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Abstract. In this paper, we provide a principled explanation of how knowledge in global 3-D structural invariants,
typically captured by a group action on a symmetric structure, can dramatically facilitate the task of reconstructing
a 3-D scene from one or more images. More importantly, since every symmetric structure admits a “canonical”
coordinate frame with respect to which the group action can be naturally represented, the canonical pose between
the viewer and this canonical frame can be recovered too, which explains why symmetric objects (e.g., buildings)
provide us overwhelming clues to their orientation and position. We give the necessary and sufficient conditions
in terms of the symmetry (group) admitted by a structure under which this pose can be uniquely determined. We
also characterize, when such conditions are not satisfied, to what extent this pose can be recovered. We show how
algorithms from conventional multiple-view geometry, after properly modified and extended, can be directly applied
to perform such recovery, from all “hidden images” of one image of the symmetric structure. We also apply our
results to a wide range of applications in computer vision and image processing such as camera self-calibration,
image segmentation and global orientation, large baseline feature matching, image rendering and photo editing, as
well as visual illusions (caused by symmetry if incorrectly assumed).
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1. Introduction object. This gives rise to the subject of multiple-view

geometry, a primary focus of study in the computer

One of the main goals of computer vision is the study
of how to infer three-dimensional (3-D) information
(e.g., shape, layout and motion) of a scene from its
two-dimensional (2-D) image(s). A particular thrust of
effort is to extract 3-D geometric information from 2-
D images by exploiting geometric relationships among
multiple images of the same set of features on a 3-D

*This work is supported by UIUC ECE/CSL startup fund and NSF
Career Award 115-0347456.

vision community for the past two decades or so. Un-
fortunately, certain relationships among features them-
selves have been, to a large extent, ignored or at least
under-studied. Some of those relationships, as we will
see from this paper, have significant impact on the way
that 3-D information can be (and should be) inferred
from images.

Before we proceed further, let us pause and exam
the images given in Fig. 1 below. What do they have
in common? Notice that these images are just a few
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Figure 1. Symmetry is in: architecture, machines, textures, crystals, molecules, ornaments, and nature, etc.

representatives of a common phenomenon exhibited in
nature or man-made environment: symmetry. It is not
so hard to convince ourselves that even from only a
single image, we are able to perceive clearly the 3-D
structure and relative pose (orientation and location)
of the object being seen, even though in the image the
shape of the object is distorted by the perspective pro-
jection. The reason is, simply put, there is symmetry at
play.!

The goals of this paper are to provide a principled
explanation why symmetry could encode 3-D informa-
tion within a single perspective image and to develop
algorithms based on multiple-view geometry that ef-
ficiently extract the 3-D information from single im-
ages. There are two things which we want to point out
already:

1. Symmetry is not the only cue which encodes 3-D in-
formation through relationships among a set of fea-
tures (in one image or more images). For instance,
incidence relations among points, lines, and planes
may as well provide 3-D information to the viewer;

2. The concept of symmetry that we consider here is
not just the (bilateral) reflective symmetry, or the
(statistical) isotopic symmetry which has been stud-

ied in a certain extent in the computer vision litera-
ture. Instead it is a more general notion describing
global structural invariants of an object under the
action of any group of transformations. To clarify
this notion is one of the goals of this paper.

Symmetry, as a useful geometric cue to 3-D informa-
tion, has been extensively discussed in psychological
vision literature (Marr, 1982; Plamer, 1999). Neverthe-
less, its contribution to computational vision so far has
been explored often through statistical methods, such as
the study of isotropic textures (e.g., for the 4th image of
Fig. 1) (Gibson, 1950; Witkin, 1988; Zabrodsky et al.,
1995; Mukherjee et al., 1995; Malik and Rosenholtz,
1997; Rosenholtz and Malik, 1997; Leung and Malik,
1997). It is the works of Garding (1992, 1993) and
Malik and Rosenholtz (1997) that have provided peo-
ple a wide range of efficient algorithms for recov-
ering the shape (i.e. the slant and tilt) of a textured
plane based on the assumption of isotropy (or weak
isotropy). These methods are mainly based on collect-
ing statistical characteristics (e.g., the distribution of
edge directions) from sample patches of the texture
and comparing them with those of adjacent patches
against the isotropic hypothesis. Information about the



surface shape is then often conveniently encoded in the
discrepancy or variation of these characteristics.

But symmetry is by nature a geometric property!
Although in many cases the result of symmetry indeed
causes certain statistical homogeneity (like the 4th im-
age of Fig. 1), there are reasons to believe that more
accurate and reliable 3-D geometric information can
be retrieved if we can directly exploit this property
through geometric means. For example, for the texture
shown in the 4th image of Fig. 1, shouldn’t we directly
exploit the fact that the tiling is invariant under certain
proper translations parallel to the plane? To a large ex-
tent, such a geometric approach is complementary to
extant statistical approaches: if statistical homogeneity
can be exploited for shape recovery, so can geometric
homogeneity, especially in cases where symmetry is the
underlying cause for such homogeneity. Of course, for
cases where statistical methods no longer apply (e.g.,
the 5th image of Fig. 1), geometric methods remain as
the only option. One may call this approach as structure
from symmetry.

We are by no means the first to notice that symme-
try, especially reflective symmetry, can be exploited
by geometric means for retrieving 3-D geometric in-
formation. Mitsumoto et al. (1992) studied how to re-
construct a 3-D object using the mirror image based
on planar symmetry, Vetter and Poggio (1994) proved
that for any reflective symmetric 3-D object one non-
accidental 2-D model view is sufficient for recognition,
Zabrodsky and Weinshall (1997) used bilateral symme-
try assumption to improve 3-D reconstruction from im-
age sequences, and Zabrodsky et al. (1995) provided
a good survey on studies of reflective symmetry and
rotational symmetry in computer vision at the time.

In 3-D object and pose recognition, Rothwell et al.
(1993) pointed out that the assumption of reflective
symmetry can be used in the construction of projective
invariants and is able to eliminate certain restrictions
on the corresponding points. Cham and Cipolla (1996)
built the correspondences of contours from reflective
symmetry. For translational symmetry, Schaffalitzky
and Zisserman (2000) used it to detect the vanish-
ing lines and points. Liu et al. (1995) analyzed the
error of obtaining 3-D invariants derived from trans-
lational symmetry. In addition to isometric symme-
try, Liebowitz and Zisserman (1998), Criminisi and
Zisserman (1999) and Criminisi and Zisserman (2000)
showed that other knowledge (e.g., length ratio, vanish-
ing line, etc.) in 3-D also allows accurate reconstruction
of structural metric and camera pose.
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For the detection of symmetry from images, Marola
(1989), Kiryati and Gofman (1998) and Mukherjee
et al. (1995) presented efficient algorithms to find axes
of reflective symmetry in 2-D images, Sun and Sherrah
(1997) discussed reflective symmetry detection in 3-D
space, and Zabrodsky et al. (1995) introduced a symme-
try distance to classify reflective and rotational symme-
try in 2-D and 3-D spaces (with some related comments
given in Kanatani (1997)). Carlsson (1998) and Gool
et al. (1996) derived methods to find 3-D symmetry
from invariants in the 2-D projection. Liu and Colline
(1998) proposed a method to classify any images with
translational symmetry into the 7 Frieze groups and 17
wallpaper groups.

However, there is still a lack of formal and unified
analysis as well as efficient algorithms which would
allow people to easily make use of numerous and dif-
ferent types of symmetry that nature offers. Is there a
unified approach to study 3-D information encoded in a
2-D perspective image of an object that exhibits certain
symmetry? This paper will try to provide a definite an-
swer to this question. Our work differs from previous
results in at least the following three aspects:

1. We study symmetry under perspective projection
based on existing theory of multiple-view geom-
etry.> We claim that in order to fully understand
such 3-D information encoded in a single image,
one must understand geometry among multiple im-
ages.

2. In addition to recover 3-D structure of a symmetric
object from its image, we show that any type of
symmetry is naturally equipped with a canonical
(world) coordinate frame, from which the viewer’s
relative pose to the object can be recovered.

3. We give the necessary and sufficient conditions in
terms of the symmetry group of the object under
which the canonical pose can be uniquely recov-
ered, and we characterize the inherent ambiguity for
each fundamental type of symmetry. Thus, for the
first time, geometric group theory and (perspective)
multiple-view geometry are elegantly and tightly
integrated.

During the development, an important principle asso-
ciated with images of symmetric objects will be ex-
amined with care: One image of a symmetric object is
equivalent to multiple images. This principle is how-
ever not entirely correct since, as we will see, often
relationships among such “images” will not be the
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same as those among conventional images. It in fact
requires careful modifications to existing theories and
algorithms in multiple-view geometry if they are to be
correctly applied to images of symmetric objects.

