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BIG DATA IN BIOMEDICINEOUTLOOK

B Y  M I C H A E L  E I S E N S T E I N

Fifteen years ago, it was a landmark 
achievement. Ten years ago, it was an 
intriguing but highly expensive research 

tool. Now, falling costs, soaring accuracy and a 
steadily expanding base of scientific knowledge 
have brought genome sequencing to the cusp of 
routine clinical care. 

A growing number of institutions are con-
ducting genome-wide ‘dragnet’ searches to 
identify the mutations responsible for rare dis-
eases. “The rate at which we’re finding causative 
variants in those cases is going up,” says Russ 
Altman, a bioinformatician at Stanford School 
of Medicine in California. “At some centres, it’s 
up to 50% of cases.” Genomic variants can also 
reveal ‘driver’ mutations that might reveal a 
tumour’s therapeutic vulnerabilities, or provide 
clues to whether a specific individual may or 
may not respond to a drug — the drug’s ‘phar-
macogenetic’ properties. 

The US$1,000 genome, initially conceived 

as a price point at which sequencing could 
become a component of personalized medi-
cine, has arrived. “Our capacity for data gen-
eration relative to price has increased in a 
way that is almost unprecedented in science 
— roughly six orders of magnitude in the past 
seven or eight years,” says Paul Flicek, a special-
ist in computational genomics at the European 
Molecular Biology Laboratory’s European 
Bioinformatics Institute in Cambridge, UK. 
The HiSeq X Ten system developed by Illu-
mina of San Diego, California, can sequence 
more than 18,000 human genomes per year, 
for example. 

The biomedical research community is div-
ing in whole-heartedly, with population-scale 
programmes that are intended to explore 
the clinical power of the genome. In 2014 
the United Kingdom launched the 100,000 
Genomes Project, and both the United States 
(under the Precision Medicine Initiative) and 
China (in a programme to be run by BGI of 
Shenzhen) have unveiled plans to analyse 

genomic data from one million individuals. 
Many other programmes are under way 

that, although more regional in focus, are still 
‘big data’ operations. A partnership between 
Geisinger Health System, based in Danville, 
Pennsylvania, and biotech firm Regeneron 
Pharmaceuticals of Tarrytown, New York, for 
instance, aims to generate sequence data for 
more than 250,000 people. Meanwhile, a grow-
ing number of hospitals and service providers 
worldwide are sequencing the genomes of peo-
ple with cancers or rare hereditary disorders 
(see ‘DNA sequencing soars’).

Some researchers worry that the flood of 
data could overwhelm the computational 
pipelines needed for analysis and generate 
unprecedented demand for storage — one 
article estimated that the output from genom-
ics may soon dwarf data heavyweights such 
as YouTube. Many also worry that today’s big 
data lacks the richness to provide clinical value.  
“I don’t know if a million genomes is the 
right number, but clearly we need more than 
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The power of petabytes
Researchers are struggling to analyse the steadily swelling troves of ‘-omic’ data in the 
quest for patient-centred health care.
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we’ve got,” says Marc Williams, director of the 
Geisinger Genomic Medicine Institute.

THE MEANING OF MUTATIONS
Clinical genomics today is largely focused on 
identifying single-nucleotide variants — indi-
vidual ‘typos’ in the genomic code that can dis-
rupt gene function. And rather than looking 
at the full genome, many centres focus instead 
on the exome — the subset of sequences con-
taining protein-coding genes. This reduces the 
amount of data being analysed nearly 100-fold, 
but the average exome still contains more than 
13,000 single-nucleotide variants. Roughly 2% 
of these are predicted to affect the composition 
of the resulting protein, and finding the culprit 
for a given disease is a daunting challenge.

For decades, biomedical researchers have 
dutifully deposited their discoveries of single-
nucleotide variants in public resources such 
as the Human Gene Mutation Database, run 
by the Institute of Medical Genetics at Cardiff 
University, UK, or dbSNP, maintained by the 
US National Center for Biotechnology Infor-
mation. However, the effects of these muta-
tions were often determined from cell culture 
or animal models, or even theoretical pre-
dictions, providing insufficient guidance for 
clinical diagnostic tools. “In many cases, asso-
ciations were made with relatively low levels of 
evidence,” says Williams.

The situation is even more complicated for 
structural variants, such as duplicated or miss-
ing chunks of genome sequence, which are far 
more difficult to detect with existing sequenc-
ing technologies than single-nucleotide vari-
ants. At the whole-genome scale, each person 
has millions of variants. Many of these are in 
sequences that do not encode proteins but 
instead regulate gene activity, so they can still 
contribute to disease. However, the extent and 
function of these regulatory regions are poorly 
defined. Although capturing all this variability 
is desirable, it may not offer the best short-term 
returns for clinical sequencing. “You’re shoot-
ing yourself in the foot if you’re collecting data 
you don’t know how to interpret,” says Altman.

