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Sensitive measurement of electrical signals is at the heart of modern science and tech-

nology. According to quantum mechanics, any detector or amplifier is required to add

a certain amount of noise to the signal, equaling at best the energy of quantum fluctu-

ations[1, 2]. The quantum limit of added noise has nearly been reached with supercon-

ducting devices which take advantage of nonlinearities in Josephson junctions[3, 4]. Here,

we introduce a new paradigm of amplification of microwave signals with the help of a

mechanical oscillator. By relying on the radiation pressure force on a nanomechanical

resonator[5–7], we provide an experimental demonstration and an analytical description

of how the injection of microwaves induces coherent stimulated emission and signal am-

plification. This scheme, based on two linear oscillators, has the advantage of being con-

ceptually and practically simpler than the Josephson junction devices, and, at the same

time, has a high potential to reach quantum limited operation. With a measured signal

amplification of 25 decibels and the addition of 20 quanta of noise, we anticipate near
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quantum-limited mechanical microwave amplification is feasible in various applications

involving integrated electrical circuits.

Since the early days of quantum mechanics, the effect of quantum zero point fluctuations

on measurement accuracy has been actively investigated. When measuring a position x of

an object, one necessarily disturbs its subsequent motion by introducing a disturbance to the

momentum p. The imprecision and disturbance are related by the fundamental limit ∆x∆p ≥

~/2 owing to the Heisenberg uncertainty principle. A proper compromise between the two

leads to the lowest added noise power per unit bandwidth ~ω/2 which equals the quantum

fluctuations of the system itself at the signal frequency ω. On the other hand, if only one

observable is measured, for example position, or a single quadrature such as either amplitude

or phase of oscillations, noise in this measurement can be squeezed below the quantum limit at

the expense of increased noise in the other quadrature. In this case, the amplifier is said to be

phase-sensitive.

While most modern transistors operate several orders of magnitude above the fundamental

noise limit, superconducting Josephson junction parametric amplifiers[3, 4, 8, 9], working near

the absolute zero of temperature, have found uses at the level of only a few added quanta at mi-

crowave frequencies.Approaching the quantum limit with a mechanical amplifier has remained

fully elusive, moreover, there is little work whatsoever on amplifying electrical signals by me-

chanical means[10], foremost due to the typically small electromechanical interaction. In this

work, we describe a way to approach quantum-limited microwave amplification, now with a

mechanical device. Our system consists of a mechanical resonator affected by radiation pres-

sure forces due to an electromagnetic field confined in a lithographically patterned thin-film

microwave cavity. Depending on the configuration, it is capable of either phase-sensitive, or

phase-insensitive amplification.

Our system of two coupled linear oscillators forms possibly the simplest realization of quan-
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Figure 1: Schematics of the electromechanical microwave amplification. a, The movable ca-
pacitance of the micromechanical resonator is in parallel to the cavity, represented by its lumped
element equivalent model. The input microwave field is decomposed into a blue-detuned pump
coherent field αp at the frequency ωp, and a signal (frequency ωin) + noise ain = αin + δain.
The output signal aout describes the amplified input signal. b, Image of the device is dominated
by the meandering high-impedance cavity (false color in red), resonating at ωc/(2π) = 6.982
GHz. It is connected to coaxial cables via a coupling capacitor for operations. The microme-
chanical beam resonator (frequency ωm/(2π) = 32.5 MHz) couples the ends of the meander
via the protrusions from either end, and through an 6...15 nm nanometer vacuum gap[19] (right,
and inset).

tum amplification of external signals. The analysis connects directly to the potential quantum

behavior of macroscopic mechanical objects[11–13], and the emergence of macroscopic phe-

nomena from the quantum-mechanical laws governing nature on a microscopic scale. Besides

fundamental significance, the use of mechanical objects as a building block of low-noise ampli-

fication might be advantageous over electrical realization because of the possibility of obtaining

an elementary physical structure. Ultimately, these devices can be made with single-crystalline

resonant beams or membranes.

More specifically, our system involves an on-chip microwave cavity parametrically inter-
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acting with a micromechanical resonator [14–16], so that the mechanical motion couples to the

frequency of the cavity (see Fig. 1). In a similar setup, freezing of the mechanical Brownian

motion is expected to take place due to the conversion of mechanical vibrations into electromag-

netic radiation[6, 16–18]. The interaction gives rise to energy Hint = −~g
(
nc + 1

2

)
x, where nc

is the number of coherently driven photons in the cavity, g = (ωc/2C)∂Cg/∂x is the electrome-

chanical interaction, and x is the displacement. The cavity is driven with a strong microwave

tone αp (hereafter denoted as the pump) having a frequency ωp ∼ ωc + ωm which exceeds the

resonant frequency ωc of the cavity approximately by the mechanical frequency ωm, see Fig. 2.

