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Abstract

Cancer cell line studies have long been used to test efficacy of therapeutic agents and to explore 

genomic factors predictive of response1,2. Two large-scale pharmacogenomic studies were 

published recently3,4; each assayed a panel of several hundred cancer cell lines for gene 

expression, copy number, genome sequence, and pharmacological response to multiple anti-cancer 

drugs. The resulting datasets present a unique opportunity to characterize mechanisms associated 

with drug response, with 471 cell lines and 15 drugs assayed in both. However, while gene 

expression is well correlated between studies, the measured pharmacologic drugs response is 

highly discordant. This poor correspondence is surprising as both studies assessed drug response 

using common estimators: the IC50 (concentration at which the drug inhibited 50% of the maximal 

cellular growth), and the AUC (area under the activity curve measuring dose response)5. For drugs 

screened in both studies, only one had a Spearman correlation coefficient in measured response 

greater than 0.6. Importantly these results are also reflected in inconsistent associations between 

genomic features and drug response. Although the source of inconsistencies in drug response 
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measures between these two well-controlled studies remains uncertain, it makes drawing firm 

conclusions about response very difficult and has potential implications for using these outcome 

measures to assess gene-drug relationships or select potential anti-cancer drugs based on their 

reported results. Our findings suggest standardization of response measurement protocols in 

pharmacogenomic studies is essential before such studies can live up to their promise.

Patients with cancer often exhibit heterogeneous responses to anticancer treatments and 

evidence suggests response is determined in part by patient-specific alterations in the 

somatic cancer genome and changes in gene expression6. A number of studies have searched 

for gene expression signatures predictive of response, however most only tested a limited 

number of genes, a small panel of drugs, or assayed drug response in a small number of cell 

lines1,7,8.

Results from two large-scale pharmacogenomic studies, the Cancer Genome Project (CGP)4 

and the Cancer Cell line Encyclopedia (CCLE)3, were recently reported in this journal. The 

CGP tested 138 anti-cancer drugs against 727 cell lines while the CCLE tested response of 

24 drugs against 1036 cell lines (Extended Data Figure 1); of these, 15 drugs (Extended 

Data Figure 1a,b) and 471 cell lines were tested in both (Extended Data Figure 1d,e). Both 

groups tested mutations in 64 genes (Extended Data Figure 1g) and expression of 12,153 

genes (Extended Data Figure 1h) genes. The overlap allows assessment of consistency 

between these independent datasets and the potential to infer genomic models predictive of 

drug response.

We downloaded, curated, and annotated the genomic and pharmacological data from the 

CGP and CCLE studies(Methods). We first compared expression profiles between the 61 

biological replicates in CGP and observed very high correlation (median Spearman 

correlation of 0.97; Figure 1a) indicating excellent reproducibility within the same study.

We then compared gene expression profiles of the 471 cell lines shared between studies. 

Despite the use of different array platforms (Affymetrix GeneChip HG-U133Ain CGP 

andHG-U133PLUS2in CCLE), the expression profiles of identical cell lines were 

significantly better correlated than between different cell lines (median correlation of 0.85 

vs. 0.34 for identical and different cell lines, respectively; two-sided Wilcoxon Rank Sum 

test p-value < 1×10−16). For 467cell lines, the mosthighly correlated gene expression profile 

was with the same cell line; only four (MOG-G-CCM, SNB19, SW1990, and SW403)were 

more highly correlated with another cell line (Figure 1b). This small discordance between 

the CGP and CCLE is likely due to experimental artifacts, measurement error, or divergence 

of the four cell lines. We tested consistency based on the tissue from which the cell line was 

derived (Supplementary Figure 1). We found the highest correlation, with cell lines from the 

urinary tract (median correlation of 0.87) and the lowest for those the upper aerodigestive 

tract (median correlation of 0.79),

We compared the reported presence of mutations for 64 genes in the shared 471 cell lines 

and found better agreement between identical cell lines than between different cell lines 

(two-sided Wilcoxon Rank Sum test p-value < 1×10−16; Extended Data Figure 2), although 

not perfect agreement(median Cohen's Kappa [κ] of 0.65), which might be due to the 
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different sequencing platforms and software used to call genomic variants in the two studies. 

