
Kwabena Boahen got his first computer 
in 1982, when he was a teenager living 
in Accra. “It was a really cool device,” he 
recalls. He just had to connect up a cas-

sette player for storage and a television set for a 
monitor, and he could start writing programs. 

But Boahen wasn’t so impressed when 
he found out how the guts of his computer 
worked. “I learned how the central process-
ing unit is constantly shuffling data back and 
forth. And I thought to myself, ‘Man! It really 
has to work like crazy!’” He instinctively felt 
that computers needed a little more ‘Africa’ 
in their design, “something more distributed, 
more fluid and less rigid”.

Today, as a bioengineer at Stanford Univer-
sity in California, Boahen is among a small 
band of researchers trying to create this kind of 

computing by reverse-engineering the brain. 
The brain is remarkably energy efficient and 

can carry out computations that challenge the 
world’s largest supercomputers, even though 
it relies on decidedly imperfect components: 
neurons that are a slow, variable, organic mess. 
Comprehending language, conducting abstract 
reasoning, controlling movement — the brain 
does all this and more in a package that is 
smaller than a shoebox, consumes less power 
than a household light bulb, and contains 

nothing remotely like a central processor.
To achieve similar feats in silicon, research-

ers are building systems of non-digital chips 
that function as much as possible like networks 
of real neurons. Just a few years ago, Boahen 
completed a device called Neurogrid that emu-
lates a million neurons — about as many as 
there are in a honeybee’s brain. And now, after 
a quarter-century of development, applications 
for ‘neuromorphic technology’ are finally in 
sight. The technique holds promise for any-
thing that needs to be small and run on low 
power, from smartphones and robots to artifi-
cial eyes and ears. That prospect has attracted 
many investigators to the field during the past 
five years, along with hundreds of millions of 
dollars in research funding from agencies in 
both the United States and Europe. 

S M A R T  C O N N E C T I O N S
Computer chips inspired by human neurons can do more with less power.
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Ne u r o m o r p h i c  
devices are also pro-
viding neuroscien-
tists with a powerful 
research tool, says 

Giacomo Indiveri at the Institute of Neuro
informatics (INI) in Zurich, Switzerland. By 
seeing which models of neural function do or 
do not work as expected in real physical sys-
tems, he says, “you get insight into why the 
brain is built the way it is”.

And, says Boahen, the neuromorphic 
approach should help to circumvent a looming 
limitation to Moore’s law — the longstanding 
trend of computer-chip manufacturers manag-
ing to double the number of transistors they 
can fit into a given space every two years or so. 
This relentless shrinkage will soon lead to the 
creation of silicon circuits so small and tightly 
packed that they no longer generate clean sig-
nals: electrons will leak through the compo-
nents, making them as messy as neurons. Some 
researchers are aiming to solve this problem 
with software fixes, for example by using sta-
tistical error-correction techniques similar to 
those that help the Internet to run smoothly. 
But ultimately, argues Boahen, the most effec-
tive solution is the same one the brain arrived 
at millions of years ago.

“My goal is a new computing paradigm,” 
Boahen says, “something that will compute 
even when the components are too small to 
be reliable.”

SILICON CELLS
The neuromorphic idea goes back to the 1980s 
and Carver Mead: a world-renowned pioneer 
in microchip design at the California Institute 
of Technology in Pasadena. He coined the term 
and was one of the first to emphasize the brain’s 
huge energy-efficiency advantage. “That’s been 
the fascination for me,” he says, “how in the 
heck can the brain do what it does?” 

Mead’s strategy for answering that question 
was to mimic the brain’s low-power process-
ing with ‘sub-threshold’ silicon: circuitry that 
operates at voltages too small to flip a stand-
ard computer bit from a 0 to a 1. At those 
voltages, there is still a tiny, irregular trickle 
of electrons running through the transistors 
— a spontaneous ebb and flow of current that 
is remarkably similar in size and variability to 
that carried by ions flowing through a channel 
in a neuron. With the addition of microscopic 
capacitors, resistors and other components 
to control these currents, Mead reasoned, it 
should be possible to make tiny circuits that 
exhibit the same electrical behaviour as real 
neurons. They could be linked up in decen-
tralized networks that function much like real 
neural circuits in the brain, with communica-
tion lines running between components rather 
than through a central processor1,2.

By the 1990s, Mead and his colleagues had 
shown it was possible to build a realistic sili-
con neuron3 (see ‘Biological inspiration’). That 

device could accept outside electrical input 
through junctions that performed the role of 
synapses, the tiny structures through which 
nerve impulses jump from one neuron to the 
next. It allowed the incoming signals to build 
up voltage in the circuit’s interior, much as they 
do in real neurons. And if the accumulating 
voltage passed a certain threshold, the silicon 
neuron ‘fired’, producing a series of voltage 
spikes that travelled along a wire playing the 
part of an axon, the neuron’s communication 
cable. Although the spikes were ‘digital’ in the 
sense that they were either on or off, the body of 
the silicon neuron operated — like real neurons 
— in a non-digital way, meaning that the volt-
ages and currents weren’t restricted to a few dis-

crete values as they are in conventional chips.
That behaviour mimics one key to the brain’s 

low-power usage: just like their biological 
counterparts, the silicon neurons simply inte-
grated inputs, using very little energy, until 
they fired. By contrast, a conventional com-
puter needs a constant flow of energy to run 
an internal clock, whether or not the chips are 
computing anything.