The condition ωp > ωc is referred to as blue-detuning for the pump with respect to the cavity

resonant frequency, as opposed to the red-detuning condition ωp < ωc encountered in the side-

band cooling regime both for electro- and optomechanical systems [6, 16]. On the red-detuned

side, the microwave/mechanics coupling generates a net energy transfer from the mechanical

degrees of freedom into the cavity, hence effectively leading to the cooling of the mechanics.

Contrarily, on the blue-detuning side, the microwave pump gives rise to an energy transfer into

the mechanical degrees of freedom. This situation can be pictured with the relevant energy

levels as in Fig. 2b: A weak probe signal near the frequency ωc induces stimulated emission of

microwave photons, effectively leading to amplification of the probe signal.

Some details of our actual device are depicted in Fig. 1b. The micromechanical resonator

consists of an aluminum micromechanical beam resonator having the length 8.5µm, width 320

nm, which yield the frequency of the lowest flexural mode ωm/(2π) = 32.5 MHz and linewidth

γm ∼ 500...1200 Hz (depending on temperature). Via an ultranarrow vacuum gap[19], the

displacement affects the end-to-end capacitance of the cavity, which is a superconducting mi-

crostrip resonator having the natural frequency ωc � ωm and linewidth γc. In order to obtain

the largest electromechanical coupling, the device was fabricated on a fused silica substrate.

This material has a low dielectric constant (εr ' 4), as compared to, for instance, frequently
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used silicon (εr ' 12), which contributes to minimizing the stray capacitance C ' 18 fF of

the cavity. These measures, and the remaining equivalent parameters (L = 21 nH, CS1 = 6 fF,

CS2 = 12 fF, Cg = 0.6 fF, see Fig. 1a), create a strong electromechanical coupling g/(2π) ' 40

Hz per phonon, or, in frequently used units, g/(2π) = 1.8 MHz/nm. An interdigital coupling

capacitor Cc ∼ 6 fF results in the external damping rate γE/(2π) = 4.8 MHz. The total cavity

linewidth is γc = γE + γI ' (2π) × 6.2 MHz, where γI/(2π) = 1.4 MHz is due to internal

losses.

Figure 2: Amplification mechanism. a, Explanation of the various frequencies involved: The
cavity is driven by a (pump, αp) coherent field oscillating at ωp = ωc+∆, where ωc is the cavity
resonant frequency, and ∆ ' ωm � ωc. The weak input signal ain to be amplified is applied
near the cavity resonance, such that ωin = ωp − ωm. b, The physics of the electromechanical
amplifier can be intuitively understood by considering a block of three energy levels in the
system. The (blue-detuned) pump αp induces a transition between a state characterized by nc
cavity photons and nm mechanical quanta and a state with nc + 1 and nm + 1. A key role
in the amplification process is played by the effective damping γeff , which in the simplified
scheme presented here represents the effective lifetime for the cavity photons, thus modelling
the parametric-down conversion of the pump photons to the cavity resonant frequency. c, The
damping decreases towards a higher pump field, while below γeff = 0, instability and parametric
oscillations take place. The circles are fitted from the measured mechanical peak in the output
spectrum, and the solid line is theory.

The theoretical framework suitable for description of the amplification is closely related

to the methodology used to describe the sideband cooling in optomechanical systems [17, 18,

20–23]. We describe the system in terms of quantum Langevin equations with the aim of
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analyzing the effect of the pumping on the signal, and especially to detail the effects of different

types of fluctuations coupling to the system. The latter are caused by the quantum and thermal

fluctuations related to the input signal, the cavity, and the mechanical resonator. In general, the

parametric coupling between the cavity and the mechanical resonator gives rise to the possibility

of squeezing [24, 25], and hence to back-action evading measurements.

The detailed theoretical analysis (see supplementary information) gives the explicit value

of the gain in each preferred quadrature Gx, Gy and the average gain Gav = 1
2

(Gx + Gy). The

expression for the gains are well approximated by

Gx,y = 4 |ΓM(ω)|2
(
γE
γc

)2
(√

1 +
( γc

4∆

)2

± γc
∆

)2

, (1)

where the upper (lower) sign corresponds to Gx (Gy).

The key role in the microwave amplification is played by the effective mechanical damping

γeff = γm − δγeff(ω, nc) (see Fig. 2c and supplementary information). The value of δγeff can

be tuned by the pump. In particular, blue-detuned drive corresponds to a sizable reduction

of the mechanical damping which is directly related to the signal amplification mechanism

described by the factor ΓM(ω) = (ω2
m − ω2 − iγmω) / (ω2

eff − ω2 − iγeffω), where ωeff ' ωm.

Equation (1) and the definition of γeff allow to establish the optimal value for the pumped

occupancy as nc,crit = γcγm/(4g
2x2

0) associated with the maximum gain Gav(ω = ωm) '

4 (4∆/γc)
2. Above this threshold, γeff → 0, and the coupled system becomes unstable [5, 7, 26,

27].