Agreement in mutation profiles was higher in pancreas cell lines although the difference was 

not significant (Supplementary Figure 2).

We then compared drug sensitivity phenotype measurements. In the CGP drug screening 

was performed at two sites, the Massachusetts General Hospital (MGH)and the Wellcome 

Trust Sanger Institute (WTSI). As a control, Camptothecin, an inhibitor of DNA enzyme 

topoisomerase I, was screened at both sites using the same experimental protocol in 252 cell 

lines. The IC50 (concentration in micro molar [μM] at which the drug inhibited 50% of the 

maximum cellular growth)for Camptothecin had significant but only fair correlation 

(rs=0.58. p-value=1.5×10−23, Extended Data Figure 3).

We compared drug sensitivity measures between CGP and CCLE in fifteen drugs (Extended 

Data Figure 1a,b) tested on the 471 shared cell lines (Extended Data Figure 1d,e). Both CGP 

and CCLE measured cell line drug sensitivity usingIC50 and AUC (area under the activity 

curve measuring dose response), also referred to as Activity Area5; however the two studies 

used different experimental protocols (summarized in Supplementary Information). 

Differences include the pharmacological assay used, the range of drug concentrations tested, 

and choice of an estimator for summarizing the drug dose-response curve.

In both studies, the IC50 could not be estimated in many cases, as drug concentration 

necessary to inhibit 50% of growth was not reached. In CGP, IC50 was estimated using a 

Bayesian sigmoid model for drug response. In contrast, CCLE reported the maximum 

concentration for inactive compounds (referred to as placeholder values) rather than the 

extrapolated IC50. AUC measures do not require extrapolation and can always be estimated 

from the dose response curve.

For each of the 15 drugs assayed by both CGP and CCLE we ranked the response of the 471 

shared cell lines(Figure 2a) and computed the Spearman correlation coefficient (see 

Methods) for the reportedIC50 (Figure 2b). We found a single drug, 17AAG (an HSP90 

inhibitor), with moderate correlation (rs=0.61; Extended Data Table 1a) and another, 

PD0325901 (a MEK inhibitor), with fair correlation (rs=0.53; Extended Data Table 1a) 

between studies.

To test whether extrapolation decreased the correlations between studies we filtered out all 

IC50 values exceeding the maximum tested drug concentrations. We observed only small 

increases in correlation for PLX4720, PD0325901 and Paclitaxel and decreases for 17AAG 

and AZD6244, although the number of measurements was small(Extended data figure 4). 

We also compared reported AUC measures (Figure 2b, Extended Data Table 1b, Extended 

data figure 5) and found that only two drugs yielded fair correlations (17AAG with rs=0.58 

and PD0325901 with rs=0.55).

We compared correlations computed from AUC and IC50(Figure 2b) and found AUC is 

more concordant between CGP and CCLE (median correlation of 0.35and 0.28 for IC50 and 

AUC, respectively) but that the difference was not significant (two-sided Wilcoxon signed 

rank test p-value=0.3). The vast majority of drugs yielded poor concordance (rs<0.5) for 

Haibe-Kains et al. Page 3

Nature. Author manuscript; available in PMC 2014 November 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



both IC50 and AUC, which suggests that the lack of consistency of the drug response cannot 

be solely explained by the choice of the estimator of drug sensitivity.

We tested whether drug response correlation depended on tissue source. We found bothIC50 

and AUC measures tend to be more consistent in cell lines originating from urinary tract 

(Supplementary Figure 3); this difference is significant for AUC (two-sided Kruskal-Wallis 

test p-value=0.024; Supplementary Figure 3b). However, due to the small number of urinary 

tract cell lines (10), only three drugs (PD0325901, Nutlin-3 and 17AAG) had statistically 

significant moderate correlation (Supplementary Figure 4).

In addition to IC50 and AUC, we also compared sensitivity using the waterfall method 

described in the CCLE study3. Drug sensitivity calls (resistant, intermediate and sensitive) 

were estimated from IC50 and AUC values and compared using Cohen's κ (see Methods). 

Again, the drug sensitivity calls for both IC50 and AUC estimates(Supplementary Tables 1 

and 2) had a poor agreement between studies (κ< 0.5; Supplementary Figure 5).

