Skip to main content
Log in

Abstract

There are many problems in science and engineering where the signals of interest depend simultaneously on continuous and q-ary parameters, i.e. parameters which can take only one out of q possible values. This problem is generally known as multiple composite hypothesis testing. The probability function of the observed data for a given hypothesis is uncertain, as it depends on the parameters of the system. When there is no statistical model for the unknown continuous parameters, the GLRT is the usual criterion for the binary case. Although the GLRT philosophy can be extended to accommodate multiple composite hypotheses, unfortunately the solution is not satisfactory in the general case. In this paper, we restrict the general scenario and consider problems with q-ary input vectors and linear dependence on a unique set of continuous parameters; i.e. all the hypotheses depend on the same set of parameters. Direct application of the GLRT is feasible in this case, but it suffers from an exponential increase in complexity with data length. In this paper, we derive a low-complexity stochastic gradient procedure for this problem. The resulting algorithm, which resembles the LMS, updates the unknown parameters only along the direction of the winning hypothesis. This approach also presents similarities with competitive learning techniques, in the sense that at each iteration the different hypotheses compete to train the parameters. The validity of the proposed approach is shown by applying it to blind system identification/equalization, and chaotic AR(1) model estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Feder and N. Merhav, “Universal Composite Hypothesis Testing: A Competitive Minimax Approach,” IEEE Trans. on Information Theory, vol. 48, no. 6, 2002, pp. 1504-1517.

    Article  MathSciNet  MATH  Google Scholar 

  2. C.C. Tappert, Y. Suen, and T. Wakahara, “The State-of-the-Art in On-Line Hand-Written Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 12, no. 8, 1990, pp. 787-808.

    Article  Google Scholar 

  3. L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings IEEE, vol. 77, no. 2, 1989, pp. 257-286.

    Article  Google Scholar 

  4. A. Neri, “Optimal Detection and Estimation of Straight Patterns,” IEEE Trans. Image Processing, vol. 5, no. 5, 1996, pp. 787-792.

    Article  Google Scholar 

  5. J.M. Mendel, Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing, NY: Springer-Verlag, 1990.

    Book  Google Scholar 

  6. C. Andrieu, E. Barat, and A. Doucet, “Bayesian Deconvolution of Noisy Filtered Point Processes,” IEEE Trans. on Signal Proc., vol. 49, no. 1, 2001, pp. 134-146.

    Article  Google Scholar 

  7. M. Basseville and A. Benveniste, Detection of Abrupt Changes in Signals and Dynamical Systems, Berlin: Springer-Verlag, 1980.

    Google Scholar 

  8. C. Pantaleon, D. Luengo, and I. Santamaria, “Chaotic AR(1) Model Estimation,” Proc. ICASSP 2001, Salt Lake City, UT (USA), vol. 6, 7–11 May 2001, pp. 3477-3480.

    Google Scholar 

  9. B. Baygun and A.O. Hero III, “Optimal Simultaneous Detection and Estimation Under a False Alarm Constraint,” IEEE Trans. on Info. Theory, vol. 41, no. 3, 1995, pp. 688-703.

    Article  Google Scholar 

  10. M. Wax and A. Leshem, “Joint Estimation of Time Delays and Direction of Arrival of Multiple Reflections of a Known Signal,” IEEE Trans. Signal Processing, vol. 45, no. 10, 1997, pp. 2477-2484.

    Article  Google Scholar 

  11. J.G. Proakis, Digital Communications, NY: McGraw-Hill, 1995.

    Google Scholar 

  12. A. Kannan and V.U. Reddy, “Maximum Likelihood Estimation of Constellation Vectors for Blind Separation of Co-Channel BPSK Signals and Its Performance Analysis,” IEEE Trans. on Signal Proc., vol. 45, no. 7, 1997, pp. 1736-1741.

    Article  MATH  Google Scholar 

  13. J. Ziv, “Universal Decoding for Finite-state Channels,” IEEE Trans. Information Theory, vol. IT-31, no. 4, 1985, pp. 453-460.

    Article  MathSciNet  Google Scholar 

  14. S.M. Kay, Fundamentals of Statistical Signal Processing, vol. II, Detection Theory, New Jersey: Prentice Hall, 1998.

    Google Scholar 

  15. G. Olmo, E. Magli, and L. Lo Presti, “Joint Statistical Signal Detection and Estimation. Part I: Theoretical Aspects of the Problem,” Signal Processing, vol. 80, no. 1, 2000, pp. 57-73.

    Article  MATH  Google Scholar 

  16. L.L. Scharf, Statistical Signal Processing, Detection, Estimation and Time Series Analysis, Reading, MA, USA: Addison-Wesley, 1991.

    MATH  Google Scholar 

  17. H.L. Van Trees, Detection, Estimation and Modulation Theory, New York, USA: Wiley, 1968.

    MATH  Google Scholar 

  18. T. Kohonen, “Self-Organizing Maps: Optimization Approaches,” in Artificial Neural Networks, vol. II, Amsterdam: North Holland, 1991.