Indicated by the unequal Gx and Gy, the amplifier will portray a variable amount of squeez-

ing. In particular, in the so-called good cavity limit γc
∆
� 1 used in the present experiment,

the squeezing is expected to be insignificant, and the amplifier is hence behaving as a typical

phase-insensitive amplifier characterized by the average gain Gav. However, it is noteworthy

that by varying the parameters towards the bad cavity limit γc
∆
� 1, one may achieve strong
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Figure 3: Amplifier gain. a, Measured reflection magnitude of the signal microwave over a
large span about the cavity resonance without applying the pump. b, Measured gain (colored
lines) in a narrow window (schematically indicated by gray in A) for the pump occupation nc
increasing by 2 dB per curve from bottom to top. The curves are displaced vertically for clarity
by 3 dB. The baseline of each curve roughly corresponds to the cavity absorption of -5.5 dB.
The maximum gain is quoted for each curve. The gray curves are theoretical predictions for
the gain Gav averaged over quadratures. c, As panel B, but with red detuned pumping. Here,
de-amplification of the signal field (sharp dip) is observed. nc increases by 2 dB per curve
from bottom (4.6 × 104) to top. d, Calculated average gain (at ωp − ωm), and the quadrature
gains Gx, Gy (inset) as a function of the scaled cavity occupancy. The blue traces correspond to
amplification (∆ > 0), and red to de-amplification (∆ < 0). The shaded region is the unstable
regime (see text). The experimental points are extracted from B and C.
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squeezing and, consequently, noise-free amplification in one quadrature.

We used a dilution refrigerator with temperature stabilized between 350...25 mK in order

to carry out the measurements. The pump and signal tones are combined at room temperature

using a power splitter. Inside the cryostat, the incoming irradiation is attenuated by 43 ± 1.5

dB. The uncertainty in the cryogenic attenuation sets the relatively large error bars for nc. The

signals reflected from the device chip are directed towards conventional cryogenic amplifier.

Following amplification, we used a sharp low-pass filter to remove the strong pump microwave,

since we only consider the signal frequency in the processing. The signal is recorded with a

vector network analyzer, or, for noise measurements, fed into a spectrum analyzer. Although it

is possible to distinguish the different quadrature gains Gx, Gy, for the moment we only consider

the phase-insensitive gain Gav. More details of the practical setup are given in the supplementary

information.

At the lowest pump power nc � nc,crit, we observe an attenuation of the reflected signal

according to the cavity absorption at the applied signal frequency ωin ∼ 6.82 GHz, for instance,

∼ −6 dB around ωin ∼ ωc (Fig. 3a). Towards higher nc, a mechanical peak at ωp − ωin '

ωm indicates a decreased absorption. A vanishing absorption is observed when 2γm/γeff ∼

γE/γc, i.e., when reduced damping balances external losses. This marks an onset of a type of

electromechanically induced microwave transparency. Earlier work on the effect [28, 29] used

the opposite red-detuned pump conditions. Blue pumping, on the other hand, has the capability

of transferring energy to the cavity frequency, and therefore, we observe also amplification of

the signal tone, Fig. 3b.

The theoretical prediction, overlaid on the experimental data in Fig. 3b, shows a remarkable

agreement with the measurement, with the only adjustable parameter being nc, whose values,

nevertheless, are independently known within a factor of 2. The maximum gain of 26 dB

is observed close to the instability, however, with markedly increased amount of fluctuations,
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typical of parametric systems. The useful range of gain where noise is not increased, is up

to about 15 dB in this measurement. The operation frequency of the amplifier may be tuned

roughly by the amount of the cavity linewidth by detuning the pump slightly off from the exact

blue sideband condition. While the data was measured with a small input signal corresponding

to about 0.3 signal photons in cavity, a favorable property of the mechanical amplification is its

high dynamic range, namely, amplification is observed at least up to 104 signal photons. This

high power handling capability is in striking contrast to the Josephson devices which work in

the single-quantum regime.

We can also confirm the theory predictions by inverting the pump frequency to the red

sideband, i.e., ∆ = −ωm, see Fig. 3c. In analog to the enhanced damping under these conditions

leading to sideband cooling, we observe de-amplification of the input signal. At even stronger

pump nc > nc,crit, decreased absorption indicates that the eigenmode splitting [29] starts to set

in. The observed gains (Fig. 3d) as a function of the pumped occupancy are in a good agreement

with theory.

Finally, an amplifier should be characterized by its added noise which is commonly referred

to the input signal. Because of its simple structure, we expect the mechanical amplifier to be less

influenced by the strong 1/f electrical flicker noise typical of nonlinear transistor or Josephson

junction devices. What remain as noise sources are thermal fluctuations, and, ultimately, quan-

tum fluctuations in the number of quanta of both cavity and the mechanics. In the case of the

optimal gain, the quadrature-averaged added noise at the cavity frequency is

nadd =
γI
γc

(
nTc +

1

2

)
+
γc
γE

(
nm +

1

2

)

≥ 1

2

[
1− (GxGy)−1/2

]
' 1

2
.