Efforts are now under way to rectify this 
problem. The Clinical Genome Resource,  
which was set up by the US National Human 
Genome Research Institute, is a database of 
disease-related vari-
ants, and contains 
information that 
could guide medical 
responses to these 
variants as well as the 
evidence supporting 
those associations. 
Genomics England, 
which runs the 100,000 Genomes Project, aims 
to bolster progress in this area by establishing 
‘clinical interpretation partnerships’: doctors 
and researchers will collaborate to establish 
robust models of diseases that can potentially 
be mapped to specific genetic alterations. 

However, quantity is as important as quality. 
Mutations that offer a strong detrimental effect 
bring an evolutionary disadvantage, so they tend 
to be exceedingly rare and require large sample 
sizes to detect. Establishing statistically mean-
ingful disease associations for variants with weak 
effects also needs large numbers of people. 

In Iceland, deCODE Genetics has demon-
strated the power of population-scale genomics, 
combining extensive genealogy and medical-
history records with genome data from 150,000 
people (including 15,000 whole-genome 
sequences). These findings have allowed 
deCODE to extrapolate the population-wide 
distribution of known genetic risk factors, 
including gene variants linked to breast cancer, 
diabetes and Alzheimer’s disease. 

They have also enabled studies in humans 
that normally require the creation of genetically 
modified animals. “We have established that 
there are about 10,000 Icelanders who have loss-
of-function mutations in both copies of about 
1,500 different genes,” says Kári Stefánsson, the 
company’s chief executive. “We’re putting sig-
nificant effort into figuring out what impact the 
knockout of these genes has on individuals.”

This work was helped by the homogeneous 
nature of the Icelandic population, but other 
projects require a broadly representative spec-
trum of donors. Efforts such as the interna-
tional 1000 Genomes Project have catalogued 
some of the world’s genetic diversity, but most 
data are heavily skewed towards Caucasian 
populations, making them less useful for 
clinical discovery. “Because they come from 
the genetic mother ship, so to speak, people of 
African ancestry carry a lot more genetic vari-
ants than non-Africans,” says Isaac Kohane, a 
bioinformatician at Harvard Medical School 
in Boston, Massachusetts. “Variants that seem 
unusual in Caucasians might be common in 
Africans, and may not actually cause disease.”

Part of the problem stems from the refer-
ence genome — the yardstick sequence by 

which scientists identify apparent abnormali-
ties, developed by the multinational Genome 
Reference Consortium. The first version was 
cobbled together from a few random donors 
of undefined ethnicity, but the latest iteration, 
known as GRCh38, incorporates more infor-
mation about human genomic diversity. 

INTO THE CLOUD
Harvesting genomes or even exomes at the 
population scale produces a vast amount of 
data, perhaps up to 40 petabytes (40 million 
gigabytes) each year. Nevertheless, raw stor-
age is not the primary computational concern. 
“Genomicists are a tiny fraction of the people 
who need bigger hard drives,” says Flicek.  
“I don’t think storage is a significant problem.” 

A greater concern is the amount of variant 
data being analysed from each individual. 
“The computation scales linearly with respect 
to the number of people,” says Marylyn Ritchie, 
a genomics researcher at Pennsylvania State 
University in State College. “But as you add 
more variables, it becomes exponential as you 
start to look at different combinations.” This 
becomes particularly problematic if there are 
additional data related to clinical symptoms or 
gene expression. Processing data of this mag-
nitude from thousands of people can paralyse 
tools for statistical analysis that might work 
adequately in a small laboratory study. 

Scaling up requires improvisation, but there 
is no need to start from scratch. “Fields like 
meteorology, finance and astronomy have 
been integrating different types of data for a 
long time,” says Ritchie. “I’ve been to meetings 
where I talk to people from Google and Face-
book, and our ‘big data’ is nothing like their 
big data. We should talk to them, figure out 
how they’ve done it and adopt it into our field.”

Unfortunately, many talented program-
mers with the skills to wrangle big data sets 
are lured away by Silicon Valley. Philip Bourne, 
associate director for data science at the US 

“You’re shooting 
yourself in the 
foot if you’re 
collecting 
data you don’t 
know how to 
interpret.”

Human genomes are being sequenced at an ever-increasing rate. The 1000 Genomes Project has 
aggregated hundreds of genomes; The Cancer Genome Atlas (TGCA) has gathered several thousand; and 
the Exome Aggregation Consortium (ExAC) has sequenced more than 60,000 exomes. Dotted lines show 
three possible future growth curves.
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National Institutes of Health (NIH), believes 
that this is partly due to a lack of recognition  
and advancement within a publication-
driven system of scientific credit that leaves 
software creators and data managers out in 
the cold. “Some of these people truly want to 
be scholars, but they can’t get the stature of 
faculty — that’s just not right,” says Bourne. 

Processing power is another limiting fac-
tor. “This is not a desktop game — the real 
practitioners are proficient in massively par-
allel computation with hundreds if not thou-
sands of CPUs, each with large memory,” says 
Kohane. Many groups that analyse massive 
amounts of sequence data are moving to 
‘cloud’-based architectures, in which the data 
are deposited within a large pool of computa-
tional resources and can then be analysed with 
whatever processing power is required. 

