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Abstract

We describe an algorithm for reconstructing a scene con-
taining multiple moving objects. Given a monocular image
sequence, we recover the scene structure, the trajectories of
the moving objects and the camera motion simultaneously.
The number of the moving objects is automatically detected
without prior motion segmentation. Assuming that the ob-
jects are moving linearly with constant speeds, we propose
a unified geometrical representation of the static scene and
the moving objects. This representation enables the em-
bedding of the motion constraints into the scene structure,
which leads to a factorization-based algorithm. Experimen-
tal results on synthetic and real images are presented.

1. Introduction

We are interested in video sequences of scenes rich with
moving objects taken from a moving airborne platform.
Many interesting problems have been discussed on such se-
quences including scene reconstruction [1, 8], motion seg-
mentation [11, 9], reconstruction of moving trajectories [2]
and camera motion recovery [7, 4]. Most of these methods
deal with the above problems separately. However, the in-
formation integrated over the sequence provides constraints
on the scene structure, the trajectories of the moving objects
and the camera motion. We are therefore motivated to seek
a one step reconstruction algorithm.

In aerial video sequences, the moving objects are often
far from the camera. It is therefore difficult to get multiple
feature points from one moving object. It is a good approxi-
mation to abstract the moving objects as points. As pointed
out in [2], recovering the locations of the moving point from
a monocular image sequence is impossible without assump-
tions about its trajectory. We assume that the objects are
moving linearly with constant speeds. This assumption is
reasonable for most moving objects, such as cars, planes
and people, especially for short time intervals.

We propose a unified representation of the static scene
and the moving objects in which each point has an initial
position and a constant velocity. Points on the static scene

are defined to have zero velocity. This representation em-
beds the motion constraints within the scene structure, and
naturally leads to a factorization-based algorithm which re-
constructs the scene structure, the trajectories of the moving
objects and the camera motion simultaneously. The num-
ber of the moving objects is automatically detected without
prior motion segmentation. We also discuss solutions to the
degenerate cases. Experiments on synthetic and real images
are presented.

1.1. Related work

Zelnik-Manor and Irani [12, 5] propose using subspace
constraints on multi-frame information to compute homog-
raphy and optical flows. Their work demonstrates that the
use of geometric constraints provides a good way to inte-
grate information over image sequences. The multibody
factorization method proposed by Costeira and Kanade [4]
reconstructs the motions and shapes of independently mov-
ing objects, but requires that each object have multiple fea-
ture points. Avidan and Shashua [2] recover the linear tra-
jectory of a 3D point by line fitting. They assume that the
object is moving along a line, but they do not require the ob-
ject to move with constant speed. They assume the camera
motion is given as well as the prior motion segmentation,
and do not recover the scene structure.

2. Representation

We propose a unified representation of the static scene
and the moving objects. Assuming thatm feature points are
tracked overn images, some of them static and the others
moving linearly with constant speeds, we regard every point
as a moving point with constant velocity: the static points
simply have zero velocity. Any pointpj is represented by,

pj = sj + ivj (1)

in a world coordinate system, wherei = 1 � � �n andj =
1 � � �m. n is the number of frames andm is the number of
feature points.sj is the point position at frame0 (i.e., when
the0th frame is taken) andvj is its motion velocity.



In this paper we use the orthographic camera model. It
is straightforward to extend the derivation to weak and para
perspective projections which are used in our experiments.
If a point pj is observed in framei at image coordinates
(uij; vij), then,

uij = ii �pj + txi

vij = ji � pj + tyi (2)

ii andji are the rotation axes of theith camera.txi andtyi
are the translations. Therefore,

uij = ii � sj + i ii � vj + txi

vij = ji � sj + i ji � vj + tyi (3)

We put all the feature points coordinates(uij; vij) in a
2n�m matrixW called themeasurement matrix:

W =

2
6666664

u11 � � � u1m
� � � � � � � � �
un1 � � � unm
v11 � � � v1m
� � � � � � � � �
vn1 � � � vnm

3
7777775

(4)