2. Problem Formulation

Before we formulate the problem in a more abstract
form, let us take a look at a simple example: a planar
board with a symmetric pattern as shown in Fig. 2. It is
easy to see that, from any generic viewpoint, there are
at least four equivalent vantage points (with only the
rotational symmetry considered, for now) which give
rise to an identical image. The only question is which
corners in the image correspond to the ones on the
board. In this sense, these images are in fact different
from the original one. We may call these images as
“hidden.””? For instance, in Fig. 2, we labeled in bracket
corresponding corner numbers for such a hidden image.
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In addition to the rotational symmetry, another kind
of symmetry, the reflective symmetry, can give rise to
a not so conventional type of hidden images, as shown
in Fig. 3. Notice that, in the figure, the two “hidden
images” with the four corners labeled by numbers in
bracket cannot be an image of the same board from any
(physically viable) vantage point!* Nevertheless, as we
will see below, just like the rotational symmetry, this
type of hidden images also encodes rich 3-D geometric
information about the object.

There is yet another type of symmetry “hidden” in
a pattern like a checker board. As shown in Fig. 4 be-
low, for a pattern that repeats a fundamental region
indefinitely along one or more directions, the so-called
“infinite rapport,” one would obtain exactly “the same”
image had the images been taken at vantage points that
differ from each other by multiples n7T of one basic
translation 7. Although all images would appear to be
the same, features (e.g., points, lines) in these images
correspond to different physical features in the world.

Figure 2. Left: a checker board whose symmetry includes reflection along the x and y axes and rotation about o by 90°. Right: an image taken
at location 0;. Notice that the image would appear to be exactly the same if it were taken at 0, instead. go is the relative pose of the board we

perceive from the image on the right.
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Figure 3. I: Corner correspondence between the original image of the board and an “image” with the board reflected in the x-axis by 180°;
I,: Corner correspondence between the original image of the board and an “image” with the board reflected in the y-axis by 180°.
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Figure 4. The checker pattern is repeated indefinitely along the
x-axis. Images taken at o1, 02, and 03 will be the same.

Therefore, for an image like the 4th one in Fig. 1, it in
fact may give rise to many (in theory, possibly infinitely
many) “hidden images.” There is clearly a reason to
believe that it is these (many) hidden images that give
away the geometry of the plane (e.g., tilt, slant) to the
viewer’s eyes.

It is then not hard to imagine that the combination of
the rotational, reflective and translational symmetries
will give rise to all sorts of symmetric objects in 2-D
or 3-D space, many of which could be rather compli-
cated. In our man-made world, symmetric objects are
ubiquitous, under the names of “ornament,” “mosaic,”
“pattern,” or “tiling,” etc. Fascination about symmetric
objects can be traced back to ancient Egyptians and
Greeks.? Nevertheless, a formal mathematical inquiry
to symmetry is known as Hilbert’s 18th problem, and
a complete answer to it was not found till 1910 by
Bieberbach (1910). While in the appendix we briefly
review results of a complete list for 2-D and 3-D sym-
metric structures and groups, this paper will focus on
how to combine this knowledge about symmetry with
multiple-view geometry so as to infer 3-D information
of a symmetric object from its image(s).

In order to explain why symmetry gives away accu-
rate information about structure and location of a sym-
metric 3-D object from a single 2-D perspective image,
we will need a mathematical framework within which
all types of symmetries (that we have mentioned or not
mentioned in the above examples) can be uniformly
taken into account. Only if we can do that, will the in-
troduction of symmetry into multiple-view geometry
become natural and convenient.

Definition I (Symmetric structure and its group action).
Asetofpoints S C R¥is called a symmetric structure if
there exists a non-trivial subgroup G of the Euclidean
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group E(3) that acts on it. That is, for any element
g € G, it defines a bijection (i.e. a one-to-one, onto)
map from S to itself:

geG:S—S.

Sometimes we say that S has a symmetry group G. Or
G is a group of symmetries of S.

In particular, we have g(S) = g~!(§) = S for any
g € G. Mathematically, symmetric structures and
groups are equivalent ways to capture symmetry: any
symmetric structure is invariant under the action of its
symmetry group; and any group (here as a subgroup
of E(3)) defines a class of (3-D) structures that are in-
variant under this group action (see Appendix A). Here
we emphasize that G is in general a subgroup of the
Euclidean group E(3) but not the special one SE(3).
This is because many symmetric structures that we are
going to consider are invariant under reflection which
is an element in O(3) but not SO(3).® For simplicity,
in this paper we consider G to be a discontinuous (or
discrete) group.”

Using the homogeneous representation of E(3), any
element g = (R, T) in G can be represented as a4 x 4
matrix of the form

R T
g=[0 I}GR“X“, (1)

where R € R**3 is an orthogonal matrix (“R” for both
rotation and reflection) and 7' € R? is a vector (“T"” for
translation). Note that in order to represent G in this
way, a world coordinate frame must have been chosen.
It is conventional to choose the origin of the world
coordinate frame to be the center of rotation and its
axes to line up with the axes of rotation and reflection
or direction of translation. Often the canonical world
coordinate frame results in the simplest representation
of the symmetry (Ma et al., 2003).

Now suppose that an image of a symmetric structure
S is taken at a vantage point ggp = (Ry, Tp) € SE(3)—
denoting the pose of the structure relative to the viewer
or the camera. Here g is assumed to be represented
with respect to the canonical world coordinate frame
for the symmetry. If so, we call gq the canonical pose.
As we will see shortly, the canonical pose go from the
viewer to the object can be uniquely determined from
a single image as long as symmetry admitted by the
object (or the scene) is “rich” enough.
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A (calibrated) image of S is a set of image points
Ty C R? and in homogeneous coordinates each image
point x € 7 satisfies

Ax = IlpgoX = [Ry, THlX, ()

where [Ty = [1,0] € R>** X e R*is homogeneous
coordinates of a point p € S, and A € R is the depth
scale. Now since g(S) = S for all g € G, we have
g(Zo) = Ty.® That is, if we change the vantage point
from go to gog, due to the symmetry of S we would
get apparently the same image from S. Although at a
different vantage point gog animage x of apoint p € S
will become a different point on the image, say x’, x’
must coincide with one of the image points in Z, (taken
from the original vantage point). That is x’ € Z; and
we call x' = g(x). Thus, the group G does nothing
but permutes image points in Z,, which is an action
induced from its action on S in 3-D. For simplicity,
if we ignore (for now) the effect of self-occlusion and
limited field of view, we may always assume g(x) € Z
forallx € Zpand all g € G.

From the symmetry G, the Eq. (2) yields a system
of equations

Ag(x) =TlogogX, Vg eG. (3)

Therefore, given only one image Zy, if we know the type
of symmetry G in advance and how its elements act on
points in Zy, every image pointin the set {g(x) : g € G}
can be interpreted as a different image of the same
point X seen from a different vantage point. That is,
we effectively have as many as |G| images of the same
3-D structure S.°

The problem we are interested here is that given
one image of a symmetric structure S (with a known
symmetry group G) taken at a vantage point g, to what
extent we may recover the pose g and the structure S,
and how?

Notice that here g is not the relative motion between
different vantage points but the relative pose from the
object to the viewer! As we will soon see, symmetry
in general encodes strong 3-D information which often
allows us to determine go. Of course, due to symme-
try, there is no unique solution to the canonical pose
go either. That is, because x ~ TTpgog(g~'X),'0 the
image point x might as well be the image of the point
g~ ' X seen from the vantage point gog. Hence the above
question should be restated as “to what extent we may
identify the set {gog}.” Algebraically, this is to identify

the left coset goG among the set of all cosets of G (in
E(3)). The set of all cosets of G in E(3) is typically
denoted as E(3)/G. Since G is in general not a normal
subgroup of E(3), E(3)/G is not necessarily a group
itself and is called the left coset space. Since in most
cases we will be dealing with a discrete and finite group
G, determining g( up to one of its cosets will then give
sufficient information about the relative orientation of
the object.

3. Symmetry and Multiple-View Geometry

As we have suggested before, although symmetry is a
phenomenon associated with a single image, a full un-
derstanding of its effect on 3-D reconstruction depends
on the theory of multiple-view geometry. In this sec-
tion, we examine analytically how the geometry of a
single image is closely related to that of multiple ones
whenever symmetry is present.

3.1.  Symmetric Multiple-View Rank Condition

Let {gi = (R;, T})}, be m different elements in G.
Then one image x ~ ITy(goX) of a symmetric structure
with the symmetry G is equivalent to at least m different
images that satisfy the following equations

g1(x) ~ Togog18, ' (g0 X),
g2(x) ~ Togog28, ' (g0 X),

gn(x) ~ Tlogogm gy ' (80 X).