    Google Scholar 

  19. A. Hyvainen, J. Karhunen, and E. Oha, Independent Component Analysis, NY: John Wiley &; Sons, 2001.

    Book  Google Scholar 

  20. S. Haykin, Neural Networks: A Comprehensive Foundation, NY: MacMillan Pub. Co., 1994.

    MATH  Google Scholar 

  21. J. Principe, N.R. Euliano, and W.C. Lefebvre, Neural and Adaptive Systems: Fundamentals Through Simulations, NY: John Wiley &; Sons, 2000.

    Google Scholar 

  22. C. Pantaleon, I. Santamaria, and A.R. Figueiras, “Competitive Local Linear Modeling,” Signal Processing, vol. 49, no. 2, 1996, pp. 73-83.

    Article  MATH  Google Scholar 

  23. G.D. Forney, “The Viterbi Algorithm,” Proc. of the IEEE, vol. 61, no. 3, 1972, pp. 268-278.

    Article  MathSciNet  Google Scholar 

  24. F.R. Magee and J.G. Proakis, “Adaptive Maximum-Likelihood Sequence Estimation for Signaling in the Presence of Intersymbol Interference,” IEEE Trans. on Information Theory, vol. IT-19, no. 1, 1973, pp. 120-124.

    Article  Google Scholar 

  25. N. Seshadri, “Joint Data and Channel Estimation Using Blind Trellis Search Techniques,” in Blind Deconvolution, Englewood Cliffs, NJ: Prentice Hall, 1994.

    Google Scholar 

  26. L. Tong, “Blind Sequence Estimation,” IEEE Trans. on Communications, vol. 43, no. 12, 1995, pp. 2986-2994.

    Article  MATH  Google Scholar 

  27. D. Yellin and B. Porat, “Blind Identification of FIR Systems Excited by Discrete-alphabet Inputs,” IEEE Trans. on Signal Processing, vol. 41, no. 3, 1993, pp. 1331-1339.

    Article  MATH  Google Scholar 

  28. F. Gustafsson and B. Wahlberg, “Blind Equalization by Direct Examination of the Input Sequences,” IEEE Trans. on Communications, vol. 43, no. 7, 1995, pp. 2213-2222.

    Article  Google Scholar 

  29. A. Gorokhov and P. Loubaton, “Semi-Blind Second Order Identification of Convolutive Channels,” Proc. ICASSP 1997, Munich (Germany), vol. 5, 21–24 April 1997, pp. 3905-3908.

    Google Scholar 

  30. T.F. Quatieri and E.M. Hofstetter, “Short Time Signal Representation by Nonlinear Difference Equations,” Proc. ICASSP 1990, Albuquerque, NM (USA), vol. 3, 3–6 April 1990, pp. 1551-1554.

    Google Scholar 

  31. M. Akay (Ed.), Nonlinear Biomedical Signal Processing, Vol. II: Dynamic Analysis and Modeling, New Jersey, USA: IEEE Press Series on Biomedical Eng., 2001.

    Google Scholar 

  32. S. Haykin and X.B. Li, “Detection of Signals in Chaos,” Proceedings of the IEEE, vol. 83, no. 1, 1995, pp. 95-122.

    Article  Google Scholar 

  33. P. Pruthi and A. Erramilli, “Heavy Tailed ON/OFF Source Behavior and Self-Similar Traffic,” Proc. ICC 1995, Seattle, WA (USA), vol. 1, 18–22 June 1995, pp. 445-450.

    Google Scholar 

  34. T. Mullin (Ed.), The Nature of Chaos, NY: Oxford University Press, 1995.

    Google Scholar 

  35. S.H. Isabelle and G.W. Wornell, “Statistical Analysis and Spectral Estimation for One-Dimensional Chaotic Signals,” IEEE Trans. on Signal Processing, vol. 45, no. 6, 1997, pp. 1495-1506.

    Article  MATH  Google Scholar 

  36. S.M. Kay, “Asymptotic Maximum Likelihood Estimator Performance for Chaotic Signals in Noise,” IEEE Trans. on Signal Processing, vol. 43, no. 4, 1995, pp. 1009-1012.

    Article  Google Scholar 

  37. C. Pantaleon, D. Luengo, and I. Santamaria, “Optimal Estimation of Chaotic Signals Generated by Piecewise-Linear Maps,” IEEE Signal Processing Letters, vol. 7, no. 8, 2000, pp. 235-237.

    Article  Google Scholar 

  38. C. Pantaleon, D. Luengo, and I. Santamaria, “An Efficient Method for Chaotic Signal Parameter Estimation,” Proc. EUSIPCO 2000, Tampere (Finland), vol. 3, 5–8 Sept. 2000, pp. 9-12.

    Google Scholar 

  39. D. Luengo, C. Pantaleon, and I. Santamaria, “Competitive Chaotic AR(1) Model Estimation,” Proc. IEEE XI NNSP Workshop, North Falmouth, MA (USA), 10–12 Sept. 2001, pp. 83-92.

  40. H. Sakai and H. Tokumaru, “Autocorrelation of a Certain Chaos,” IEEE Trans. on Signal Processing, vol. 28, no. 5, 1980, pp. 588-590.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luengo, D., Pantaleon, C., Santamaria, I. et al. Multiple Composite Hypothesis Testing: A Competitive Approach. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 37, 319–331 (2004). https://doi.org/10.1023/B:VLSI.0000027494.41629.9d

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VLSI.0000027494.41629.9d

Navigation