Skip to main content
Log in

The effect of tightly bound water molecules on the structural interpretation of ligand-derived pharmacophore models

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The importance of the consideration of water molecules in the structural interpretation of ligand-derived pharmacophore models is explored. We compare and combine results from recently introduced methods for bound-water molecule identification in protein binding sites and ligand-superposition-based pharmacophore derivation, for the interpretation of ligand-derived pharmacophore models. In the analysis of thymidine kinase (HSV-1) and poly (ADP-ribose) polymerase (PARP), the concurrent application of both methods leads to an agreement in the prediction of tightly bound water molecules as key pharmacophoric points in the binding site of these proteins. This agreement has implications for approaching binding site analysis and consensus drug design, as it highlights how pharmacophore-based models of binding sites can include interaction features not only with protein groups but also with bound water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takano, K., Yamagata, Y. and Yutani, K., Protein Eng., 16 (2003) 5.

    Article  PubMed  Google Scholar 

  2. Davis, A.M., Teague, S.J. and Kleywegt, G.J., Angew. Chem. Int. Ed. Engl., 42 (2003) 2718.

    Article  PubMed  Google Scholar 

  3. Engh, R.A., Brandstetter, H., Sucher, G., Eichinger, A., Baumann, U., Bode, W., Huber, R., Poll, T., Rudolph, R. and von der Saal, W., Structure, 4 (1996) 1353.

    Article  PubMed  Google Scholar 

  4. Rejto, P.A. and Verkhivker, G.M., Proteins Struct. Funct. Genet., 28 (1997) 313.

    Article  PubMed  Google Scholar 

  5. Finley, J.B., Atigadda, V.R., Duarte, F., Zhao, J.J., Brouillette, W.J., Air, G.M. and Luo, M., J. Mol. Biol., 293 (1999) 1107.

    Article  PubMed  Google Scholar 

  6. Palomer, A., Pérez, J.J., Navea, S., Llorens, O., Pascual, J., García, Ll. and Mauleón, D., J. Med. Chem., 43 (2000) 2280.

    Article  PubMed  Google Scholar 

  7. Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 500.

    Article  Google Scholar 

  8. Marrone, T.J., Briggs, J.M. and Mccammon, J.A., Ann. Rev. Pharmacol. Toxicol., 37 (1997) 71.

    Google Scholar 

  9. Lam, P.Y.S., Jadhav, P.K., Eyermann, C.J., Hodge, C.N., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.J., Rayner, M.M., Wong, Y.N., Chang, C.H., Weber, P.C., Jackson, D.A., Sharpe, T.R. and Ericksonviitanen, S., Science, 263 (1994) 380.

    PubMed  Google Scholar 

  10. Chen, J.M., Xu, S.L., Wawrzak, Z., Basarab, G.S. and Jordan, D.B., Biochemistry, 37 (1998) 17735.

    Article  PubMed  Google Scholar 

  11. Mikol, V., Papageorgiou, C. and Borer, X., J. Med. Chem., 38 (1995) 3361.

    Article  PubMed  Google Scholar 

  12. Holdgate, G.A., Tunnicliffe, A., Ward, W.H.J., Weston, S.A., Rosenbrock, G., Barth, P.T., Taylor, I.W.F., Pauptit, R.A. and Timms, D., Biochemistry, 36 (1997) 9663.

    Article  PubMed  Google Scholar 

  13. Cherbavaz, D.B., Lee, M.E., Stroud, R.M. and Koschl, D.E., J. Mol. Biol., 295 (2000) 377.

    Article  PubMed  Google Scholar 

  14. Rarey, M., Kramer, B. and Lengauer, T., Proteins Struct. Funct. Genet., 34 (1998) 17.

    Article  Google Scholar 

  15. Schnecke, V. and Kuhn, L.A., Perspect. Drug Discov. Des., 20 (2000) 171.

    Article  Google Scholar 

  16. Pospisil, P., Kuoni, T., Scapozza, L. and Folkers, G., J. Recept. Signal Transduct. Res., 22 (2002) 141.

    Article  PubMed  Google Scholar 

  17. Pastor, M., Cruciani, G. and Watson, K.A., J. Med. Chem., 40 (1997) 4089.

    Article  PubMed  Google Scholar 

  18. Mancera, R.L., J. Comput.-Aided Mol. Design, 16 (2002) 479.

    Article  Google Scholar 

  19. Nakasako, M., J. Mol. Biol., 289 (1999) 547.

    Article  PubMed  Google Scholar 

  20. Faerman, C.H. and Karplus, P.A., Proteins Struct. Funct. Genet., 23 (1995) 1.

    Article  PubMed  Google Scholar 

  21. Schwabe, J.W.R., Curr. Opin. Struct. Biol., 7 (1997) 126.

    Article  PubMed  Google Scholar 

  22. Carrell, H.L., Glusker, J.P., Burger, V., Manfre, F., Tritsch, D. and Biellmann, J.-F., Proc. Natl. Acad. Sci. USA, 86 (1989) 4440.

    PubMed  Google Scholar 

  23. Chung, E., Henriques, D., Renzoni, D., Zvelebil, M., Bradshaw, J.M., Waksman, G., Robinson, C.V. and Ladbury, J.E., Struct. Fold. Des., 6 (1998) 1141.