These images must be related by the so-called multiple-
view rank condition (Ma et al., 2002). That is, the fol-
lowing multiple-view matrix!'

z,:(;)R(gl)x g/n(?)T(gn)
M) = 2X)R(g)x  g(x)T(g2) Rm-1x2,
En@R@X  gnOT(gn)
4)
with

R(gi) = RoR;R} € 0(3),
i=12,....,m (5
T(gi) = (I — RoR;RY)Ty + RoT;, € R,



satisfies the rank condition

rank(My(x)) <1, Vx e I,. (6)

Note that this rank condition is independent of any
particular order of the group elements g1, g2, ... , &n
and it captures the only fundamental invariant that a
perspective image of a symmetric structure admits.'?
Thus, we call it the symmetric multiple-view rank
condition. Note that if G € OQ@) (e. T; = 0
for all i), the expression for 7'(g;) can be simplified
to

T(g)= (I — RoRiR})To, i=1,2,....,m. (7)

Therefore, one image of a symmetric structure S
with its symmetry group G is equivalent to m = |G|
images of n = |S| feature points.!> The reconstruc-
tion of (R(g;), T(g;)) and the 3-D structure of S can
be easily solved by a factorization algorithm based on
the above rank condition (see Ma et al. 2002). Nev-
ertheless, in order to solve for the “canonical pose”
g0 = (Ro, Tp), we need to further solve them from
Eq. (5) once R(g;) and T(g;) are recovered. To solve
for Ry, itrequires us to solve a system of Lyapunov type
equations:'#

R(g)Ry— RoR; =0, i=1,2,...,m, (8)

with R(g;) and R; known. The uniqueness of the solu-
tion Ry depends on the relation between R(g;) and R;.
Before we can reach a general statement on the solv-
ability of such equations, let us first study individual
types of symmetry, i.e. , the reflective, rotational, and
translational symmetry.

3.2.  Ambiguity Induced from Three Types
of Symmetry

3.2.1. Reflective Symmetry. Many man-made ob-
jects, for example a building or a car, are symmetric
with respect to a central plane (the plane or mirror of
reflection). That is, the structure concerned is invariant
under a reflection with respect to this plane. Without
loss of generality, suppose this plane is the yz-plane of
a pre-chosen world coordinate frame. For instance, in
Fig. 2, the board is obviously symmetric with respect
to the yz-plane if the z-axis is the normal to the board.
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Then a reflection in this plane can be described by the
motion g = (R, 0) where

-1 0 0
R=|0 1 0|eo0@BcR>, 9)
0 0 1
is an element in O(3) and it has det(R) = —1. Notice

that a reflection always fixes the plane of reflection. If
a reflection is the only symmetry that a structure has,
then the group G consists of only two elements {e, g}
where e = g? is the identity map. In other words, G is
isomorphic to the group Z,.

If one image of such a symmetric object is taken at
g1 = (Ro, Tp), then we have the following two equa-
tions for each image point on this structure:

Ax = TlogoX, A'g(x)=TlogogX.  (10)

To simplify the notation, define R" = RyRR] and T’ =
- RORROT )Ty. Then the symmetric multiple-view
rank condition, in the two-view case, is reduced to the
following well-known epipolar constraint:

gx)'T'R'x = 0. an

Note that here det(R’) = det(R) = -1 is not a rotation
matrix. Therefore the matrix E = T'R’ is not a con-
ventional Essential matrix and the classical 8-point (or
7-point) algorithm needs to be modified accordingly, if
it is to be used to recover (R’, T')!°

Once the R' = RyR Rg is obtained, we need to use
R’ and R to solve for Ry. The associated Lyapunov
equation can be rewritten as

R'Ry — RyR =0, (12)
with R’ and R known.

Lemma 2 (Reflective Lyapunov equation). Let L:
R3>3 — R33; Ry = R'Ry — RyR be the Lyapunov
map associated to the above equation, with R a reflec-
tion and R’ = RoR Rg both known. The kernel ker(L)
of L is in general 5-dimensional. Nevertheless, for
orthogonal solutions of Ry, the intersection ker(L) N
SOQ3) is only a I-parameter family which corresponds
to an arbitrary rotation in the plane of reflection.

Proof: Let{)\, Ap, A3}and {u, uo, 13} betheeigen-
values of R’ and R respectively. Let {vq, vy, v3} be the
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right eigenvectors of R’ and {w;, wy, w3} be the left
eigenvectors of R.

4 T T
RU,‘Z)\.,‘U,‘, ijZpijj.

The eigenvalues of L are {A; —u;}, i, j = 1,2, 3 with
v; ij as corresponding eigenvectors because

L(viw!) = R'viw] —viwl R = (4 — pjviw] .

Then the kernel of L is the span{viw] | &; = u;}.
Without loss of generality, we assume that the re-
flection R is with respect to the yz-plane,

-1 0 0
R=|0 1 0| eR». (13)
0 0 1
Its eigenvalues are
mr=-1, wp=u3=1
The left eigenvector associated with pu; = —1 is

wlT = [1 0 0]. Two real left eigenvectors associated
with the two repeated eigenvalue u, = pusz = 1 are
wl =[010],w! =[001].

For the R’, we have

R/U,' = R()RRgU,' =AU & R(Rgl),) =A; (Rgv,)

From the equation above, the eigenvalues of R’ are the
same as the eigenvalue of R which are

M=—1, A=i=1.

Since w;, w,, w3 are obviously also the right eigen-
vectors of R, the eigenvector of R’ associated with
A1 = —1lis vy = Ryw;; and two real eigenvectors
of R’ associated with the two repeated eigenvalues
Ay = A3 = 1 are v, = Rows, v3 = Ryws, respec-
tively. v, and v3 are real and orthogonal to each other.

We have a total of five combinations of i, j such that
Ai = (. Thus, the kernel of L is a 5-dimensional space
which has a basis consisting of the elements

viw] =[vy, 0, 01, wvw; = [0, v, 0],
vwi =0, v3, 01, vzwj = [0, 0, v,

vswi = [0, 0, v3] € R¥.

Any linear combination of the basis elements

5
Ro=2a,-v,-wiT eR¥3, g eR,

i=1

will be a solution of the equation R"Ry — RyR = 0.
Because Ry € SO(3), we can impose the constraint of
rotation matrix. This gives us

Ry = [£vq, vy cos(a) + v3 sin(w),
— vy sin(a) + v3 cos(a)] € SO(3),

where a € R is an arbitrary angle. So Ry has infinitely
many solutions. Geometrically, the three column of R’
can be interpreted as the three axes of the world co-
ordinate frame that we attached to the structure. The
ambiguity in R then corresponds to an arbitrary rota-
tion of the yz-plane around the x-axis. a

If the structure also has symmetry with respect to an-
other plane, say the xz-plane as in the case of the
checker board (Fig. 2), this 1-parameter family am-
biguity can therefore be eliminated.

In practice, it is very common that the object, like the
checker board in Fig. 2, is flat and all the feature points
on S lie in a 2-D plane P in 3-D space, i.e. S C P.In
this case, the above ambiguity can also be reduced even
if an extra symmetry is not available. Without loss of
generality, the plane P can be described by an equation

NT'X =d, (14)

with N e R? as its normal vector and d € R, as the
distance from the center of the camera to the plane P.
Using this notation, the image point x and its symmetry
point g(x) satisfy the planar homography'®

g(xX)Hx =0, (15)

where the matrix H is the homography matrix of the
form

1
H=R + ET’NT e RS, (16)
With more than 4 points, the matrix H can be recovered
from Eq. (15). Decomposing the homography matrix
H yields!”

1
H— {R’,ET’,N}. (17)



If we assume the normal of the planar structure is in the
direction of the z-axis, we may get a unique solution
for the rotation,

Ry = [£v;, £Nv;, N] € SO(3),

where vy, v,, v3 are eigenvectors of R’ as in the proof
of Lemma 2.

After Ry is recovered, Ty is recovered up to the fol-
lowing form

Ty e (I — RoRRY)'

T’ +null(I — RyRR{), (18)
where (I — RORRg ) is the pseudo inverse of [ —
RoRR! and null(/ — RyRR}) = span{vy, v3} since
both v, and v (as in the proof of Lemma 2) are in the
null space of the matrix / — RyRR}. Such ambigu-
ity in the recovered go = (Ry, Tp) is exactly what we
should have expected: With a reflection with respect
to the yz-plane, we in principle can only determine the
y-axis and z-axis (including the origin) of the world co-
ordinate frame up to any orthonormal frame within the
yz-plane, which obviously has three degrees of free-
dom, parameterized by (¢, 8, ) (where « is as in the
proof of Lemma 2). If § itself is in a plane, we may
choose the z-axis of the world frame to be the nor-

On Symmetry and Multiple-View Geometry 249

mal to the plane and the origin of the frame to be in
the plane. Thus, we can reduce this ambiguity to a 1-
parameter family: only the origin o now may translate
freely along the y-axis, the intersection of the plane
where S resides and the plane of reflection.

To conclude our discussion on the reflective symme-
try, we have

Proposition 3 (Canonical pose from reflective symme-
try). Given an image of a structure S with a reflective
symmetry with respect to a plane in 3-D, the canonical
pose go can be determined up to an arbitrary choice
of an orthonormal frame in this plane, which is a 3-
parameter family of ambiguity (i.e. SE(2)). However,
if S itself is in a (different) plane, gy is determined
up to an arbitrary translation of the frame along the
intersection line of the two planes (i.e. R).

Figures 5 and 6 demonstrate an experiment with
the reflective symmetry. The checker board is a pla-
nar structure which is symmetric with respect to the
central line of itself (in fact there are many more local
reflective symmetry on parts of the board).