Each column ofW contains the observations for a single
point, and each row contains the observedu-coordinates or
v-coordinates for a single frame. We have,

W = MS + T [1 1 � � � 1] (5)

with the rotation matrix:

M =

�
m1 m2 � � � mn n1 n2 � � � nn
m0

1 m0

2 � � � m0

n n01 n02 � � � n0n

�T
(6)

where
mi = ii m0

i = i ii
ni = ji n0i = i ji

(7)

and the shape matrix:

S =

�
s1 s2 � � � sm
v1 v2 � � � vm

�
(8)

The translation matrixT is:

T = [tx1 tx2 � � � txn ty1 ty2 � � � tyn]
T (9)

The constraints of the objects moving linearly with con-
stant speeds enables the unified representation of the motion
matrixM , composed of the rotation axes (mi andni) and
the scaled rotation axes (m0

i andn0i), and of the shape ma-
trix, composed of the scene structure (sj) and the motion
velocities (vj).

3. Reconstruction

In this section we describe our factorization-based algo-
rithm. Given tracked feature points, the algorithm decom-
poses the measurement matrix to recover the scene struc-
ture, the trajectories of the moving objects and the camera
motion in a single step. The number of the moving objects is
automatically detected without prior motion segmentation.

3.1. Moving coordinate system

As the points are either static or moving linearly with
constant speeds, the center of gravity of all the points is
moving linearly with constant speed as well. The velocity
of the center of gravity is equal to the average of all the ve-
locities (vj). We transform the 3D representations to a mov-
ing world coordinate system with fixed orientation (such as
being aligned with the first camera) and the origin at the
center of gravity of all the points. Therefore,

mX
j=1

pj = 0 (10)

From Equation (2), we have,

mX
j=1

uij =
mX
j=1

(ii � pj + txi) = ii

mX
j=1

pj +mtxi

mX
j=1

vij =
mX
j=1

(ji � pj + tyi) = ji

mX
j=1

pj +mtyi (11)

We can compute the translation vector directly from equa-
tion (11):

txi =
1

m

mX
j=1

uij tyi =
1

m

mX
j=1

vij (12)

3.2. Decomposition

Once the translation vectorT is known, we subtract it
fromW in Equation (5):

Ŵ = W � T
�
1 1 � � � 1

�
(13)

= M̂ Ŝ = M̂AA�1Ŝ = MS (14)

whereM = M̂A andS = A�1Ŝ. According to the repre-
sentations ofM andS in Equations (6) and (8), we know
that the rank of the matrix̂W is at most6 no matter how
many moving objects are there. We perform a SVD onŴ

and get the best possible rank6 approximation ofŴ as
M̂ Ŝ, whereM̂ is a 2n � 6 matrix andŜ is a 6 � m ma-
trix. Any non-singular6 � 6 matrix A could be inserted
betweenM̂ andŜ to get another motion and shape pair.



3.3. Normalization

Metric constraints are imposed to translate the current
pair of motion (M̂) and shape (̂S) to the Euclidean solu-
tions through recovering the linear transformationA. This
process is callednormalization. We recover this6� 6 ma-
trix A by observing that the rows of the motion matrixM
consist of the rotation axes and the scaled ones (Equation
(6)):

jmij
2 = 1 jnij

2 = 1 mi �ni = 0 (15)

jm0

ij
2
= i2 jn0ij

2
= i2 m0

i � n
0

i = 0 (16)

mi � n
0

i = 0 m0

i �ni = 0 (17)

The above equations impose linear constraints on the ele-
ments ofMMT. Since

MMT = M̂AATM̂T (18)

these constraints are linear on the elements of the symmetric
matrixQ = AAT. Define

A =
�
B1 B2

�
(19)

whereA is 6�6 matrix andB1,B2 are both6�3 matrices.
SinceM = M̂A,

M̂B1 = [m1 � � � mn n1 � � � nn]
T

M̂B2 = [m0

1 � � � m0

n n
0

1 � � � n0n]
T

= N [m1 � � � mn n1 � � � nn]
T (20)

where

N =

2
66666666664

1 0 � � � 0 0 0 � � � 0
0 2 � � � 0 0 0 � � � 0
� � � � � � � � � � � � � � � � � � � � � � � �
0 0 � � � n 0 0 � � � 0
0 0 � � � 0 1 0 � � � 0
0 0 � � � 0 0 2 � � � 0
� � � � � � � � � � � � � � � � � � � � � � � �
0 0 � � � 0 0 0 � � � n