“There’s been a gradual evolution towards 
this idea that you bring your algorithms to the 
data,” says Tim Hubbard, head of bioinfor-
matics at Genomics England. For Genomics 
England, this architecture is contained in a 
secure government facility, with strict control 
over external access. Other research groups are 
turning to commercial cloud systems, such as 
those provided by Amazon or Google.

PRIVACY PROTECTION
In principle, cloud-based hosting can encourage 
sharing and collaboration on data sets. But reg-
ulations on patient consent and privacy rights 
surrounding highly sensitive clinical informa-
tion pose tricky ethical and legal issues. 

In the European Union, collaboration is 
impeded by member states having different rules 
on data handling. Sharing with non-EU nations 
relies on cumbersome mechanisms to estab-
lish adequacy of data protection, or restrictive 
bilateral agreements with individual organiza-
tions. To help solve this problem, a multinational 
coalition, the Global Alliance for Genomics and 
Health, developed the Framework for Respon-
sible Sharing of Genomic and Health-Related 
Data. The Framework includes guidelines on 
privacy and consent, as well as on accountabil-
ity and legal consequences for those who break  
the rules. 

“In data-transfer agreements, you could save 
yourself pages and pages of rules if the institu-
tion, researcher and funder agree to follow the 
Framework,” says Bartha Knoppers, a bioethi-
cist at McGill University in Montreal, Canada, 
who chairs the Alliance’s regulatory and ethics 
working group. The Framework also calls for 
‘safe havens’ that allow the research community 
to analyse centralized banks of genomic data 
that have been identity-masked but not fully 
‘de-identified’, so they remain useful. “We want 
to link it to clinical data and to medical records, 
because we’re never going to get to precision 
medicine otherwise, so we’re going to have to 
use coded data,” explains Knoppers.  

Integrating genomics into electronic health 
records is becoming increasingly important for 

many European nations. “Our objective is to put 
this into the standard National Health Service,” 
says Hubbard. The UK 100,000 Genomes Pro-
ject may be the furthest along at the moment, 
but other countries are following. Belgium 
recently announced an initiative to explore 
medical genomics, for example.

All these nations benefit from having cen-
tralized, government-run health-care systems. 
In the United States, the situation is more frag-
mented, with different providers relying on 
distinct health-record systems, supplied by dif-
ferent vendors, that are generally not designed 
to handle complex genomic data. The NIH 
launched the Electronic Medical Records and 
Genomics (eMERGE) Network in 2007 to 
define best practices.

FROM DATA TO DIAGNOSIS
The immediate goal of genomically enriched 
health records is to explain the implications 
of gene variants to physicians, and one of its 
earliest implementations is pharmacogenetics. 
The Clinical Pharmacogenetics Implementa-
tion Consortium has translated known drug–
gene interactions reported in PharmGKB (a 
database run by Altman and his colleagues) for 
clinical use. For example, people with certain 
variants may respond poorly to particular anti-
coagulants, leading to increased risk of heart 
attack. “The issue there is, how do you take a 
practitioner who has 12 minutes per patient 
and about 45 seconds of time allocated for pre-
scribing drugs, and influence their practice in 
a meaningful way?” says Altman. 

As long as deciding how to adapt care to 
genetic findings remains a job for humans, 
this process will remain time- and labour-
intensive. Nevertheless, combining genotype 
and phenotype information is proving fruit-
ful from a research perspective. Most clinically 
relevant gene variants were identified through 
genome-wide association studies, in which 
large populations of people with a given disease 
were examined to identify closely associated 

genetic signatures. Researchers can now work 
backwards from health records to determine 
what clinical manifestations are prevalent  
among individuals with a given genetic variant. 

And the genome is only part of the story — 
other ‘-omes’ may also be useful barometers 
of health. In July, Jun Wang stepped down as 
chief executive of BGI to start up an organiza-
tion to analyse BGI’s planned million-genome 
cohort alongside equivalent data sets from the 
proteome, transcriptome and metabolome. “I 
will be initiating a new institution to focus on 
using artificial intelligence to explore this kind 
of big data,” he says. 

IT TAKES PATIENTS
As researchers strive to integrate data from 
health records and clinical trials with genomic 
and other physiological data, patients are 
starting to contribute. “When we’re focused 
on things like behaviour, nutrition, exercise, 
smoking and alcohol, you can’t get better data 
than what patients report,” says Ritchie. 

Wearable devices, such as smartphones 
and FitBits, are collecting data on exer-
cise and heart rate, and the volume of such 
data is soaring (see ‘page S12) as it can 
be gathered with minimal effort on the  
wearer’s part. 

Each patient may become a big-data pro-
ducer. “The data we generate at home or in the 
wild will vastly exceed what we accumulate in 
clinical care,” says Kohane. “We’re trying to cre-
ate these big collages of different data modali-
ties — from the genomic to the environmental 
to the clinical — and link them back to the 
patient.” As these developments materialize, 
they could create computational crunches that 
will make today’s ‘big data’ struggles seem like 
pocket-calculator problems. And as scientists 
find ways to crunch the data, patients will be 
the ultimate winners. ■

Michael Eisenstein is a freelance science 
writer based in Philadelphia, Pennsylvania.

Rapid advances in technology are transforming genomics research.
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