3.2.2. Rotational Symmetry. Now suppose we re-
place the reflection R above by a proper rotation.
For instance, in Fig. 2, the pattern is symmetric with

Figure 5. Top: An image of a reflectively symmetric checker board. Bottom: The symmetry is represented by some corresponding points. We
draw two identical images here to illustrate the correspondence more clearly: Points in the left image are corresponding to points in the right

image by a reflective symmetry.



250 Hong et al.

0.5

0.5

Figure 6. The reconstruction result from the reflective symmetry.
The recovered structure is represented in the canonical world coor-
dinate frame. From our discussion above, the origin o of the world
coordinate frame may translate freely along the y-axis. The smaller
coordinate frame is the camera coordinate frame. The longest axis is
the z-axis of the camera frame which represents the optical axis of
the camera.

respect to any rotation by n - 90° radians around o
in the xy-plane. Now the question becomes, knowing
the rotation R and its conjugation R’ = RORRg , to
what extent we can determine R, from the equation
R'Ry — RyR = 0. Without loss of generality, we as-
sume R is of the form R = ¢®’ with ||w|| = 1| and
0 < 6 < m, hence it has three distinct eigenvalues
{1, e+j9, e—jo}_

Lemma 4 (Rotational Lyapunov equation). Let L:
R¥»3 — R33; Ry — R'Ry — RoR be the Lyapunov
map associated to the above equation, with R a rota-
tionand R’ = RyR Rg both known. The kernel ker(L)
of this Lyapunov map is in general 3-dimensional.
Nevertheless, for orthogonal solutions of Ry, the in-
tersection ker(L)N SO (3) is a 1-parameter family cor-

responding to an arbitrary rotation (of o radians) about
the rotation axis w of R.

Proof: Let{A;, Ap, As}and {u, 2, u3} betheeigen-
values of R’ and R respectively. Let {vy, vz, v3} be the
right eigenvectors of R’ and {w;, w,, w3} be the left
eigenvectors of R.

/ T T
R'v; = Av;, w; R = Hjw; .

The eigenvalues of L are {A; —u;}, i, j =1, 2,3 with

v; w/T as corresponding eigenvectors because

L(viwjr) = R’viwjr — vinTR =0 — ;Lj)v,-wjr.

Then the kernel of L is the span{v;w] | A = p;}.
Without loss of generality, we assume that the rota-
tion is with respect to the z-axis. So R is

cosf® —sinf O
R=e¢"=1|sind cos® O],
0 0 1

with w = [0,0,1]7 and 0 < 6 < 2m. Any such a
rotation matrix has three distinct eigenvalues,

pi=1, pp=e’ uy=e".
The left eigenvector associated with u; = 11is w] =
[0, 0, 1] which has areal value. The other two left eigen-
vectors associated with the two complex eigenvalues
Wy = fi3 are wZT = [—i,1,0], w3T = [i, 1, 0] with
sz = 11)3T .

For the R’, we have

R'vi = RoRR{v; = Avi & R(Rjv;) = Ai(R) vy).

From the equation above, the eigenvalues of R’ are the
same as the eigenvalue of R which are

)\1 = 1, )»2 = €+j0, )»3 = e_je.

The eigenvector associated with A = 1 is vlT which
has a real value. The other two eigenvectors associated
with the two conjugate complex eigenvalues 1, = A3
are v,, vz where v, = Us.



We have three pairs of (A, ) suchthat A, = p;,i =
1, 2, 3. Thus, we get the basis for the kernel of L

vw! =10,0,v] € R¥,
vwl = [—ivy, vy, 0],

v3w3T = [iv3, v3,0] = [iva, va, 0] € C3*3,

The real and imaginary parts of the complex basis

Re[vaw; | = [Im(vy), Re(vy), 0],

Im[vyw] | = [~Re(v2), Im(vy), 0],

Re[vgwg] = [Im(v,), Re(v), 0] = Re[vzsz],
Im[v3w] | = [Re(vy), —Im(vy), 0] = —Im[vow] |,

are also in the kernel of L. Then the real kernel of L is
a 3-dimensional space which has the basis

{[0, 0, v1], [Im(v2), Re(vy), 01,
[—Re(v2), Im(vy), 0]} € R¥>3.

The solution of Ry will be the linear combination of
the basis,

Ry = a1[0, 0, v1] + az[Im(v;), Re(v,), 0]
+ as[—Re(v2), Im(vy), 0],

where coefficients aj, ap,a; € R. Because Ry €
SO(3), we can impose the constraint of it being a ro-
tation matrix. Then Ry is of the form

[Im(v;) cos(a) + Re(v,) sin(w),
— Im(v;) sin(«) + Re(vy) cos(a), Fvq],

where o € R is an arbitrary angle. So Ry has infinitely
many solutions. Geometrically, the three columns of
R’ can be interpreted as the three axes of the world
coordinate frame that we attached to the structure. The
ambiguity in R, then corresponds to an arbitrary rota-
tion of the xy-plane around the z-axis. a

This lemma assumes that 0 < 6 < 7. If 0 = 7, R
has two repeated —1 eigenvalues and the proof above
no longer applies. Nevertheless, we notice that —R is
exactly a reflection with two +1 eigenvalues, with a
reflection plane orthogonal to the rotation axis of R.
Thus, this case is essentially the same as the reflective
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case stated in Lemma 2. Although the associated Lya-
punov map has a 5-dimensional kernel, its intersection
with SO(3) is the same as any other rotation.

In addition, it can be verified directly that the null
space of the matrix / — Ry R R is always 1-dimensional
(for 0 < 6 < ) and (I — RyRR})v; = 0 (where v,
was defined in the proof of the above lemma). Thus,
the translation T is recovered up to the form:

Ty e (I — RoRRY)'

T’ +null(1 — RoRR{), (19)
where null(/ — RyRR[) = span{v,}. Together with
the ambiguity in Ry, go is determined up to a so-called
screw motion about the rotation axis w. Similar to the
reflective case, we have

Proposition 5 (Canonical pose from rotational symme-
try). Given animage of a structure S with a rotational
symmetry with respect to an axis € R*, the canoni-
cal pose g is determined up to an arbitrary choice of
a screw motion along this axis, which is a 2-parameter
family of ambiguity (i.e. the screw group SO(2) x R).
However, if S itself is in a (different) plane, g is deter-
mined up to an arbitrary rotation around the axis (i.e.
SO(2)).

Figures 7 and 8 demonstrate an experiment with the
rotational symmetry. Each face of the cube is a pla-
nar structure which is symmetric to another face by
a rotation about the longest diagonal of the cube by
120 degree.

3.2.3. Translational Symmetry. In this case, since
R =1Tand T # 0, Eq. (5) is reduced to the following
equations
R =RoIRl =1, T =R,T. (20)

Obviously, the first equation does not give any infor-
mation on Ry (and the associated Lyapunov map is
trivial), nor on Tj. From the second equation however,
since both T and T’ are known (up to a scale), R can be
determined up to a 1-parameter family of rotations (i.e.
S O(2)). Thus, the choice of the world frame (including
Tp) is up to a 4-parameter family (i.e. SO(2) x RY).

Furthermore, if S is planar, which often is the case
for translational symmetry, the origin o of the world
frame can be chosen in the supporting plane, the plane
normal as the z-axis, and T as the x-axis. Thus

Ry=I[T',NT',N] € SO@3),
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Figure 7. Top: An image of a cube which is rotationally symmetric about its longest diagonal axis. Bottom: The symmetry is represented by
some corresponding points. Points in the left images correspond to points in the right image by a rotational symmetry.
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Figure 8. Reconstruction result from the rotational symmetry. The
recovered structure is represented in the canonical world coordinate
frame. From our discussion above, the origin o of the world coordi-
nate may translate freely along the z-axis, and the x, y-axis can be
rotated within the xy plane freely. The smaller coordinate frame is
the camera coordinate frame. The longest axis is the z-axis of the
camera frame which represents the optical axis of the camera.

where both 7’ and N can be recovered from decom-
posing the homography H = I + gT’NT. We end up
with a 2-parameter family of ambiguity in determin-
ing go — translating o arbitrarily inside the plane (i.e.

R?). Even with an extra translational symmetry along
a different direction, the origin o can be any place on
the plane. Figures 9 and 10 demonstrate an experiment
with reflective symmetry. A mosaic floor is a planar
structure that is invariant with respect to the translation
along proper directions.

We summarize in Table 1 the ambiguities in deter-
mining the pose gy from each of the three types of
symmetry, for both generic and planar scenes.

3.3.  Necessary and Sufficient Condition
for a Unique Pose Recovery from Symmetry

As we have seen from above sections, there is always
some ambiguity in determining the relative pose (go)
from the vantage point to the canonical world coordi-
nate frame (where the symmetry group G was repre-
sented in the first place) if only one type of symmetry
is considered. In reality, most symmetric structures (or
objects) have more than one types of symmetry. For
instance, the board in Fig. 2 has all three types of sym-
metry present. It is the joint work of all symmetries as
a group, not its individual elements, that conveys to the
viewer a strong perception of the pose of the object.