(2)

Here, nTc and nm represent the finite number of cavity photons associated with the internal

losses, and the number of mechanical quanta due to the thermal fluctuations in the mechanical

bath, respectively. The quantum limit nadd = 1/2 with large gain may thus be reached if
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information is not lost inside the system, that is, if external dissipation of the cavity related to the

measurement dominates over internal losses. While in cryogenic experiments typically nTc ' 0

due to gigahertz-range cavity frequencies, standard mechanical frequencies ωm/(2π) . 50

MHz tend to pose a practical limit for noise nadd > nm & 10.

We measured the added noise by comparing it to a known noise source. Here, the noise floor

is set by the effective noise temperature of the system, approximately 6...7 K. We worked at a

temperature of 30 mK, and used a weak input signal as a marker (see supplementary informa-

tion). We obtained a slight 0.6 dB improvement to the signal-to-noise ratio, which corresponds

to 20 added noise quanta at the signal frequency of 7 GHz. This finding agrees remarkably well

with the ideal prediction equaling the thermal phonon number, and shows that no extra noise

appeared in the process. Hence, an even further improved performance closer to the quantum

limit looks promising.

We have shown that interaction of a micromechanical device and radiation pressure can

be used for amplifying weak electrical signals. This finding opens up new perspectives for

an alternative to the conventional electrical microwave amplifiers, and may facilitate radiation

detection in the difficult terahertz band. From a theoretical point of view, the setup represents

one of the simplest realizations of a quantum amplifier leading to operation at the noise limit set

by the Heisenberg uncertainty principle. In the first proof-of-principle device, the mechanical

amplifier showed no extra added noise beyond that predicted by the ideal theoretical model.

For a practical application, the frequency band can be made variable over a larger span by using

tunable cavities[3, 30]. An even higher electromechanical coupling, for instance, by the use of

piezoelectric materials[13], can allow for an increase of the band via an engineered increase of

damping. At a higher mechanical frequency in the GHz range, or with the help of pre-cooling by

opposite pumping at even high temperatures, we can foresee near-quantum limited operation.
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1 Description of the experiment

1.1 Sample fabrication

In order to minimize the stray capacitance C of the cavity, the device was fabricated on a fused

silica (SiO2, glass) substrate, which has a low dielectric constant (εr ' 4), as compared to, for

instance, silicon (εr ' 12).

Both the cavity and the structures for the beam were made in a single e-beam lithography

step, followed by evaporation of 150 nm aluminum. In order to suspend the beams, the substrate

was etched by the use of HF vapor etcher, for 500 seconds at a pressure of 150 torr. The use of

HF vapor instead of liquid oxide etchant is necessary in order to avoid damaging the aluminum

film. The depth of the roughly isotropic etch was about 700 nm.

The mechanical beams were defined by Focused Ion Beam (FIB) etching, as in Ref. [1]. In

order to create uniform 9-12 nm vacuum slit over the whole length L = 8.5µm of the beam, we
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used low gallium ion currents of 1.5 pA and 75% exposure overlap in a single cutting pass. In

order to avoid charge accumulation due to the insulating substrate, all the structures were kept

galvanically short-circuited and connected to ground until the very end of fabrication.

1.2 Cavity design and characterization

The cavity was designed and fabricated such that it would have a high critical current in order to

enable a high drive nc & 108, and as small stray capacitanceC as possible. The first requirement

suggests to fabricate it in a single lithography step. The low dielectric constant (εr ' 4) of the

substrate contributes to a low stray capacitance, moreover, the roughly isotropic release etch for

the beam, which partially suspended also the cavity, finally contributed such that εr ∼ 3 for the

final structure.

The cavity design (Fig. 1A) is a 2 microns wide, 45 mm long meandering microstrip floating

from both ends, and the mode we are using is the lowest mode of the structure which roughly

corresponds to λ/2 resonance in a typical transmission line resonator (where the cross-coupling

between adjacent meanders is negligible). There are similar interdigital coupling capacitors

Cc ' 6 fF in both ends, however, only one of them is used, while the other one is shorted to

ground. In order to deduce the value of C, and the validity of the parallel LC model in the

somewhat complicated structure whatsoever, we made electromagnetic simulations with ideal

inductor and capacitor components Cg and Lg inserted between the open ends of the meander,

see Fig. 1a,b. By inspecting how their values affect the mode frequency, one can extract C and

L from ωc = [(L‖Lg) (C + Cg)]
−1/2 (ignoring the effects of Cc, CS1 and CS2). The effective

stray capacitance, which sets the coupling energy, is then roughly the parallel sum C+Cc ' 24

fF.

The values of CS are further determined from a lumped element circuit simulation, by com-

paring to the measured reflection parameters. From the experiment, we obtain the FWHM of the
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Figure 1: Design for the cavity. a, Simulation drawing for the meandering cavity structure, with
ideal circuits components inserted between the open ends; b, change of the cavity resonance for
1 fF change of Cg; c, micrograph showing the clamped beam and part of the cavity. The roughly
isotropic etch causes about 700 nm undercut also for the cavity.

