and

the scaled rotation axem(; andn’;), and of the shape ma-

trix, composed of the scene structusg)(and the motion
velocities §;).

and get the best possible rafkapproximation ofl¥ as
MS, where M is a2n x 6 matrix andS is a6 x m ma-
trix. Any non-singular6 x 6 matrix A could be inserted
between) andS to get another motion and shape pair.



3.3. Normalization From Equation (20), we see that Equation (15) imposes
constraints on th&1 unknown elements of thé x 6 sym-
Metric constraints are imposed to translate the currentmetric matrix@, = B, BT, while Equation (16) imposes
pair of motion (/) and shape) to the Euclidean solu-  constraints on thél unknown elements of); = B, B .
tions through recovering the linear transformatibnThis From Equation (23) we have,
process is calledormalization We recover thi$ x 6 ma-
trix A by observing that the rows of the motion matrix Q2= ByBy = KBB{ K" = KQWK"  (25)

consist of the rotation axes and the scaled ones (Equa’uoq’vhiCh translates the constraints 6 to constraints o);

6)): Equation (17) imposes constraints @3 = B» Bl which

|mi|2 1 Inilz —1 m;om; =0 (15) can also be translated into constraintpn

2 m/; -n'; =0 (16) Qs = ByBf = KB, B = KQ, (26)
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v v Therefore, each frame contributgésconstraints (Equa-
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The above equations impose linear constraints on the ele-tlons (15) to (17)) 0rQ;.. In total, we ge'@n equatlon§ on
T o the21 unknown elements of the symmetric matépx. Lin-
ments ofA/ M *. Since :
ear least squares solutions are computed. We then compute
MMT = MAAT T (18) the mgtrixBl from @, by matrix depomposition ang, by
Equation (23), so we recover the linear transformation

these constraints are linear on the elements of the symmetri

matrixQ — AAT. Define 3.4. Shape and motion reconstruction

Once the matrix4 has been found, the shape matrix is
computed using = A~1S and the motion matrix id/ =
M A. We compute the camera rotation axes as

A=[ B By ] (19)

whereA is 6 x 6 matrix andB;, B> are boths x 3 matrices.

SinceM = MA, ii=m; ji=n; ki=m;xn; (27)
MBy = [mi - myng - nn]T The shape matrix consists of the scene structure and the
MB, = [m'y - m'pn - n’n]T velocities represented in the moving world coordinate sys-

T tem. We need to transform the representation back to a fixed
= Nfmp - mpn oy (20) coordinate system with the origin at the center of gravity of
all the points at framé.

where First the velocity of the moving coordinate system is
1 0 --- 0 0 0 - 0 ] computed. Since the system is moving at the average veloc-
O 2 ... 0 0 0 --- 0 ity of all the moving points, the static points share the same
s velocity which is the negative value of the average veloc-
O 0 - n 0 0 - 0 ity. It is often the case that there are more static points than
N = o 0 --- 0 1 0 - 0 (21) the points from any moving object, so we let every point
o 0 --- 0 0 2 ... 0 vote for a “common” velocity (denoted &s). The velocity
e e e s with the most votes is taken as the negative velocity of the
O 0 --- 0 0 0 - n moving coordinate system. The points with the “common”
) ) velocity are automatically classified as static and the scene
according to Equation (7). Therefore, structure is computed as:
MB; = NMB, (22) sc; =8; + Ve (28)

wheresc; denotes the scene point position represented in

B is over constrained giveR; andM/:
? g ' the fixed coordinate system. According to Equation £1),

By, = KB, (23) is the point position at frame.
The points which do not have the “common” velocity
where are the moving points. The number of the moving objects
K=M1INM (24) is therefore detected. Their starting positions represented in

A ] ] ] o the fixed coordinate system are:
andM ~! is the generalized inverse matrix whichgisc 2n

and uniquely defined whein > 3. sm; = s; + v, (29)



and their velocities are:
v = v; — Vv, (30)

3.5. Algorithm outline

We summarize the algorithm as follows:

1. Compute the camera translatignérom the measure-

ment matrixi¥ according to Equation (12);

. Subtracfl" from W to generaté? according to Equa-
tion (13);

. Perform SVD o/ and getV/ andS;

. Set up linear equations of tBé unknown elements of
the symmetric matrix@, by imposing constraints in
Equations (15) to (17);

. Factorize); to getB; from @, = B, BT;
. ComputeB, from B, = K By;

. CombineB; and B, to generate the linear transforma-
tion matrix A = [B; Bs];

. Recover the shape matrix usifig= A~15 and motion
matrix usingM = M A,

. Recover the camera rotations as in Equation (27);

10.
the moving objects according to Equations (28) to (30).

4. Degenerate cases

The algorithm described in Section 3 solves the full rank
case where the static structure and the motion space of th
objects are both rank This is the case when the scene is
three dimensional and the velocities of the moving objects
span a three dimensional space. In this section we discus
the solutions for degenerate cases.

If the scene has a degenerate shape, such as all the points

lie in a plane, the plane plus parallax method [6] detects

the case and solves for the scene structure (plane position),
the camera motion and the motion segmentation [1, 7]. The §
motion trajectories can be recovered using the method pro-

S

2. Rank4 case: The matri%V has rankt when there is
one moving object or multiple objects moving in the
same and/or the opposite direction (netassarily the
same 3D line). Section 4.2 describes a linear algorithm
for this case.

. Rankb case: The matri¥¥ has ranks when the ve-
locities of the objects lie in a two dimensional space
(not necessarily the same 3D plane). Section 4.3 gives
a nonlinear solution to this case.

4.1. Rank approximation

Given tracked feature points, we first need to decide
which case (full rank or the three degenerate cases) is the
best approximation. The rank of the matfiX is one im-
portant clue. However, finding the rankidf is not straight-
forward. Both inaccuracies in feature locations and ap-
proximation of perspective projection using orthographic
(weak perspective or para perspective) camera models in-
duce noises in the rank computation.

We use an algorithm similar to [3, 5] to detect the rank
of W. We first estimate the noise level of the input images
and approximate the rank using the singular valueg/of
and the noise level. The rank &f can only be any value
in {3,4,5,6}, which is determined by the motion space of
the objects and is not dependent on the number of moving
objects. Compared with Costeira and Kanade’s method [4],
in which the rank value is used to detect the number of mov-
ing objects and is affected by degenerate objects, our rank

Reconstruct the scene structure and the trajectories Of:omputation is more reliable.

4.2. Rank+ case

When only one moving object is in the scene, or when
all moving objects travel in the same or the opposite direc-

éion, the motion space is one dimensional. We alignxthe

direction of the world coordinate system with the motion di-
rection. The system is still moving with the constant veloc-
ity. Therefore, the motion and shape matrices are (compare
with Equations (6) and (8)):

T
Moo= | e e n
Izl 22@'2 Jzl 2.7x2 N)on
_ S1 S92 Sm (31)
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posed by Avidan and Shashua [2] given the reconstructionSimilar derivations apply to the computationB{Equation

of the camera motion. In this section we discuss the solu-
tions to the degenerate motion space of the objects.
We classify the degenerate situations as three classes:

1. Rank3 case: The matri%l’ has rank3 when there is
no moving object in the scene. The one-object fac-
torization method [10, 8] is used to recover the scene
structure and the camera motion.