Proposition 6 (Rotational and reflective symmetry).
Given a (discrete) subgroup G of O(3), a rotation Ry is
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Figure 9. Top: An image of a mosaic floor which admits translational symmetry. Bottom: The symmetry is represented by some corresponding
points. We draw two identical images here to represent the correspondence more clearly: Points shown in the left images correspond to points

shown in the right image by a translational symmetry.
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Figure 10. Reconstruction result for the translational symmetry.
The structure is represented in the canonical world coordinate frame.
From our discussion above, the origin o of the world coordinate
may translate freely within the xy-plane. The smaller coordinate
frame is the camera coordinate frame. The longest axis is the z-
axis of the camera frame which represents the optical axis of the
camera.

uniquely determined from the pair of sets (RyGR! , G)
if and only if the only fixed point of G acting on R? is
the origin.

Proof: If(RyGR!, G)are not sufficient to determine
Ry, then there exists at least one other Ry € SO(3) such
that RyRR! = R RR] forall R € G.LetR, = RT Ry.
Then, R,R = RR; forall R € G. Hence R, commutes
with all elements in G. If R, is a rotation, all R in
G must have the same rotation axis as R,; if R, is a
reflection, R must have its axis normal to the plane that
R, fixes. This is impossible for a group G that only
fixes the origin. On the other hand, if (ROGROT ,G)is
sufficient to determine Ry, then the group G cannot fix
any axis (or a plane). Otherwise, simply choose R, to
be a rotation with the same axis (or an axis normal to
the plane), then it commutes with G. The solution for
R cannot be unique. O

Once Ry is determined, it is then not difficult to
show that, with respect to the same group G, Ty can
be uniquely determined from the second equation in
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Table 1. Ambiguity in determining the canonical pose from three types of symmetry. (x: “(a + b)-
parameter” means there are an a-parameter family of ambiguity in Ry of go and b-parameter family of

ambiguity in Ty of go.)

Ambiguity Lyapunov equation go (general scene) go (planar scene)
Reflective 5-dimensional (1 4 2)-parameter* (0 + 1)-parameter
Rotational 3-dimensional (1+ 1)-parameter (1 + 0)-parameter
Translational 9-dimensional (1 + 3)-parameter (0 + 2)-parameter

(5). Thus, as a corollary to the above proposition, we
have the following theorem:

Theorem 7 (Unique canonical pose from a symmetry
group). Suppose that a symmetric structure S admits
a symmetry group G which contains a rotational or re-
flective subgroup that fixes only the origin of R3. Then
the canonical pose gy can always be uniquely deter-
mined from one image of S.

Note that the group G does not have to be the only
symmetry that S allows—as long as such a G exists as
a subgroup of the total symmetry group of S, one may
claim uniqueness for the recovery of go.

Now one may wonder why the third column in
Table 1 is necessary? Why do we have to treat a pla-
nar structure separately and why not treat more “uni-
formly” the planar restriction as an extra reflective sym-
metry with respect to the plane itself? The problem
with that is, even if we could add this reflection, say
R, into the symmetry group G, it is not possible to
recover its corresponding element RyRR] in RyGR]
via multiple-view geometric means because features
on the plane correspond to themselves under this re-
flection and no other feature points outside of the plane
is available (by our own planar assumption). Thus, we
can no longer apply the above theorem to this case.

In order to give a correct statement for the planar
case, for a reflection R with respect to a plane, we
call the normal vector to its plane of reflection as the
axis of the reflection.'® Using this notion, we derive the
following corollary:

Corollary 8 (Canonical pose from a symmetry group
of a planar scene). If a planar symmetric structure
S allows a rotational or reflective symmetry subgroup
G (without the reflection with respect to the support-
ing plane of S itself) with two independent rotation
or reflection axes, the canonical pose gy can always
be uniquely determined from one image of S (with the

world frame origin o restricted in the plane and the
z-axis chosen as the plane normal).

As a consequence, to have a unique solution for g, a
planar symmetric structure S must allow at least two
reflections with independent axes, or one reflection and
one rotation (automatically with independent axes for a
planar structure). This is consistent with the ambiguity
given in Table 1.

3.4. Camera Self-Calibration from Symmetry

In addition to structure and pose, another important
knowledge for 3-D reconstruction is in fact readily
available from images of symmetric objects: the cam-
era intrinsic parameters, or calibration, which we will
study in this subsection.

Results given in the preceding subsections, such as
Theorem 7, are based on the assumption that the camera
has been calibrated. If the camera is uncalibrated and its
intrinsic parameter matrix, say K € R**3, is unknown,
then the Eq. (2) becomes

Ax = KH()g()X.

From the epipolar constraints between pairs of hidden
images, instead of the Essential matrix E = T'R’, we
can only recover the Fundamental matrix

F~KTT'RK™, Q21

where as before R’ = RORRg € OB)and T' =
(I — RyRR)Ty + RyT € R’. Notice that here K is
automatically the same for the original image and all
the hidden ones.

3.4.1. Calibration from Translational Symmetry. In
the translational symmetry case, we have R’ = [
and T" = RyT. If given three mutually orthogonal



translations Ty, T», Ts € R? under which the struc-
ture is invariant, then from Lh_fiundamental matrix
F~KTT'K~' = KT' = KR,T we get vectors

vi~KRyT;, i=123. (22)

That is, v; is equal to KRyT; up to an (unknown)
scale.'® Since Ty, T», T5 are assumed to be mutually
orthogonal, we have

vIKTK v, =0, Vi (23)

We get three linear equations on entries of the matrix
K~TK~!.If there are less than three parameters in K
unknown,?” the calibration K can be uniquely deter-
mined from these three linear equations (all from a
single image). The reader should be aware that these
three orthogonal translations correspond precisely to
the notion of “vanishing point” or “vanishing line” used
in existing literature (Criminisi and Zisserman, 1999,
2000).%!

3.4.2. Calibration from Reflective Symmetry. 1In the
reflective symmetry case, if R is a reflection, we have
R*> = [ and R'T' = —T'. Thus, T'R' = T’. Then
F ~ KT'is of the same form as a fundamental matrix
for the translational case. Thus, if we have reflective
symmetry along three mutually orthogonal directions,
the camera calibration K can be recovered similarly to
the translational case.?? So having a reflective symme-
try in certain direction is as good as having a transla-
tional symmetry along that direction, as far as camera
calibration is concerned.

3.4.3. Calibration from Rotational Symmetry. A
more interesting case where symmetry may help with
self-calibration is the rotational symmetry. In this case,
it is easy to show that the axis of the rotation R’ is al-
ways perpendicular to the translation T’. According to
(Ma et al., 2000), the Fundamental matrix F must be
of the form

F=2KRK™", (24)
where e € R3 of unit length s the (left) epipole of F and
the scalar A is one of the two non-zero eigenvalues of

the matrix F7 é. Then the calibration matrix K satisfies
the so-called normalized Kruppa’s equation

FKKTFT =)%KKT"e", (25)
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with F,e, A known and only KK T unknown. This
equation, as shown in Ma et al. (2000), gives two lin-
early independent constraints on K K. For instance,
if only the camera focal length f is unknown, we may
re-write the above equation as

20 0 20 0
Flo f2 o|FT=xel0 f2 olie’, (26
0 0 1 0 0 1

which is a linear equation on 2. It is therefore possible
to recover focal length from a single image (of some
object with rotational symmetry).

Example 9 (A numerical example). For a rotational
symmetry, let

2 0 0
K=|0 2 0],
0 0 1
[cos27/3) 0 —sin(27/3)
R = 0 1 0 ,
| sin(2z/3) 0  cos(27/3)
[ cos(w/6) sin(w/6) O
Ry = | —sin(mwr/6) cos(w/6) O,
0 0 1
2
Thy=10
B

Note that the rotation R by 27 /3 corresponds to the
rotational symmetry that a cube admits. Then we have

[—0.3248 —0.8950 —1.4420
F =] 05200 0.3248 —2.4976 |,
| —1.0090 —1.7476 —0.0000
0 —0.4727 0.4406
é=1 04727 0 0.7631 |,
| —0.4406 —0.7631 0

and A = 2.2900 (with the other eigenvalue —2.3842
of FTé rejected). Then the equation (26) gives a linear
equation in f2

—0.2653 - f? +1.0613 = 0.

This gives f ~ 2 which is the focal length given by the
matrix K in the first place.
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Therefore, using symmetry, one can not only recover
a 3-D symmetric structure, pose to the structure, but
also obtain the camera intrinsic parameters such as the
focal length of the camera (from only one image if
one wishes). Furthermore, symmetry based calibration
techniques happen to be always linear!

4. Applications and Experiments

Several distinctive features allow symmetry-based
techniques to be extremely useful and effective in a
wide range of applications in computer vision and im-
age processing. Firstly, by imposing global structural
invariants such as symmetry, multiple-view geometric
algorithms become much more accurate and robust.
The reason is that the “baseline” of the relative poses
between the “hidden” images is large most of the time.
Secondly, since reconstruction can now be done within
a single image, no more tracking or matching features
across multiple images is needed.?® This dramatically
reduces the computational complexity, which is impor-
tant in time-critical applications such as robot vision.
Last but not the least, a typical man-made scene con-
sists of numerous symmetric structures. These struc-
tures can be used as a new type of “primitives” when
we try to establish correspondences across multiple
views. These complex primitives, serving a similar role
as landmarks, may simplify the matching task which is
otherwise a more difficult problem for simple features
such as points and lines.