S11 magnitude of (2π)× 6.0 MHz, and the maximum absorption at resonance of -5.5 dB. Note

that there is no accurate simple relation for obtaining γc = ωc/Qc from the reflection measures.

Instead, it holds for the driven response χ(ω) of the LC circuit that FWHM ∆ωc =
√

3γc. We

determine ∆ωc from the lumped element simulation: internal losses, modeled by a resistor, are

first adjusted to match the measured absorption. The driven response function, including ∆ωc,

is then given by, for example, the current iL flowing through L, as a function of frequency:

χ(ω) ≡ iL(ω)/iL(ωc) =
γcωc√

γ2
cω

2 + (ω2 − ω2
c )

2
(1)

This way, we obtain ∆ωc ' (2π)×12.2 MHz, and finally an estimate γc,S11 = (2π)×7.0 MHz.

The ratio of internal and external dissipation γI/γE ' 3.4 is determined by the resonance
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absorption.

In section 1.4, using pump detuning measurement, we make the most accurate measurement

to yield the final numbers γc = (2π) × 6.2 MHz, γI = (2π) × 1.4 MHz and γE = (2π) × 4.8

MHz, which come close to those deduced here.

The cavity number of quanta nc at a given detuning is given by nc(ω)/nc(ωc) = χ2(ω), and

nc(ωc) = LiL(ωc)
2. The current response iL(ωc) at a given input power is again obtained from

lumped element simulation.

1.3 Cryogenic setup

The experiments were carried out in a dilution refrigerator down to 25 mK temperatures. The

pump and probe signals are combined at room temperature using a power splitter. Before the

signals enter the cryostat, a sharp high-pass filter at room temperature is used to cut the phase

noise of the generators near the cavity frequency. This filter provides 50 dB more attenuation at

the cavity frequency than at the blue sideband. Without proper filtering, the phase noise would

reflect from the cavity, and appear as extra added noise of tens of quanta. Inside cryostat, the

incoming signals are attenuated by 43 ± 1.5 dB. The uncertainty in the cryogenic attenuation

sets the relatively large error bars for nc. Thermal noise emanating from higher temperatures is

estimated to contribute less than 0.1 quanta of thermal occupancy into the cavity, and is thus a

negligible contribution to the total noise. The entire setup is described in Fig. 2.

The signals reflected from the amplifier chip are directed to the cryogenic amplifier which

has a high input compression point of -20 dBm which allows for using high pump powers

without problems of amplifier saturation. The amplifier has a noise temperature ∼ 4 Kelvins.

In addition, there is attenuation of 2...2.5 dB due to circulators and cables between the sample

and the amplifier. The effective noise temperature, which sets the signal-to-noise ratio, is then

6...7 K.
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Figure 2: Setup for electronics and the microwave cabling inside the dilution refrigerator
for the electromechanical amplifier experiment. Inside the dilution cryostat, we use beryllium
copper (BeCu), copper nickel (CuNi), and niobium titanium (NbTi) coaxial cables. Inner-pin
DC-blocks (DCB), and high-pass filters (HP) are used to reduce heat leak. Back at room tem-
perature, the pump is blocked from the output signal. After further amplification, the signal
microwave is recorded coherently in a network analyzer.

1.4 Characterization of the electromechanical system

In order to establish a good understanding of the basic behavior of the electromechanical sys-

tem, we determined its parameters independently of the amplification measurements.
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For determining the electromechanical coupling energy g = wc

2C

∂Cg

∂x
, we used the value for

C ' 24 fF as obtained in section 1.2. Moreover, ∂Cg

∂x
' 13 nF/m is estimated from the dimen-

sions of the beam and the vacuum slit. We get g = (2π)× 1.8 MHz/nm, which corresponds to

shift of the cavity frequency of 40 Hz per phonon. Similarly as previously done in Refs. [2, 3],

we made measurements where the pump frequency or power is varied near the blue sideband.

This alters the optical spring effect which can be compared to the theory for shifts for frequency

and damping, Eqs. 26, 27 in the supporting online text. The effective mechanical frequency

may be read from the position of mechanical sideband, more precisely, from the departure of

this peak from the pump frequency.

Figure 3: Characterization of the electromechanical system via the optical spring effect.
The incident microwave power was kept constant such that at the blue sideband frequency,
nc ∼ 5.3× 105.

In Fig. 3 we compare the measured effective mechanical frequency to the theory. Corre-

sponding plots for the damping are shown in the main text in Figs. 2A and 3D. The best fit is

obtained with γc = 6.2 MHz. This value differs 10 % from that deduced from the S11 measure-

ment. We consider this value of γc the most reliable, and will use it in the rest of the paper.