3
77777777775

(21)

according to Equation (7). Therefore,

M̂B2 = NM̂B1 (22)

B2 is over constrained givenB1 andM̂ :

B2 = KB1 (23)

where
K = M̂�1NM̂ (24)

andM̂�1 is the generalized inverse matrix which is6� 2n
and uniquely defined whenn � 3.

From Equation (20), we see that Equation (15) imposes
constraints on the21 unknown elements of the6 � 6 sym-
metric matrixQ1 = B1B

T
1 , while Equation (16) imposes

constraints on the21 unknown elements ofQ2 = B2B
T
2 .

From Equation (23) we have,

Q2 = B2B
T

2
= KB1B

T

1
KT = KQ1K

T (25)

which translates the constraints onQ2 to constraints onQ1.
Equation (17) imposes constraints onQ3 = B2B

T

1
which

can also be translated into constraints onQ1:

Q3 = B2B
T

1 = KB1B
T

1 = KQ1 (26)

Therefore, each frame contributes8 constraints (Equa-
tions (15) to (17)) onQ1. In total, we get8n equations on
the21 unknown elements of the symmetric matrixQ1. Lin-
ear least squares solutions are computed. We then compute
the matrixB1 fromQ1 by matrix decomposition andB2 by
Equation (23), so we recover the linear transformationA.

3.4. Shape and motion reconstruction

Once the matrixA has been found, the shape matrix is
computed usingS = A�1Ŝ and the motion matrix isM =
M̂A. We compute the camera rotation axes as

ii =mi ji = ni ki = mi � ni (27)

The shape matrix consists of the scene structure and the
velocities represented in the moving world coordinate sys-
tem. We need to transform the representation back to a fixed
coordinate system with the origin at the center of gravity of
all the points at frame1.

First the velocity of the moving coordinate system is
computed. Since the system is moving at the average veloc-
ity of all the moving points, the static points share the same
velocity which is the negative value of the average veloc-
ity. It is often the case that there are more static points than
the points from any moving object, so we let every point
vote for a “common” velocity (denoted asvc). The velocity
with the most votes is taken as the negative velocity of the
moving coordinate system. The points with the “common”
velocity are automatically classified as static and the scene
structure is computed as:

scj = sj + vc (28)

wherescj denotes the scene point position represented in
the fixed coordinate system. According to Equation (1),sj
is the point position at frame0.

The points which do not have the “common” velocity
are the moving points. The number of the moving objects
is therefore detected. Their starting positions represented in
the fixed coordinate system are:

smj = sj + vc (29)



and their velocities are:

vmj = vj � vc (30)

3.5. Algorithm outline

We summarize the algorithm as follows:

1. Compute the camera translationsT from the measure-
ment matrixW according to Equation (12);

2. SubtractT fromW to generateŴ according to Equa-
tion (13);

3. Perform SVD onŴ and getM̂ andŜ;

4. Set up linear equations of the21 unknown elements of
the symmetric matrixQ1 by imposing constraints in
Equations (15) to (17);

5. FactorizeQ1 to getB1 fromQ1 = B1B
T

1 ;

6. ComputeB2 fromB2 = KB1;

7. CombineB1 andB2 to generate the linear transforma-
tion matrixA = [B1 B2];

8. Recover the shape matrix usingS = A�1Ŝ and motion
matrix usingM = M̂A;

9. Recover the camera rotations as in Equation (27);

10. Reconstruct the scene structure and the trajectories of
the moving objects according to Equations (28) to (30).

4. Degenerate cases

The algorithm described in Section 3 solves the full rank
case where the static structure and the motion space of the
objects are both rank3. This is the case when the scene is
three dimensional and the velocities of the moving objects
span a three dimensional space. In this section we discuss
the solutions for degenerate cases.