(12)) and the decomposition &F (Equation(14)). In this
case the rank dfl’ is 4 and the linear transformation matrix
Ais4 x 4. Similarly, we define

A=[ B B ] (32)

whereB; is4 x 3, B> is4 x 1 and we have,

By = KBy (33)



where By is the first column ofB; and K is defined in whereny; is theith row of matrix /.
Equation(24). Since the matri¥/ consists of the rotation Therefore, we get linear equations of ttieunknown el-
axes and only the elements of the scaled rotation axes, ements ofQ; and thel5 unknown elements afc™. Since
the constraints in Equations (16) and (17) cannot be repre-these equations cannot provide full rank constraints on the
sented as linear constraints on the element®d# *. The 30 unknowns, there is no linear solutions @f andcc™
constraints in Equation (15) still hold and provide full rank directly. However, the constraints are full rank on the ele-
linear equations on th&) unknown elements of the sym- ments ofQ; if ccT is given. That is, it can be computed,
metric4 x 4 matrix ;. Least squares solutions are com- we can get a linear solution @f;. In this way we change
puted. We then computi, by matrix decomposition af); the problem to a small scale nonlinear optimization on the
and B by Equation (33). 5 elements of. Once the vector is computed, the ma-
We apply a derivation similar to the one in Section 3 to trix @, is computed by least squares solutiois. is then
recover the motion and shape. The alignment matriaf calculated fron{); and B, by Equation (37).

the world coordinate system is determined by: The alignment matrid of the world coordinate system
. is determined by:
B:R=K (BlR)l (34)
BQR =K [ (BlR)l (BlR)Z ] (39)

which means that the alignment is constrained to make the
x direction of the world coordinate system as the moving This constrains the alignment of the world coordinate sys-

direction. (), denotes the first column of the matrix. tem by putting thex — y plane of the system on the motion
plane. The above equation is solved by the least eigenvalue
4.3. Rank+ case method. (), and()- denote the first and second column of

When the velocities of all moving objects lie in a two the matrix respectively.

dimensional space, we assume that thdirection andy
direction of the world coordinate system are aligned with
the two dimensional motion space. The systentiisnsov-

ing with the constant velocity. Therefore, the motion and
shape matrices are:

5. Experiments

In this section a number of experiments are described.
First some synthetic images are used to evaluate the qual-
ity of the algorithm. Then two experiments are conducted

(m; ms - n; ny -~ n T on real image sequences. The first sequence was taken by
_ : : : : s a hand-held camera of an indoor scene, and the reconstruc-
M = 1zl 22@'2 o Jel 2.7x2 o Nen . .
iy 2igs o Jyi g2 o Mg tion results are compared with the ground truth. The second
- sequence was taken by a small plane flying over the build-
51 82t Sm ings.
S = Vg1 Vg2 - VUrm (35)
L Yyl Uy2 o Uym 5.1. Synthetic sequences

So the rank ofV is 5 and the linear transformation matrix We generate sequences df0 frames with49 feature
Aish x b. Similarly, we define points from the static scene afidto 9 objects moving in
random directions. The shape of the static scene is a sweep

A=[B1 B ] (36) of the sin curve in the space. We a2l noises to the fea-
whereB; is5 x 3 andB, is) x 2: ture locations.
7 Figure 1 illustrates the case wheteobjects are mov-
By=K[ Bu B | (37) ing randomly in 3D spce. The algorithm automatically de-

tects the number of the moving objectstaseconstructs the

where By; and By, are the first two columns of; and ; o - . X
static scene and the initial positions of thenoving objects,

K is defined in Equation (24). Here only the constraints in H i Ei 1 Ei 1(b) sh h actori
Equation (15) can be represented as linear constraints on th&S Shown in Figure (a). Figure 1(b) shows the trajectories

elements of); . In this case the constraints are not sufficient of the moving ObjeCtS, as well as the static scene.
to solve for the 5 unknown elements of the symmetfie 5 We perform experiments on the case that there are two
matrixQ; linearly moving objects whose directions are on a plane. The al-

The constraints in Equations (16) and (17) can be repre_gorlthm detects that the rank é:sand recovers the scene
sented on the elements 6 and the five elements of the structure and the two motion trajectories correctly. We also

third column of B, , which is a5 x 1 vector denoted by, 1Y the case that there are three moving objects but their
such as: motion directions lie in a two dimensional space. The algo-
rithm gets the right rank approximatios)@nd the accurate
lm’;|* = h; By By i} + i*riyec’ ) =i (38)  reconstructions (shown in Figure 2).