The values of nc we get from these fits are about 30 % smaller than those from independent

estimates based on the input attenuation and cavity response. We attribute this difference to the
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somewhat inaccurately known cryogenic attenuation, which has a sensitive effect on nc. We

adjust the scale of nc according to these fits, and quote the adjusted values in the paper. For

instance, a useful fixed point is the instability point, which is expected according to theory at

nc ∼ 1.2× 106 in the situation of Fig. 3B in the paper.

1.5 Determination of the noise added by the mechanical amplifier

The noise temperature of an amplifier is determined by comparing its noise to a known noise

source. Here, the noise floor which establishes the signal-to-noise ratio, is set by the effective

noise temperature of the system, approximately 6...7 K.

We worked at a temperature of 30 mK, and used a weak input signal as a marker, see

Fig. 4. The marker peak height versus noise floor is improved by 2.3 dB by the mechanical

amplification, however, this has to be subtracted by the cavity absorption (here, -1.7 dB). We

thus obtain a slight 0.6 dB improvement to the signal-to-noise ratio, which corresponds to 20

added noise quanta, matching the expectation equaling the thermal phonon number.

Figure 4: Added noise of the mechanical amplifier a, A weak probe signal (narrow peak)
is employed in order to deduce signal-to-noise ratio with the amplification off (black), or on
(blue). ∆ ' 0.89, temperature T = 30 mK. The bump about the probe peak is due to the
thermomechanical vibrations; b, theoretical plot of the added noise at the optimal value of the
effective coupling for different values of nm and nc.
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2 Theoretical details

2.1 Quantum Langevin equation for the optomechanical system

In this section we derive the dynamical equations for the cavity and the mechanical degrees of

freedom for our system. After defining the Hamiltonians describing the two oscillators and the

parametric coupling, we write the (non-linear) Hamilton’s equations for the system. Following

a standard dynamical-system approach, we separate the dynamical variables into stationary

values (in the proper rotating frame) and corresponding fluctuations. In particular, the solutions

of the dynamical equations for the stationary values allow to determine the value of the cavity

field as a function of the pump field. These solutions set the “operating point” of the amplifier,

fixing the values of the effective parameters for the fluctuations dynamics.

We now explicitly derive the quantum Langevin equations (QLE) for the optomechanical

system. In absence of any coupling to the external world, the system (oscillator+cavity) Hamil-

tonian can be written as

Hsys = ~ωc(a†TaT +
1

2
) +Hho +Hint, (2)

where aT is the cavity field operator, and ωc the cavity resonant frequency,

Hho =
p2
T

2m
+

1

2
mωmx

2

is the mechanical harmonic oscillator Hamiltonian, m the mass of the mechanical system and

ωm its resonant frequency. The Hamiltonian

Hint = −~g
(
a†TaT +

1

2

)
x (3)

is the parametric interaction Hamiltonian, where g is the coupling between the mechanical

degrees of freedom and the cavity. The Hamiltonian coupling the cavity with the external

radiation modes can be written as

H(I,E)
rc = i~

∫ ∞

−∞
dωs(I,E)(ω)

[
b(I,E)

†(ω)aT − b(I,E)(ω)a†T

]
, (4)
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where s(I,E) describes the cavity/reservoirs coupling, and the indexes I , E refer to the exter-

nal and internal baths respectively. The external bath is associated with the transmission line

coupling the input and output signal with the cavity, while the internal ones refer to any other

source of dissipation potentially coupling to the cavity.

The reservoir associated with the dissipative dynamics of the mechanical oscillator (here-

after mechanical bath) can be written as

Hmech =
1

2

∑

j

[
(pj − kjx)2 + ω2

j q
2
j

]
(5)

Hmech corresponds thus to describing the reservoir in terms of a collection of independent har-

monic oscillators with frequencies ωj , with each of which is coupled to the mechanical oscillator

through kj [4].

With the aid of the input-output formalism [5], the evolution equations for the cavity field

operators, the position and momentum operators for the mechanical system can be written as

ẋ =
pT
m

(6)

ṗT = −mω2
mx+ ~ga†TaT − γmpT + ξT (7)

ȧT = −i (ωc − ωp − gx) aT −
γc
2
aT −

√
γIa

I
in −
√
γEaT in. (8)

We have here considered a situation where the cavity is strongly driven by a coherent field os-

cillating at frequency ωp. Moreover γE , γI represent the losses associated with the input/output

port and the photon bath associated with the internal losses of the cavity (γc = γI + γE), and

γm the mechanical losses. We now linearize Eqs. (8-7), rewriting aT , x and pT as the sum of a

coherent field and a quantum operator

aT = α + a (9)

x = χ+

√
~

mωm
q (10)

pT = π +
√
~mωmp. (11)
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More specifically, we have rewritten Eq. (9) with a view to the decomposition in terms of a

(coherent) pump field αP and input signal and noise sources, i.e.

aT in = αp + ain

Since we are interested in the steady-state solution, neglecting all fluctuations, we impose

the condition α̇ = χ̇ = π̇ = 0, leading to the steady-state values (in a frame rotating at ωp)

πs = 0 (12)

χs =
~g
mω2

m

(
|αs|2 +

1

2

)
(13)

αs =

√
γEαp

γc
2

+ i (ωc − ωp − gχs)
. (14)

Eqs. (12, 14), can be combined into a third-order algebraic equation, leading to three stationary

solutions or the cavity field αs as a function of the pump field αp.