If the scene has a degenerate shape, such as all the points
lie in a plane, the plane plus parallax method [6] detects
the case and solves for the scene structure (plane position),
the camera motion and the motion segmentation [1, 7]. The
motion trajectories can be recovered using the method pro-
posed by Avidan and Shashua [2] given the reconstruction
of the camera motion. In this section we discuss the solu-
tions to the degenerate motion space of the objects.

We classify the degenerate situations as three classes:

1. Rank-3 case: The matrix̂W has rank3 when there is
no moving object in the scene. The one-object fac-
torization method [10, 8] is used to recover the scene
structure and the camera motion.

2. Rank-4 case: The matrix̂W has rank4 when there is
one moving object or multiple objects moving in the
same and/or the opposite direction (not necessarily the
same 3D line). Section 4.2 describes a linear algorithm
for this case.

3. Rank-5 case: The matrix̂W has rank5 when the ve-
locities of the objects lie in a two dimensional space
(not necessarily the same 3D plane). Section 4.3 gives
a nonlinear solution to this case.

4.1. Rank approximation

Given tracked feature points, we first need to decide
which case (full rank or the three degenerate cases) is the
best approximation. The rank of the matrix̂W is one im-
portant clue. However, finding the rank ofŴ is not straight-
forward. Both inaccuracies in feature locations and ap-
proximation of perspective projection using orthographic
(weak perspective or para perspective) camera models in-
duce noises in the rank computation.

We use an algorithm similar to [3, 5] to detect the rank
of Ŵ . We first estimate the noise level of the input images
and approximate the rank using the singular values ofŴ

and the noise level. The rank of̂W can only be any value
in f3; 4; 5; 6g, which is determined by the motion space of
the objects and is not dependent on the number of moving
objects. Compared with Costeira and Kanade’s method [4],
in which the rank value is used to detect the number of mov-
ing objects and is affected by degenerate objects, our rank
computation is more reliable.

4.2. Rank-4 case

When only one moving object is in the scene, or when
all moving objects travel in the same or the opposite direc-
tion, the motion space is one dimensional. We align thex

direction of the world coordinate system with the motion di-
rection. The system is still moving with the constant veloc-
ity. Therefore, the motion and shape matrices are (compare
with Equations (6) and (8)):

M =

�
m1 m2 � � � n1 n2 � � � nn
ix1 2ix2 � � � jx1 2jx2 � � � njxn

�T

S =

�
s1 s2 � � � sm
vx1 vx2 � � � vxm

�
(31)

Similar derivations apply to the computation ofT (Equation
(12)) and the decomposition of̂W (Equation(14)). In this
case the rank of̂W is 4 and the linear transformation matrix
A is 4� 4. Similarly, we define

A =
�
B1 B2

�
(32)

whereB1 is 4� 3,B2 is 4� 1 and we have,

B2 = KB11 (33)



whereB11 is the first column ofB1 andK is defined in
Equation(24). Since the matrixM consists of the rotation
axes and only thex elements of the scaled rotation axes,
the constraints in Equations (16) and (17) cannot be repre-
sented as linear constraints on the elements ofMMT. The
constraints in Equation (15) still hold and provide full rank
linear equations on the10 unknown elements of the sym-
metric4 � 4 matrixQ1. Least squares solutions are com-
puted. We then computeB1 by matrix decomposition ofQ1

andB2 by Equation (33).
We apply a derivation similar to the one in Section 3 to

recover the motion and shape. The alignment matrixR of
the world coordinate system is determined by:

B2R = K(B1R)1 (34)

which means that the alignment is constrained to make the
x direction of the world coordinate system as the moving
direction.()1 denotes the first column of the matrix.