Mead’s group also demonstrated decentral-
ized neural circuits — most notably in a silicon 
version of the eye’s retina. That device captured 
light using a 50-by-50 grid of detectors. When 
their activity was displayed on a computer 
screen, these silicon cells showed much the 
same response as their real counterparts to 
light, shadow and motion4. Like the brain, 
this device saves energy by sending only the 
data that matters: most of the cells in the retina 
don’t fire until the light level changes. This has 
the effect of highlighting the edges of moving 
objects, while minimizing the amount of data 
that has to be transmitted and processed.

CODING CHALLENGE
In those early days, researchers had their hands 
full mastering single-chip devices such as the sil-
icon retina, says Boahen, who joined Mead’s lab 
in 1990. But by the end of the 1990s, he says, “we 
wanted to build a brain, and for that we needed 
large-scale communication”. That was a huge 
challenge: the standard coding algorithms for 
chip-to-chip communication had been devised 
for precisely coordinated digital signals, and 
wouldn’t work for the more-random spikes 
created by neuromorphic systems. Only in the 
2000s did Boahen and others devise circuitry 
and algorithms that would work in this messier 
system, opening the way for a flurry of develop-
ment in large-scale neuromorphic systems. 

Among the first applications were large-scale 
emulators to give neuroscientists an easy way 

to test models of brain function. In September 
2006, for example, Boahen launched the Neu-
rogrid project: an effort to emulate a million 
neurons. That is only a tiny chunk of the 86 bil-
lion neurons in the human brain, but enough 
to model several of the densely interconnected 
columns of neurons thought to form the com-
putational units of the human cortex. Neuro-
scientists can program Neurogrid to emulate 
almost any model of the cortex, says Boahen. 
They can then watch their model run at the 
same speed as the brain — hundreds to thou-
sands of times faster than a conventional digital 
simulation. Graduate students and research-
ers have used it to test theoretical models of 
neural function for processes such as working  

memory, decision-making and visual attention.
“In terms of real efficiency, in terms of fidel-

ity to the brain’s neuronal networks, Kwabena’s 
Neurogrid is well in advance of other large-
scale neuromorphic systems,” says Rodney 
Douglas, co-founder of the INI and co-devel-
oper of the silicon neuron. 

But no system is perfect, as Boahen himself is 
quick to point out. One of Neurogrid’s biggest 
shortcomings is that its synapses — of which 
there is an average of 5,000 per neuron — are 
simplified connections that cannot be modi-
fied individually. This means that the system 
cannot be used to model learning, which 
occurs in the brain when synapses are modi-
fied by experience. Given the limited space 
available on the chip, squeezing in the complex 
circuitry needed to make each synapse behave 
in a more realistic manner would require  
circuit elements about a thousand times 
smaller in area than they are at present — in 
the realm of nanotechnology. This is currently 
impossible, although a newly developed class 
of nanometre-scale memory devices called 
‘memristors’ could someday solve the problem. 

Another issue stems from inevitable varia-
tions in the fabrication process, which mean 
that every neuromorphic chip performs 
slightly differently. “The variability is still 
much less than what is observed in the brain,” 
says Boahen — but it does mean that programs 
for Neurogrid have to allow for substantial 
variations in the silicon neurons’ firing rates. 

This issue has led some researchers to 
abandon Mead’s original idea of using sub-
threshold chips. Instead, they are using more 
conventional digital systems that are still 
neuromorphic in the sense that they mimic 
the electrical behaviour of individual neurons, 
but are more predictable and much easier to 
program — at the cost of using more power. 

A leading example is the SpiNNaker Project, 

“WE ENVISION BUILDING FULLY AUTONOMOUS 
ROBOTS THAT INTERACT WITH THEIR 
ENVIRONMENTS IN A MEANINGFUL WAY.”

Kwabena Boahen 
holds a ‘neuromorphic’ 
circuit board from his 
Neurogrid device.
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led since 2005 by computer engineer Steve 
Furber at the University of Manchester, UK. 
This system uses a version of the very-low-
power digital chips — which Furber helped 
to develop — that are found in many smart-
phones. SpiNNaker can currently emulate up 
to 5 million neurons. These neurons are sim-
pler than those in Neurogrid and burn more 
power, says Furber, but the system’s purpose is 
similar: “running large-scale brain models in 
biological real time”. 

Another effort sticks with neuron-like chips, 
but boosts their speed. Neurogrid’s neurons 
operate at exactly the same rate as real ones. 
But the European BrainScaleS project, headed 
by former accelerator-physicist Karlheinz 
Meier at Heidelberg University in Germany, 
is developing a neuromorphic system  that 
currently emulates 400,000 neurons running 
up to 10,000 times faster than real time. This 
means it consumes about 10,000 times more 
energy than equivalent processes in the brain. 
But the speed is a boon for some neuroscience 
researchers. “We can simulate a day of neural 
activity in 10 seconds,” Meier says. 