We now focus on the solution for which αs → 0 when αin → 0. In this case, the evolution

equations for the fluctuation operators can be written as

q̇ = ωmp (15)

ṗ = −ωmq − γmp+GδX + ξ (16)

ȧ = i∆a− γc
2
a+

G√
2
q +

∑

i=I,E

√
γia

i
in (17)

where ∆ = ωp−ωc−gχs,G = 2g
√

~
2mωm

αs, having assumed, without loss of generality, that αs

is real. Equations (15-17) represent the quantum Langevin equations for the cavity+mechanical

resonator system. It is worth noting here that, following [6], we have not performed the rotating

wave approximation for the mechanical bath degrees of freedom, this choice will affect the

expression for the noise spectrum for the operator ξ.
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2.2 Amplification

Considering the relation between input and output fields at the input/output port of the cavity

[5]

aout =
√
γEa+ ain (18)

the solution of eqs. (15 17), leads to the general relating the output field to the various incoming

fields

aout(ω) = M(ω)ain(ω) + La†in(ω) +MI(ω)aIin(ω) + LIa
I†
in(ω) +Q(ω)ξ(ω) (19)

where aIin(ω) and ξ(ω) represent the noise introduced by the internal losses of the cavity and

the mechanical bath (see Fig.5). The power gains for the input signal (M and L), and those for

the input noise (MI , LI and Q) are given as

M(ω) =

[
ΓM(ω)

γE
γc/2− i (ω + ∆)

− iγE (ΓM(ω)− 1)

2∆
− 1

]
(20)

L(ω) = −iγE(ΓM(ω)− 1)

2∆
(21)

MI(ω) =

[
ΓM(ω)

√
γEγI

γc/2− i (ω + ∆)
− i
√
γEγI (ΓM(ω)− 1)

2∆

]
(22)

LI(ω) = −i
√
γEγI(ΓM(ω)− 1)

2∆
(23)

Q(ω) =

√
γc
2

ΓM(ω)− 1

∆G

[
(∆− ω)− iγc

2

]
. (24)

The key role in the amplification is played by the factor

ΓM(ω) =
ω2
m − ω2 − iγmω

ω2
eff − ω2 − iγeffω

(25)

which, in turn, depends on the effective resonant frequency

ωeff =

[
ω2
m +

G2∆ωm [γ2
c/4− ω2 + ∆2][

γ2
c/4 + (ω −∆)2] [γ2

c/4 + (ω + ∆)2]
]1/2

(26)
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and the effective damping coefficient

γeff =

[
γm −

2γcG
2∆ωm[

γ2
c/4 + (ω −∆)2] [γ2

c/4 + (ω + ∆)2]
]

(27)

induced by the coupling with the cavity on the mechanical resonator. At resonance ω ' ωm and

neglecting the (weak) pump dependence of ωeff , it is clear that a decrease of γeff → 0 will lead

to ΓM � 1 (see below for stability considerations), and thus, through the ΓM dependence of M

and L, to an amplification of an input signal.

We use the notion of preferred quadratures [7], for which the output quadrature fields Xout,

Yout are independent of Yin and Xin respectively. The power gains in these quadratures are

obtained as

Gx = (|M |+ |L|)2 (28)

Gy = (|M | − |L|)2 (29)

Gav =
1

2
(Gx + Gy) = |M |2 + |L|2 (30)

The expression of the gain in the preferred quadratures corresponds to the possibility of choos-

ing an appropriate phase for ain and aout leading to real-valued expressions for M and L, given

by Eqs. (20, 21). In these quadratures, the amplifier equations can be written as (dropping here

the added-noise terms)

Xout = (|M |+ |L|)Xin (31)

Yout = (|M | − |L|)Yin (32)

(33)

thus leading to the relations given by Eqs. (28, 29) for Gx and Gy. In addition to the trivial

difference associated with the condition γE 6= γI , reflecting different coupling mechanisms

of the cavity to the external world, the expressions for MI(ω) and M(ω) differ due to the
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interference term appearing in the expression of M(ω) (the third term on the right-hand side

of Eq. (20)). This term represents the interference between the input (either signal or noise)

that has been reflected at the cavity/transmission line interface and the input that has travelled

through the cavity. The expression of the gains given by Eqs. (28-30) involve the coefficients

M(ω) and L(ω) only, since, obviously, the signal is supposed to enter the system through the

input external port only. On the other hand, while opening the cavity to the transmission line

will also open that port to the noise from the transmission line, this noise is regarded as intrinsic

noise of the input signal and thus does not contribute to the noise added by the amplifier. The

system will thus be open to one signal source (the coherent part of ain), the noise associated

with internal losses (aI in), the noise associated with the mechanical bath (ξ) and the noise from

the transmission line (the incoherent part of ain), the latter not contributing to the noise added

by the amplifier.