4.3. Rank-5 case

When the velocities of all moving objects lie in a two
dimensional space, we assume that thex direction andy
direction of the world coordinate system are aligned with
the two dimensional motion space. The system is still mov-
ing with the constant velocity. Therefore, the motion and
shape matrices are:

M =

2
4 m1 m2 � � � n1 n2 � � � nn
ix1 2ix2 � � � jx1 2jx2 � � � njxn
iy1 2iy2 � � � jy1 2jy2 � � � njyn

3
5
T

S =

2
4 s1 s2 � � � sm
vx1 vx2 � � � vxm
vy1 vy2 � � � vym

3
5 (35)

So the rank ofŴ is 5 and the linear transformation matrix
A is 5� 5. Similarly, we define

A =
�
B1 B2

�
(36)

whereB1 is 5� 3 andB2 is 5� 2:

B2 = K
�
B11 B12

�
(37)

whereB11 andB12 are the first two columns ofB1 and
K is defined in Equation (24). Here only the constraints in
Equation (15) can be represented as linear constraints on the
elements ofQ1. In this case the constraints are not sufficient
to solve for the15 unknown elements of the symmetric5�5
matrixQ1 linearly.

The constraints in Equations (16) and (17) can be repre-
sented on the elements ofQ1 and the five elements of the
third column ofB1, which is a5 � 1 vector denoted byc,
such as:

jm0

ij
2 = m̂iB2B

T

2 m̂
T

i + i2m̂icc
Tm̂T

i = i2 (38)

wherem̂i is theith row of matrixM̂ .
Therefore, we get linear equations of the15 unknown el-

ements ofQ1 and the15 unknown elements ofccT. Since
these equations cannot provide full rank constraints on the
30 unknowns, there is no linear solutions ofQ1 andccT

directly. However, the constraints are full rank on the ele-
ments ofQ1 if ccT is given. That is, ifc can be computed,
we can get a linear solution ofQ1. In this way we change
the problem to a small scale nonlinear optimization on the
5 elements ofc. Once the vectorc is computed, the ma-
trix Q1 is computed by least squares solutions.B1 is then
calculated fromQ1 andB2 by Equation (37).

The alignment matrixR of the world coordinate system
is determined by:

B2R = K
�
(B1R)1 (B1R)2

�
(39)

This constrains the alignment of the world coordinate sys-
tem by putting thex� y plane of the system on the motion
plane. The above equation is solved by the least eigenvalue
method.()1 and()2 denote the first and second column of
the matrix respectively.

5. Experiments

In this section a number of experiments are described.
First some synthetic images are used to evaluate the qual-
ity of the algorithm. Then two experiments are conducted
on real image sequences. The first sequence was taken by
a hand-held camera of an indoor scene, and the reconstruc-
tion results are compared with the ground truth. The second
sequence was taken by a small plane flying over the build-
ings.

5.1. Synthetic sequences

We generate sequences of100 frames with49 feature
points from the static scene and0 to 9 objects moving in
random directions. The shape of the static scene is a sweep
of the sin curve in the space. We add2% noises to the fea-
ture locations.

Figure 1 illustrates the case where4 objects are mov-
ing randomly in 3D space. The algorithm automatically de-
tects the number of the moving objects as4, reconstructs the
static scene and the initial positions of the4moving objects,
as shown in Figure 1(a). Figure 1(b) shows the trajectories
of the moving objects as well as the static scene.

We perform experiments on the case that there are two
moving objects whose directions are on a plane. The al-
gorithm detects that the rank as5 and recovers the scene
structure and the two motion trajectories correctly. We also
try the case that there are three moving objects but their
motion directions lie in a two dimensional space. The algo-
rithm gets the right rank approximation (5) and the accurate
reconstructions (shown in Figure 2).



(a) (b)

Figure 1. Full rank case: a scene with a three di-
mensional motion space. (a) The reconstructed scene
structure and the initial positions of the moving ob-
jects. (b) The reconstructed scene and the motion tra-
jectories.

(a) (b)

Figure 2. Rank-5 case: a scene with three motion
trajectories which lie in a two dimensional space. (a)
The reconstructed scene structure and the initial po-
sitions of the moving objects. (b) The reconstructed
scene and the motion trajectories.