Here we do not claim to be the first to suggest
the applications given in this section—many of them
have been studied separately before by researchers
in the computer vision, image processing, or graph-
ics community. We here mostly want to demonstrate

that, now under our unified framework, these previ-
ously isolated case studies can all be put coherently
together.

4.1.  Symmetry-Based Segmentation
and Global Orientation

When we tour around a man-made environment, we
typically have little problem to orient and locate our-
selves since objects of regular shape, especially sym-
metric shapes, easily stand out and provide us over-
whelming geometric information. In order for a ma-
chine vision system to emulate this functionality and
to utilize the rich geometric information encoded in
symmetric objects, we first need to know how to seg-
ment such objects from the image. Using the tech-
niques introduced earlier in this paper, we can test
whether certain image segments, obtained by other
low-level segmentation algorithms such as mean shift
(Comanicu and Meer, 2002), can be the perspective
projection of symmetric objects in 3-D. Such objects
can already be used as landmarks by the machine vision
system when navigating in the man-made environment.
Moreover, the segmented symmetric objects may serve
as primitives for other higher-level applications such as
large baseline matching (See Section 4.2).

In the symmetry-based segmentation method, the in-
put image will be first segmented into polygonal re-
gions which may or may not be a perspective projection
of symmetric objects in 3-D. Then the regions which
potentially can be interpreted as images of symmet-
ric objects in space will be tested against each funda-
mental type of symmetries described in Section 3.2.
Here we show via an example. In Fig. 11, each re-
gion in the image enclosed by four connected line

Figure 11. Examples of symmetry-based segmentation of rectangles. Rectangular regions are segmented and attached with local coordinate
frames which represent their orientations. The segmentation does not need any human intervention.



segments may be interpreted as a 3-D quadrilateral
that falls into the following cases: 1. quadrilateral (no
symmetry) 2. trapezia (one reflective symmetry). 3.
rectangle (two reflective symmetries). 4. square (two
reflective symmetries + three rotational symmetries).
We can test this region against the four hypotheses by
using the reconstruction methods in Section 3.2 and
determine to which type of symmetry it belongs. Most
commonly, symmetric regions in man-made world are
rectangles and squares. A region is simply discarded if
it can only be interpreted as a quadrilateral or trapez-
ium in 3-D. The symmetry-based testing will eliminate
most of the useless segments and keep only symmetric
ones. The resulting segments will be labeled by their
type of symmetry, position, and orientation (the normal
vector of the region in space). These output segments
encode much richer 3-D geometric information than
simple features such as corners and edges, as shown in
Fig. 11.

After the segmentation, we can further apply clus-
tering algorithms to classify the symmetric objects in
terms of their orientations and positions. For instance,
if anumber of neighboring symmetric objects have mu-
tually consistent normal vectors (e.g., the five panels
in the left image of Fig. 11), it is likely that these ob-
jects come from the same plane. Such a plane provides
a “global” reference of orientation for the agent that
is navigating through the environment. More details
about symmetry-based segmentation and classification
can be found in Yang et al. (2003).

4.2. Large-Baseline Matching and Reconstruction

Matching features across multiple views is a key
step for almost all reconstruction algorithms based
on multiple-view geometry. Conventional methods for
feature matching mostly rely on tracking features be-
tween images with small motions. However, the 3-D
geometry recovered from images with small baseline
is severely inaccurate due to a small signal-to-noise ra-
tio (SNR). For images with large baseline, some meth-
ods such as RANSAC (Fishler and Bolles, 1981) and
LMeDs (Zhang et al., 1995) use robust statistic tech-
niques to iteratively match features and estimate the ge-
ometry. However, such techniques usually require good
initialization. In these conventional methods, normally
points and lines are used as features to match. As we
have mentioned earlier, the symmetric regions that we
can obtain from symmetry-based segmentation encode
full geometric/textural information of their 3-D coun-
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terparts. Hence they can be more easily identified and
matched across different views.

Matching a symmetric object across two images in-
duces less ambiguity than matching a points or a line
because not only the position and orientation but also
the shape and texture of the symmetric object need to
be matched. Although there may be more than one pos-
sible matching for a single symmetric object, there is
typically a unique and unambiguous matching that is
consistent for all the symmetric objects in the scene.
A systematic solution to matching symmetric objects
in multiple images is given in a related paper (Huang
et al., 2004), which converts the matching problem to
one of identifying the maximal complete subgraphs,
the cliques, of a matching graph.

As the experiment in Fig. 12 shows, the symmetry-
based matching algorithm is effective even in the pres-
ence of both small and large baseline, in which case
existing techniques normally fail: the baseline between
the first and second images is large and the base-
line between the second and the third image is almost
zero. The camera pose and geometry of the symmet-
ric structures are accurately reconstructed using the
symmetry-based method given in the preceding sec-
tion. The ground truth for the length ratios of the white
board and table are 1.51 and 1.00, and the recovered
length ratio are 1.506 and 1.003, respectively. Error in
all the right angles is less than 1.5°.%

In addition to rectangular shapes, other more com-
plex symmetric shapes can also be reconstructed ac-
curately using the method given in this paper. For ex-
ample, Hong et al. (2004) has demonstrated that even
smooth symmetric curves without any distinctive fea-
ture can be reconstructed accurately from their per-
spective images. A more detailed study of the numer-
ical performance of the symmetry-based reconstruc-
tion algorithms under different levels of random noises
and different view angles can also be found in that

paper.

4.3.  Symmetry-Based Photo Editing

The symmetry-based methods introduced earlier can
also be used for editing photos, which is an important
problem in digital photography and graphics. But con-
ventional photo editing softwares such as Photoshop
usually are lack of mechanisms that may preserve the
perspective projection of geometric objects. It is then
very desirable if we are able to edit the photos while
automatically preserving the perspective geometric
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Figure 12. Top: Two symmetry objects matched in three images. From the raw images, symmetry objects segmentation and matching do not
need any manual intervention. Bottom: Camera poses and structures of symmetric objects are recovered. From left to right: top, side, and frontal

views of the matched and reconstructed objects and the camera poses.

relations of objects in the scene. With the knowledge
in symmetry, it is possible for us to manipulate 2-D
image regions based on their 3-D shapes and relation-
ships. For example, many photo editing operations are
based on the “copy-and-paste” function. The conven-
tional “copy-and-paste” simply copies a region pixel-
wise onto a new location. Artifacts become easily no-
ticeable if perspectiveness is distorted or destroyed by
the editing. The symmetry-based methods allow us to
manipulate a region realistically as if manipulating an
object in 3-D without explicitly reconstructing the 3-D
structure of the object.

With very little human intervention, we may first
register symmetric objects of interest in one or mul-
tiple images, and recover their relative positions and
orientations using the method given earlier. The trans-
formation of such a region from one place or one image
to another can therefore be easily performed. Figure 13
shows an comprehensive example of symmetry-based
photo editing, which includes removing occlusion,
copying and replacing objects in the scene, and adding
new objects. More details and examples of symmetry-
based photo editing can be found in a related paper
(Huang et al., 2003).

Figure 13. An example of photo editing. Left: The original picture with some symmetric regions registered. Right: The shadows of the roof
on the frontal wall and the occlusions by the lamp poles are removed using symmetry-based “copy-and-paste.”” Some paintings are pasted on
the side walls according to the correct perspectiveness. Additional windows are added on the side walls.



Figure 14. Mosaic of the two images on the top using corresponding
symmetry objects in the scene (in this case windows on the front side
of the building). The middle picture is a bird view of the recovered
3-D shape of the two sides of the building and the camera poses
(the two coordinate frames). Notice that perspectiveness is precisely
preserved for the entire building in the final result (bottom image).

Figure 14 shows another example of generating
panorama or image mosaics from multiple images
based on ideas similar to the symmetry-based photo
editing. Conventional panorama approaches usually re-
quire the images are taken with a fixed camera center or
the camera positions are known. Using our methods, the
camera poses can be easily obtained as a “by-product”
when we align the symmetric objects in different im-
ages.

4.4.  Visual Illusions and Symmetry

Another interesting application of our computational
theory of symmetry is to help understand certain psy-
chological aspects of human vision. In previous sec-
tions, we have shown that if an 3-D object is indeed
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symmetric, multiple-view geometric techniques enable
us to easily and accurately retrieve its 3-D geome-
try from even a single image. One might wonder if
the same geometric assumption is strongly held up by
our human vision system. More specifically, one might
want to know: Is symmetry a fundamental assumption
adopted by human visual perception?

Compelling examples from psychological studies of
human vision give us sufficient confidence that this hy-
pothesis is true. Ironically, the best way to demonstrate
this is not by showing how useful symmetry is for hu-
man visual perception, but by showing certain negative
“side effects” of the symmetry assumption on human
perception. As we will see, this also serves as a ground
for many famous visual illusions. The following two
examples demonstrate two aspects of such side effects.