2.3 Noise: input field correlators and the quantum limit

Within this scheme, the noise added by the amplifier can be expressed in terms of noise spectra

associated with the internal losses and the mechanical bath. Following a standard approach [8],

the correlators for ain and aIin are given by

〈a(I)
in (t)a

(I)
in

†
(t′)〉 = [n(ωc) + 1] δ(t− t′) (34)

〈a(I)
in

†
(t)a

(I)
in (t′)〉 = n(ωc)δ(t− t′). (35)

Similarly, the mechanical noise correlator can be written as [9]

〈ξ(t)ξ(t′)〉 =

∫
dω

2π
exp [−iω(t− t′)]Sξ(ω) (36)

with

Sξ(ω) = 2γm
ω

ωm
{(nω + 1)Θ(ω) + [(n−ω + 1)Θ(−ω)]} (37)
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Figure 5: Schematics of the amplification scheme with an outline of the different noise sources.
ain = αin + δain: input field associated with the input signal αin and the noise at the input
port δain. aIin: field associated with the noise reservoir acting directly on the resonant cavity. ξ:
mechanical noise associated with the thermal bath.

where Θ(x) is the Heaviside step function (see e.g. [9]). Considering a thermally populated

bath, the noise spectrum assumes the form [8]

Sξ(ω) = γm
ω

ωm

[
coth

(
~ω
kT

)
+ 1

]
(38)

.

We are now in the position to evaluate the noise added by the amplifier. We here define the

operators

Fx =
1√
2

[
MIa

I
in + LIa

I
in

†
+Qξ + h.c.

]
(39)

Fy =
−i√

2

[
MIa

I
in + LIa

I
in

†
+Qξ − h.c.

]
(40)

where the appropriate phase has been included in the definition of MI , LI and Q in order to

satisfy the condition M,L ∈ R. (∆Fx)2 and (∆Fy)2 represent the added noise by the amplifier
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[7]. The condition establishing a lower bound for the added noise reads in this case

√
|∆Fx|2 |∆Fy|2 / (GxGy) ≥

1

4

∣∣1− (GxGy)−1
∣∣ . (41)

Close to the optimal effective coupling Gopt =
√
γmγc, and for ω ' ωm, the expression for the

added noise is given by

√
|∆Fx|2 |∆Fy|2 / (GxGy) '

γI
γc

(nIopt + 1/2) +
γc
γE

(nm + 1/2). (42)

From Eq. (42), it is possible to see that the quantum limit for the amplification can be reached

in absence of internal cavity losses and for a zero-temperature mechanical reservoir. In our

experimental setup nIopt ' 0, leading to a linear increase of the added noise with the number of

mechanical reservoir phonons. The linear dependence coefficient is given by the ratio between

total and external losses.

2.4 Stability and validity of the linearized model

In obtaining the QLE for the cavity and the mechanical resonator, we have linearized the equa-

tions of motion for the cavity+mechanical resonator system. We will here discuss the criterion

for the stability and the limits of validity of the (linear) QLE equations considered to analyze the

system dynamics (Ginsburg criterion) [10]. The requirement for the system stability is that the

poles of the effective mechanical susceptibility, induced by the coupling between the mechan-

ical resonator and the cavity, lie in the lower complex half-plane. In other terms, the effective

mechanical damping γeff must be positive in order for the system to be stable. The condition

γeff → 0+ correspond to the situation of maximal gain and, on crossing the γeff = 0 value, to the

loss of stability. In the linearization procedure we have assumed that the term x · aT appearing

in Eq. (8) could be expanded as

(ξ + q) · (α + a) ' ξα + αq + ξa (43)
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analogously,

a†TaT ' α2 + α∗a+ αa†. (44)

Eqs. (43) and (44) thus establish that, for the linearized QLE equations to aptly describe the

dynamics of the optomechanical system, the following conditons must be met

〈qa〉
αsχs

� 1 (45)

〈a†a〉
α2
s

� 1, (46)

The solutions for q and a of the QLE as a function of the input field ain lead to the following

condition for the ratio between the signal and the pump power

〈a†inain〉
α2
S

� 1

|ΓM |2
. (47)

It is thus clear from Eq. (47) that for large enough values of |ΓM |, the linearized description

of the system physics breaks down. However as it can be seen from Fig. 6, there is a large range

of parameters where, while having a gain significantly larger than 1, the linear model is still

valid.

Figure 6: Number of signal photons ensuring the validity of the linear-regime analysis as a
function of ω and G. We have assumed

(
〈a†inain〉/α2

S

)
threshold

= 10−4/|ΓM |2
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