We also conduct experiments on rank-4 cases that there
is only one moving object, and that there are multiple mov-
ing objects which are moving in the same or the opposite
direction. The algorithm detects the rank as4 in both cases.
For the case that there is no moving object, the algorithm
correctly detects the rank as3 and recovers the scene struc-
ture.

In all cases, we measure the reconstruction error by com-
parison with the ground truth. Since the reconstruction from
monocular image sequences is up to scale, we assume that
the size of the static shape is1. With 2% image noises,
the maximum distance between the recovered static points
and their known positions is1:0%, the maximum error of
the reconstructed initial positions of the moving objects is
1:2% and the velocity error is less than1:1%. We also as-
sess the quality of the camera motion reconstruction. The
maximum distance between the recovered camera locations
and the ground truth values is1:4% and the maximum angle
between the recovered camera orientations and the known

values is0:1�.

5.2. Real sequence 1

This sequence was taken of an indoor scene by a hand-
held camera. Three objects, a car, a plane and a toy per-
son, are moving linearly with constant speeds. The car and
the person are moving on the floor, and the speed of the
car is three times of the speed of the person. Their motion
directions are perpendicular with each other. The plane is
taking off on a slope and moves two times as fast as the
car. The boxes represent the static scene.24 images were
taken. Three of them are shown in Figure 3(a).23 feature
points were manually selected and tracked. We use the first
18 frames to perform the reconstruction. The shapes of the
boxes, the starting positions of the moving objects and the
motion velocities are recovered and demonstrated in Figure
3(b) (with texture mapping) and (c) (with wireframe), the
motion trajectories are overlaid in the images. Figure 3 (d)
show the recovered camera locations and orientations.

We assess the quality of the reconstruction by compari-
son with the ground truth. The angle between the motion
direction of the car and that of the person is90:15�, the ra-
tio between the speeds is3:05which is close to the expected
value3:0. The ratio of the speed of the plane to that of the
car is1:97. The maximum distance between the positions
of the recovered static points and the ground truth positions
is 2mm. The recovered motion direction of the plane is20�

tilted upward from the floor, which is close to the expected
value.

We project the motion trajectories back to the images and
measure the discrepancies of the tracked objects and the
back projections in the last seven frames. The maximum
discrepancy is2 pixels.

5.3. Real sequence 2

This sequence was taken by a small airplane flying over
a scene with multiple moving cars. The first80 frames of a
90 frame sequence are used, three of these frames are shown
in Figure 4(a).35 feature points were manually selected in
the first frame corresponding to the buildings and the two
moving cars. These points were automatically tracked in the
remaining frames. The algorithm estimates the rank ofŴ

as4 because the two cars are moving inopposite directions.
Figures 4(b) and (c) show the recovered buildings as well
as the motion trajectories. Since the resolution of the input
images is very low, the texture mapping is not very clear.
Similar to the experiment in Section 5.2, we measure the
discrepancies of the back projection cars and the tracked
cars for the final10 frames. The maximum discrepancies
are4 pixels for the white car and5 pixels for the black car.



(a)

(b) (c) (d)

Figure 3. (a) 1st, 7th and 18th images of the indoor sequence, the moving objects are circled in the 1st image. (b) Two
views of the reconstruction with texture mapping, the black lines denote the recovered motion trajectories, the arrows
show the motion directions. (c) Two views of the reconstruction with wireframe, the black lines denote the recovered
motion trajectories. (d) Two views of the reconstruction, the 3-axis figures are the recovered cameras.

6. Discussion

Assuming that the objects are moving linearly with con-
stant speeds, we propose a unified geometrical representa-
tion incorporating the static scene and the moving objects.
This representation enables the embedding of the motion
constraints into the scene structure, that is, the shape matrix
is composed of two spaces: one is the scene structure space
and another is the motion space. The algorithm makes use
of the constraints between the camera motion and the shape
matrix to perform the reconstruction. Experiments show
that the reconstruction is reliable in the presence of noises.
However, analysis is necessary to the sensitivity to noises
of the two spaces (the scene space and the motion space)
because every point, either static or moving, contributes to
the scene space and only the moving points contribute to the

motion space.
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