The first example is to show that human vision sys-
tem often reconstructs 3-D geometry by imposing on
the scene the assumption that “regular” objects are
likely to be symmetric. Especially when parallax (or
stereo) information is not available, this assumption
becomes dominant. The Ames room, Fig. 15 (top), is a
controlled experiment which deliberately excludes the
parallax information from the viewer. Obviously, our
human perception tends to assume that the frames of
the windows and the tiles on the ground are rectangles
or squares of the same size, only “properly” distorted
by the perspective.

On the other hand, an illusion can also be created in
such a way that it contains more than one set of sym-
metries which however are not compatible with each
other. The consequence is to throw our visual percep-
tion into a dizzy dilemma. The Escher waterfall, Fig. 15
(bottom), is one good example for this type of illusion.
If we only focus on the water tunnel, it has a horizon-
tal symmetry along the y-axis, and the two towers also
have their own vertical symmetry along the z-axis. A
contradiction reaches at the intersections of the tunnel
and the towers. Under these two different symmetries
along different axes, it would be impossible for the
tunnel and the towers to intersect on the locations as
shown in the figure. Nevertheless, since the symmetry
assumption is only applied locally to individual sym-
metric part, an illusion is created once the viewer trying
to put everything back together globally.

Examples above show that symmetry is indeed one
of many fundamental assumptions adopted by our hu-
man visual system. A good understanding of this as-
sumption will help us improve the design of computer
vision systems. Symmetric patterns or structures in one
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Figure 15. Top: Ames room. Ames room is located in San Fran-
cisco Exploratorium (www.exploratorium.edu). This room actually
has no square corners, but carefully designed so as to exploit the
nature of human vision, and viewer will get a wrong 3-D perception
by looking into the room from this vantage point (only). Bottom:
Escher’s waterfall. It is a 2-D drawing of a bizzare waterfall by Mau-
rits C. Escher. When we focus on the tunnel, it guides the water
from low close to high far from the waterfall, but if we focus on the
tower, it actually raises the tunnel directly from low to high along
the waterfall.

single image may give us the same geometric informa-
tion as multiple images only if our assumption about
their symmetry is correct; otherwise, multiple images
of the same object will be needed, in order to resolve
ambiguities or illusions such as the ones shown above.
The study in this paper provides a computational basis
for the cause of such illusions.

Perspective Versus Orthographic Projection. Last
but not the lest, despite the above illusions, our the-
ory shows that in general, under perspective projec-
tion, reconstruction from symmetry is hardly ambigu-

/

Figure 16. Necker’s Cube. The illusion is caused by orthographic
projection. The cube can be interpreted either concave or convex.

ous (at least locally) since perspective projection en-
codes depth information properly. However, this may
no longer be true under other types of projection.
Figure 16 shows an example of the famous Necker’s
Cube illusion, from which the viewer can easily iden-
tify two equally probable interpretations. The reason
is that the drawing of the cube according to ortho-
graphic projection eliminates any cue for depth infor-
mation. But this ambiguity hardly exists for a perspec-
tive image of a cube. This example shows that the ef-
fect of (assuming) symmetry under different projection
models can be significantly different. But a more de-
tailed comparative study is beyond the scope of this

paper.

5. Discussions and Conclusions

Points, lines, and planes are special symmetric objects
which have been extensively studied as primitive ge-
ometric features for reconstructing a 3-D scene from
2-D images. This paper begins to look at primitives
at a higher level (hence with a larger scale): primi-
tives which have certain “regular” structure, with the
regularity characterized by certain symmetries that the
structure admits. Obviously this is a more principled
way to study assumptions about 3-D structure that peo-
ple have exploited before in multiple-view geometry,
such as orthogonality and parallelism (hence vanishing
points) etc. Our experimentation demonstrates that, at
this level of generalization, multiple-view geometric
algorithms become extremely well-conditioned due to
almost always large baseline between “hidden images.”
Because of this, nonlinear optimization (such as bundle
adjustment) is not really needed to improve the results.



Since reconstruction can now be done reliably from
even a single image, feature correspondence becomes
less of a problem and a proper permutation of features
from the same image is often all that an algorithm re-
quires.

Probably the most important observation from this
paper is that, in addition to the 3-D structure, the
“canonical” pose between the canonical world coor-
dinate frame of a symmetric object and the camera can
also be recovered. This extra piece of information is
extremely useful and allows us to achieve many new
tasks which used to be difficult to do with only points,
lines and planes. For example, in an environment rich
with symmetric objects, a viewer can easily identify
its location and orientation by referencing with these
canonical frames. Furthermore, such information can
be readily utilized to establish correspondence across
images taken with a large baseline or change of view
angle: As long as one common (local) symmetry can be
recognized and aligned properly, the rest of the struc-
tures in the scene can then be correctly registered and
reconstructed. The remaining problem is mostly an en-
gineering one of how to efficiently register numerous
symmetric parts and objects present in a scene and
to obtain a consistent 3-D reconstruction. We believe
that, together with conventional geometric constraints
among multiple images, symmetry is indeed an impor-
tant cue which eventually makes 3-D reconstruction a
more well-conditioned problem.

In this paper, we have only shown how to perform
reconstruction if we know the type of symmetry in ad-
vance. But a more challenging problem is how to iden-
tify what type of symmetry a structure admits from its
(perspective) images when the symmetry is not known
a priori. This leads to:

The inverse problem that, given a (perspective) im-
age of a symmetric structure S with an unknown sym-
metry group taken at some (unknown) vantage point,
how to find a maximum subgroup G of the permutation
group G of S which can be represented as a subgroup
of E(3) through a group isomorphismR : g — (R, T)
and the representation is consistent with the symmetric
multiple-view rank condition?

Notice that this is a constrained group representation
problem subject to the multiple-view rank condition.
Although solutions to simple symmetric structures can
be found already (e.g., the symmetry-based segmenta-
tion example described in Section 4.1), this problem, at
this point, remains largely open for general symmetric
structures, in both 2-D and 3-D.
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Appendix A: Symmetric Structures
and Associated Symmetry Groups

As we have mentioned in the problem formulation sec-
tion, the quest to understand various types of symmetry
and their relationships has a history of more than two
thousand years. But not until the 20th century, with the
aid of modern algebra, did mathematicians formulated
itas a formal mathematical problem, which is ever since
known as Hilbert’s 18th problem:

Is there in n-dimensional Euclidean space also only a
finite number of essentially different kinds of groups
of motions with a fundamental region?

A definite answer to this problem was given in
Bieberbach (1910). In this appendix, we give a short
survey of mathematical facts on the subject of group ac-
tions on symmetric structure. For applications in com-
puter vision, we will primarily survey results related
to symmetric structure and groups in 3-D Euclidean
space. All facts and statements will be given without
proofs, and interested readers may refer to Weyl (1952),
Griinbaum and Shephard (1987) and Martin (1975).

A.l.  Group Actions on Symmetric Structures

Definition 10 (Isometry). An isometry is a mapping
from the set of points S into itself (i.e. an automor-
phism) which preserves distance.

Theorem 11. An isometry is a distance preserving
automorphism, and the set of all isometries forms a
group (G, o, e), where e is the identity mapping (or
element) in G.

Regarding isometry in any n-dimensional Euclidean
space [E", we have the following facts:

Proposition 12. Every isometry of the Euclidean
space E" is one of the following three fundamental
types® (Fig. 17):

1. Rotation about a point o around an axis by a given
angle 0. The point o is called the center of rotation.

2. Reflection in a given hyperplane P.

3. Translation in a given direction by a given distance.
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A
B

(a) Rotation

(b) Translation

(c) Reflection

Figure 17. The three basic types of isometric transformations: rotation, translation and reflection.

Figure 18. A band ornament pattern (frieze pattern). It is an example of 1-D symmetric patterns.

A.2.  Symmetry in a 1-D or 2-D Euclidean Space

A.2.1. Groups Associated to 1-D and 2-D Symmetry.
One special 1-D symmetric pattern is a band ornament
pattern, also called a frieze pattern (Fig. 18). A real band
ornament is not strictly 1-dimensional, but its symme-
try often makes use of one of its dimensions. The only
possible types of symmetry for band ornaments are
reflection, translation and their combinations. The (bi-
lateral) reflective symmetry is pervasive in both art and
nature, which is also conspicuous in the structure of
man-made objects including buildings and machines
(Weyl, 1952). Any reflection symmetry is isomorphic
to the group Z,. That is if we denote a reflection by
r, we always have > = identity. A translation may
be represented by a vector . A pattern invariant under
the translation ¢ is also invariant under its iterations
t' 2,13, ... and under the inverse ¢! of ¢ and its it-
erations, which give rise to an infinite group. It is not
hard to show that if a 1-D pattern admits both transla-
tion and reflection symmetry, the reflection may only
occur at locations which are multiples of %t.