values ig).1°.
5.2. Real sequence 1

This sequence was taken of an indoor scene by a hand-
held camera. Three objects, a car, a plane and a toy per-
son, are moving linearly with constant speeds. The car and
the person are moving on the floor, and the speed of the
(b) car is three times of the speed of the person. Their motion
directions are perpendicular with each other. The plane is
taking off on a slope and moves two times as fast as the
car. The boxes represent the static scehkimages were
taken. Three of them are shown in Figure 3(2).feature
points were manually selected and tracked. We use the first
18 frames to perform the reconstruction. The shapes of the
boxes, the starting positions of the moving objects and the
motion velocities are recovered and demonstrated in Figure
3(b) (with texture mapping) and (c) (with wireframe), the
motion trajectories are overlaid in the images. Figure 3 (d)
show the recovered camera locations and orientations.

We assess the quality of the reconstruction by compari-
son with the ground truth. The angle between the motion
direction of the car and that of the persor®is15°, the ra-
tio between the speedsid)5 which is close to the expected
(b) value3.0. The ratio of the speed of the plane to that of the

car is1.97. The maximum distance between the positions
Figure 2. Rank# case: a scene with three motion of the recovered static points and the ground truth positions
trajectories which lie in a two dimensional space. (a) IS 2mm. The recovered motion direction of the plane(s$
The reconstructed scene structure and the initial po- tilted upward from the floor, which is close to the expected
sitions of the moving objects. (b) The reconstructed ~ Value.
scene and the motion trajectories. We project the motion trajectories back to the images and
measure the discrepancies of the tracked objects and the
back projections in the last seven frames. The maximum
discrepancy i€ pixels.

Figure 1. Full rank case: a scene with a three di-
mensional motion space. (a) The reconstructed scene
structure and the initial positions of the moving ob-
jects. (b) The reconstructed scene and the motion tra-
jectories.

We also conduct experiments on rafikases that there
is only one moving object, and that there are multiple mov-
ing objects which are moving in the same or the opposite
direction. The algorithm detects the rankdas both cases.
For the case that there is no moving object, the algorithm  This sequence was taken by a small airplane flying over
correctly detects the rank 8sand recovers the scene struc- a scene with multiple moving cars. The figét frames of a
ture. 90 frame sequence are used, three of these frames are shown
In all cases, we measure the reconstruction error by com-in Figure 4(a).35 feature points were manually selected in
parison with the ground truth. Since the reconstruction from the first frame corresponding to the buildings and the two
monocular image sequences is up to scale, we assume thahoving cars. These pointswere automatically tracked in the
the size of the static shape Is With 2% image noises,  remaining frames. The algorithm estimates the rankof
the maximum distance between the recovered static pointsas4 because the two cars are movingipposite directions.
and their known positions i6.0%, the maximum error of  Figures 4(b) and (c) show the recovered buildings as well
the reconstructed initial positions of the moving objects is as the motion trajectories. Since the resolution of the input
1.2% and the velocity error is less thdnl%. We also as-  images is very low, the texture mapping is not very clear.
sess the quality of the camera motion reconstruction. TheSimilar to the experiment in Section 5.2, we measure the
maximum distance between the recovered camera locationsliscrepancies of the back projection cars and the tracked
and the ground truth valuesiisi% and the maximum angle cars for the finall0 frames. The maximum discrepancies
between the recovered camera orientations and the knowrare4 pixels for the white car andl pixels for the black car.

5.3. Real sequence 2



(b) (€ (d)

Figure 3. (a) 1st, 7th and 18th images of the indoor sequence, the moving objects are circled in the 1stimage. (b) Two
views of the reconstruction with texture mapping, the black lines denote the recovered motion trajectories, the arrows
show the motion directions. (c) Two views of the reconstruction with wireframe, the black lines denote the recovered
motion trajectories. (d) Two views of the reconstruction, the 3-axis figures are the recovered cameras.

6. Discussion motion space.
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