Furber and Meier now have the money to 
push for bigger and better. Together they con-
stitute the neuromorphic arm of the European 
Union’s ten-year, €1-billion (US$1.3-billion) 
Human Brain Project, which was officially 
launched last month. The roughly €100 mil-
lion devoted to neuromorphic research will 
allow Furber’s group to scale up his system 
to 500 million digital neurons; Meier’s group, 
meanwhile, is aiming for 4 million.

The success of these research-oriented pro-
jects has helped to stoke interest in the idea of 
using neuromorphic hardware for practical, 
ultra-low-power applications in devices from 
phones to robots. Until recently, that hadn’t 
been a priority in the computer industry. Chip 
designers could usually minimize energy 
consumption by simplifying circuit design, or 
splitting computations over multiple processor 
‘cores’ that can run in parallel or shut down 
when they are not needed.

But these approaches can only achieve so 
much. Since 2008, the US Defense Advanced 
Research Projects Agency has spent more 
than $100 million on its SyNAPSE project to 
develop compact, low-power neuromorphic 
technology. One of the project’s main contrac-
tors, the cognitive computing group at IBM’s 
research centre in Almaden, California, has 
used its share of the money to develop digital, 
256-neuron chips that can be used as building 
blocks for larger-scale systems. 

BRAIN POWER
Boahen is pursuing his own approach to 
practical applications — most notably in an 
as-yet-unnamed initiative he started in April. 
The project is based on Spaun: a design for a 
computer model of the brain that includes the 
parts responsible for vision, movement and 
decision-making. Spaun relies on a program-
ming language for neural circuitry developed 
a decade ago by Chris Eliasmith, a theoretical 
neuroscientist at the University of Waterloo 
in Ontario, Canada. A user just has to specify 

a desired neural function — the generation 
of instructions to move an arm, for example 
— and Eliasmith’s system will automatically 
design a network of spiking neurons to carry 
out that function. 

To see if it would work, Eliasmith and his 
colleagues simulated Spaun on a conventional 
computer. They showed that, with 2.5 million 
simulated neurons plus a simulated retina and 
hand, it could copy handwritten digits, recall 
the items in a list, work out the next number 
in a given sequence and carry out several other 
cognitive tasks5. That’s an unprecedented range 
of abilities by neural simulation standards, says 
Boahen. But the Spaun simulation ran about 
9,000 times slower than real time, taking 
2.5 hours to simulate 1 second of behaviour. 

Boahen contacted Eliasmith with the obvi-
ous proposition: build a physical version of 
Spaun using real-time neuromorphic hard-
ware. “I got very excited,” says Eliasmith, for 
whom the match seemed perfect. “You’ve got 
the peanut butter, we’ve got the chocolate!”

With funding from the US Office of Naval 
Research, Boahen and Eliasmith have put 
together a team that plans to build a small-
scale prototype in three years and a full-scale 
system in five. For sensory input they will use 
neuromorphic retinas and cochleas developed 
at the INI, says Boahen. For output, they have a 
robotic arm. But the cognitive hardware will be 
built from scratch. “This is not a new Neuro-
grid, but a whole new architecture,” he says. It 
will trade a certain amount of realism for prac-
ticality, relying on “very simple, very efficient 
neurons so that we can scale to the millions”. 

The system is explicitly designed for real-
world applications. On a five-year timescale, 
says Boahen, “we envision building fully 
autonomous robots that interact with their 
environments in a meaningful way, and oper-
ate in real-time while [their brains] consume as 
much electricity as a cell phone”. Such devices 
would be much more flexible and adaptive 
than today’s autonomous robots, and would 
consume considerably less power. 

In the longer term, Boahen adds, the project 
could pave the way for compact, low-power 
processors in any computer system, not just 
robotics. If researchers really have managed to 
capture the essential ingredients that make the 
brain so efficient, compact and robust, then it 
could be the salvation of an industry about to 
run into a wall as chips get ever smaller. 

“But we won’t know for sure,” Boahen says, 
“until we try.” ■

M. Mitchell Waldrop is a features editor for 
Nature based in Washington DC.
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Synapses 

Each neuron has about 10,000 
of these tiny junctions, which 
receive signals in the form of 
voltage spikes coming in from 
other neurons.

Neuron cell body

In both real neurons and 
neuromorphic versions, 
voltages and currents vary 
smoothly rather than jump 
in digital fashion from one 
discrete value to another.

Axon

This fibre, which can be up to 
1 metre long, transmits the 
voltage spikes to other neurons.

Connections 

Each emulated neuron 
receives signals through 

several thousand of these 
links, which are often much 

simpler than biological 
synapses. 

Emulated neuron

Both real and emulated 
neurons add up, or integrate, 

incoming signals until they 
pass a threshold and ‘fire’, 

producing an outgoing series 
of voltage spikes.

Wire

This mimics the axon, and 
carries the voltage spikes to 

other emulated neurons.

BIOLOGICAL INSPIRATION
Neuromorphic technology is based on neurons and neural circuits in the brain.  
Like the brain, it uses much less power than standard computer chips.
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