If we take a band ornament where we repeat its in-
dividual section again and again and sling it around a

circular cylinder, we obtain a pattern which is in 3-D
space but has a rotational symmetry in 2-D—we only
have to pay attention to the cross-section of the cylinder.
Any finite group of rotations contains a primitive rota-
tion operation r around some axis by an angle which
must be of the form 6 = 27” forsomen € Z,, and its it-
erations 7', r2, ... , r" = identity. We know this forms
a cyclic group of order n, conventionally denoted a C,,.
It is isomorphic to the Abelian group Z, and the order
of the group n completely characterizes the group. We
may also generalize the cyclic symmetry to other 3-D
objects. Then the cylinder may also be replaced by any
surface or structure with cylindrical symmetry, namely
by one that is carried into itself by a rotation around
certain axis.

Rotational (or cyclic) symmetry does not change the
orientation of an object. If reflections, also called im-
proper rotations, are taken into consideration, we have
the dihedral group of order n, denoted as D,,, and D, is
isomorphic to Z,, x Z,. One can think of this is a (cyclic)
rotation group C, combined with the reflections in n
lines forming angles of %9. A reflection changes the
orientation of the object it is applied to. Finally, we
have Leonardo’s Theorem (Martin, 1975).



Theorem 13 (Leonardo’s Theorem). The only finite
groups of isometry in a 2-D plane are the cyclic groups
C,, and the dihedral groups D,,.

A.2.2. Groups Associated to Tiling of a 2-D
Euclidean Space. Although Leonardo’s Theorem
completely characterizes finite groups of 2-D symme-
try, Hilbert’s 18th problem, i.e. exhaust all possible
realizations of the rotational and reflective symmetry
together with the translational symmetry as 2-D lat-
tice patterns (of a fundamental region), or the so-called
tiling, turns out to be a much more difficult problem.?

The difference between a tiling pattern and general 2-
D patterns is that a planar fundamental region (a “tile”)
fills the entire 2-D plane by its congruent pieces without
gaps or overlaps (e.g., the 4th image of Fig. 1).

Definition 14. A plane tiling 7 is a countable family
of closed congruent sets 7 = {71, T», . .. } which cover
the plane E? without gaps or overlaps.

The countability condition excludes families in which
a tile is allowed to have zero area. From the definition,
we see that the intersection of any finite set of tiles of
T necessarily has zero area, such an intersection may
be empty or may consist of a set of isolated points and
arcs. In these cases the points will be called vertices of
the tiling and the arcs will be called edges. A special
case of tiling is that each tile is a polygon.

Let us start our discussion from the group of trans-
lations, because this operation is the most conspicuous
in 2-D tilings. We have mentioned before the transla-
tions form a group. In general, the groups of reflections
and rotations do not obey the commutative law, but the
combination of translations is commutative, that is to
say, the group of translations is Abelian.

If a group G contains translations, G will not be
finite, but can still be discontinuous. For such a group
there are three possibilities (Weyl, 1952): Either it only
consists of identity; or all the translations in the group
are iterations ¢ of one basic translation # # identity; or
these translations form a 2-dimensional lastice {x1t; +
Xatp : where x, x, € Z} and the independent vectors
t1, t» form a lattice basis.

At least 17 different ways of tiling were known to
ancient Egyptians. However, it remained as a mystery
for thousands of years that if these were the only possi-
bilities. In 19th century (Fedorov, 1885, 1891a, 1891b,
1971) gave the first mathematical proof that this is in-
deed true which solved Hilbert’s 18th problem for the
2-D and 3-D cases. >’ It was pointed out that for proper
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and improper rotation groups, the only possible choices
in 2-D plane allowed by tiling are C;, C3, C3, Cy4, Cq
and Dy, D,, D3, D4, Dgsincewhenn =5, 7,orn > 8,
such an n-gon can not tile the whole plane without
gaps (Weyl, 1952). These 10 groups can further be re-
alized as 13 different types of 2-D lattices which are
unimodularly inequivalent. Finally, by taking into ac-
count translations which have to be compatible with
these lattices, there are essentially in total only 17 dif-
ferent ways to tile a 2-D plane. Interested readers can
find a full description of all the 17 patterns in Griinbaum
and Shephard (1987).

A.3.  Symmetry in a 3-D Euclidean Space

Similar analysis can be applied to study groups asso-
ciated to symmetry or tiling in a 3-D Euclidean space.
One surprising result in the 3-D space is that although
in a 2-D plane, there is for every number n > 2 a
regular polygon of n sides, in 3-D space there only
exist five regular polyhedra, often called the Platonic
solids (see Fig. 19). Based on this, one can show that
any group of rotational and reflective symmetry around
a center o in 3-D can be generated by C,, D,, and
three additional isometric (rotational) groups associ-
ated to the five Platonic solids (Fedorov, 1971; Weyl,
1952; Bulatov, www).28

Among all these rotational and reflective groups,
only 32 of them are allowed in any 3-D lattice, and
they give rise to a total of 70 different realizations of

Y I,

Cube
Octahedron
“ Tetrahedron l’
Icosahedron Dodecahedron

Figure 19. Five Platonic solids: cube, tetrahedron, octahedron,
icosahedron and dodecahedron.
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lattice. Together with proper translational components,
there are a total of 230 different ways to tile a 3-D
Euclidean space with a fundamental region (a tile).
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Notes

1. In fact, there are strong psychological evidences to believe that
symmetry is one of the most effective assumptions that humans
adopt to process visual information. We will have a more thor-
ough discussion on this topic at the end of this paper after we
have understood better the geometric basis for it.

2. Whereas most existing studies of symmetry are based on orthog-
onal or affine camera models, as approximation to the perspective
case.

3. The phenomenon with “multiple images” from a single one was
already pointed out by Malik and Rosenholtz (1997). But we
here will make a more geometric use of these images. For the
lack of better words, we will call such images as “hidden.” In
fact, they are probably better be called as “ulterior” or “covert”
images, or “equivalent” images.

4. One may argue that they are images taken from behind the board.
This is true if the board is “transparent.” If the symmetric object
is a 3-D object rather than a 2-D plane, such a argument will
nevertheless fall apart.

5. Egyptians certainly knew about all 17 possible ways of tiling
the floor; and Pythagoras already knew about the five platonic
solids which are the only non-trivial ones allowing 3-D rotational
symmetry, that were only proven by mathematicians in the 19th
century (Fedorov, 1885, 1891a, 1891b, 1971).

6. Here O(3) denotes the group of 3 x 3 orthogonal matrices in-
cluding both rotations (S O(3)) and reflections.

7. In Appendix A, we give explanation to why this assumption is
valid. However, it will be interesting to consider in the future gen-
eralized notion of “symmetry” that is captured by a continuous
or even non-rigid group.

8. Here we have effectively identified, through a group homomor-
phism, G as a subgroup of the permutation (or automorphism)
group & of the set Zp when Zj is a finite (or infinite) set.

9. Here we use |G| to denote the cardinality of G. In particular,
when G is finite, |G| is the number of elements in G.

10. We use the symbol “~” to denote “equal up to a scale.”

11. Inthe matrix, we use the notation i to denote the skew symmetric
matrix associated to a vector # € R? such that v = u x v for
allv e R3,

12. Here “only” is in the sense of sufficiency: if a set of features
satisfies the rank condition, it can always be interpreted as a
valid image of an object with the symmetry G.

13. Tt is possible that both |G and |S| are infinite. In practice, one
can conveniently choose only finitely many of them.

14. Insome literature, such equations are also called Sylvester equa-
tions.

15. In fact, E is equal to f’R’ = 7’"\’, which is a skew-symmetric
matrix and the extraction of R” and 7’ from such an E is very
much simplified. Furthermore, to recover such an E from the
epipolar constraint, only 4, instead of 8, corresponding points
are needed.

16. The planar homography is also a direct consequence of the (sym-
metric) multiple-view rank condition (Ma et al., 2002), applied
to planar scene.

17. In general, one gets a total of four solutions from the decompo-
sition, but only two of them are physically possible (Weng et al.,
1993).

18. The role of the axis of a reflection is very similar to that of the
axis of a rotation once we notice that, for any reflection R, —R
is a rotation of angle 6 = 7 about the same axis.

19. The reader may check that v; can also be obtained from the
homography matrix if the scene is planar.

20. For example, pixels are square.

21. Here we see, symmetry is a more principled way to unify in
computer vision notions like “orthogonality,” “parallelism,” or
“vanishing point” without using points or plane at infinity.

22. Notice that in both the translational and reflective symmetry
cases, for planar structures, one can obtain the vector KT’
from now the “uncalibrated” homography matrix H = K(I +
T'NTYK=' =14+ KT'(K-TN)T.

23. Although matching, or more precisely permutation, of features
is still required within a single image, since the techniques work
very well with only a small number of features, matching often
becomes relatively easier to do in a single image once the type
of symmetry is specified.

24. Results from point- or line-based multiple-view algorithms give
much larger errors.

25. In fact, all three types can be expressed in terms of product of
(at most n + 1) reflections.

26. The problem of tiling in non-Euclidean (elliptic and hyperbolic)
spaces turns out to be much easier mathematically, due to the
work of Jordan, Fricke, Klein et al., as was surveyed by Hilbert
when he proposed his 18th problem in 1901.

27. A general solution to Hilbert’s 18th problem was not solved till
1910 by Bieberbach (1910).

28. The cube and the octahedron share the same isometry group, so
do the icosahedron and the dodecahedron.
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