    Article  Google Scholar 

  24. Ogata, K. and Wodak, S.J., Protein Eng., 15 (2002) 697.

    Article  PubMed  Google Scholar 

  25. Loris, R., Langhorst, U., De Vos, S., Decanniere, K., Bouckaert, J., Maes, D., Transue, T.R. and Steyaert, J., Proteins Struct. Funct. Genet., 36 (1999) 117.

    Article  PubMed  Google Scholar 

  26. Loris, R., Stas, P.P.G. and Wyns, L., J. Biol. Chem., 269 (1994) 26722.

    PubMed  Google Scholar 

  27. Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 521.

    Article  Google Scholar 

  28. Ehrlich, L., Reckzo, M., Bohr, H. and Wade, R.C., Protein Eng., 11 (1998) 11.

    Article  PubMed  Google Scholar 

  29. Raymer, M.L., Sanschagrin, P.C., Punch,W.F., Venkataraman, S., Goodman, E.D. and Kuhn, L.A., J. Mol. Biol., 265 (1997) 445.

    Article  PubMed  Google Scholar 

  30. Sanschagrin, P.C. and Kuhn, L.A., Protein Sci., 7 (1998) 2054.

    PubMed  Google Scholar 

  31. García-sosa, A.T., Mancera, R.L. and Dean, P.M., J. Mol. Model., 9 (2003) 172.

    Article  Google Scholar 

  32. Anstead, G.M., Carlson, K.E. and Katzenellenbogen, J.A., Steroids, 62 (1997) 268.

    Article  PubMed  Google Scholar 

  33. Grünenberg, S., Stubbs, M.T. and Klebe, G., J. Med. Chem., 45 (2002) 3588.

    Article  PubMed  Google Scholar 

  34. Brenk, R., Naerum, L., Grädler, U., Gerber, H-D., Garcia, G.A., Reuter, K., Stubbs, M.T. and Klebe, G., J. Med. Chem., 46 (2003) 1133.

    Article  PubMed  Google Scholar 

  35. Perry, N.C., Lloyd, D.G., Todorov, N.P. and Alberts, I.L. In: QSAR Proceedings 2002: EuroQSAR 2002: Designing Drugs and Crop Protectants. Blackwell Publishing, Oxford, UK, 2003, pp. 68–72.

    Google Scholar 

  36. Mills, J.E.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 10 (1996) 607.

    Article  Google Scholar 

  37. Kirkpatrick, S., Gellat C.D. and Vecchi, M.P., Science, 220 (1983) 671.

    Google Scholar 

  38. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E., J. Chem. Phys., 21 (1953) 1087.

    Article  Google Scholar 

  39. Mills, J.E.J., De Esch, I.J., Perkins, T.D.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 1 (2001) 81.

    Article  Google Scholar 

  40. De Esch, I.J., Mills, J.E.J., Perkins, T.D.J., Romeo, G., Hoffmann, M., Wieland, K., Leurs, R., Menge, W.M.P.B., Nederkoorn, P.H.J., Dean, P.M. and Timmerman, H., J. Med. Chem., 44 (2001) 1666.

    Article  PubMed  Google Scholar 

  41. Martin, Y.C., Bures, M.G., Danaher, E.A., Delazzer, J., Lico, I and Pavlik, P.A., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Article  Google Scholar 

  42. Mcmartin, C. and Bohacek, R.S., J. Comput.-Aided Mol. Design, 9 (1995) 237.

    Article  Google Scholar 

  43. Handschuh, S., Wagener, M. and Gasteiger, J., J. Chem. Inf. Comput. Sci., 38 (1998) 220.

    Article  PubMed  Google Scholar 

  44. Lemmen, C., Lengauer, T. and Klebe, G., J. Med. Chem., 41 (1998) 4502.

    Article  PubMed  Google Scholar 

  45. Lemmen, C., Hiller, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 12 (1998) 491.

    Article  Google Scholar 

  46. Goldman, B.B. and Wipke, W.T., J. Chem. Inf. Comput. Sci., 40 (2000) 644.

    Article  PubMed  Google Scholar 

  47. Melani, F., Graterri, P., Adamo, M. and Bonaccini, C., J. Med. Chem., 46 (2003) 1359.

    Article  PubMed  Google Scholar 

  48. Derwent World Drug Alerts, Derwent Information, London, 2002.

  49. Hubbard, S.J. and Argos, P., Protein Eng., 8 (1995) 1011.

    PubMed  Google Scholar 

  50. Lee, B. and Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Article  PubMed  Google Scholar 

  51. Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 513.

    Article  Google Scholar 

  52. Guex, N. and Peitsch, M.C., Electrophoresis, 18 (1997) 2714.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. Mancera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, D.G., García-Sosa, A.T., Alberts, I.L. et al. The effect of tightly bound water molecules on the structural interpretation of ligand-derived pharmacophore models. J Comput Aided Mol Des 18, 89–100 (2004). https://doi.org/10.1023/B:jcam.0000030032.81753.b4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:jcam.0000030032.81753.b4

Navigation