Despite the discordance in drug sensitivity measures between CGP and CCLE, we tested 

whether the association between drug response and genomic features might be consistent 

across datasets. This is important because the identification of genomic predictors of drug 

response was the primary goal of both the CGP and CCLE studies.

We estimated gene-drug associations by fitting, for each gene, a linear regression model 

including gene expression as predictor of drug sensitivity, controlled for tissue source (see 

Methods). Linear models were fitted using both IC50 and AUC measures (Supplementary 

Files 2-5). Here too, we observed poor correspondence between studies, the best correlation 

with IC50 data was observed for 17AAG (rs=0.38; Figure 3a, Supplementary Figure 6 and 

Extended Data Table 1a); for the vast majority of drugs correlations were slightly better 

when AUC measures were used to estimate gene-drug associations but the best correlation 

was still poor (rs=0.46 for PD0325901; Figure 3a, Extended Data Table 1b and Extended 

data figure 6). Although correlations significantly depended on tissue sources(tow-sided 

Kruskal-Wallis test p-value < 0.006), only drugs screened in hematopoietic/lymphoma tissue 

and urinary tract yielded slightly higher correlation than all tissues combined for both IC50 

and AUC (Supplementary Figures 7 and 8).

We tested whether these poor correlations could be due to genes unrelated to drug sensitivity 

by focusing on genes statistically associated with drug sensitivity (false discovery rate, 

FDR<20%) in at least one dataset. Overall, while the correlations were better than those 

computed using all genes, they were still low. For IC50, only AZD6244 and 17AAG yielded 

a moderate correlation (rs=0.65 and rs=0.63, respectively; Extended Data Table 1a, 

Supplementary Figure 9). Using AUC and this subset of genes, we found that PD0332991 

had fair correlation, and five drugs had moderate correlation between studies (PD0325901, 

AZD6244, Nilotinib, 17AAG, and Nutlin-3; Extended Data Table 1b; Supplementary Figure 

10). However the correlations for the remaining drugs remained poor (Extended Data Table 

1, Supplementary Figures 8 and 9) and did not significantly depend on tissue source(two-

sided Kruskal-Wallis test p-value>0.064; Supplementary Figures 11 and 12).
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We recognize that activation of drug-response through specific gene functional classes may 

be more predictive than individual genes. We therefore used the previously computed gene-

drug associations to rank genes by the significance of their association with drug sensitivity 

and searched for over-represented Gene Ontology (GO) terms using pre-ranked gene set 

enrichment analysis (GSEA)9. We compared the normalized enrichment scores computed 

for CGP and CCLE for the 15 drugs screened in both studies (see Methods).

ForIC50, there was poor correlation of GSEA enrichment scores for drugs, except for 

AZD6244 and PD0325901, which yielded fair correlation (rs=0.63 for AZD6244 and 

rs=0.68 for PD0325901; Figure 3c, Extended Data Table 1a, Supplementary Figure 13, 

Supplementary Files 6 and 7). When using AUC, two drugs yielded fair correlations 

(Nilotinib, 17AAG), AZD6244 yielded moderate correlation and PD0325901 yielded 

substantial correlation (rs=0.76; Figure 3c, Extended Data Table 1b, Extended data figure 7, 

Supplementary Files 8 and 9). These correlations significantly depended on tissue 

source(tow-sided Kruskal-Wallis test p-value < 7×10−4; Supplementary Figure 14) where 

median drug correlations computed from IC50 were higher in breast, urinary tract, 

hematopoietic/lymphoma and lung cell lines compared to all tissues combined 

(Supplementary Figures 14 and 15).

We repeated the analyses, this time focused on the GO classes that are statistically 

significantly enriched (FDR<20% for normalized enrichment score) among genes associated 

with drug response in at least one of the two studies. Using IC50, most correlations increased 

slightly, except for 17AAG and PD0332991, with PLX4720 and PD0325901 yielding 

moderate correlation (Figure 3c and 3d, Extended Data Table 1a, Supplementary Figure 16). 

For AUC, we observed fair correlation for Paclitaxel and Sorafenib, moderate correlation 

only for Lapatnib, and substantial correlation for PD0325901 and AZD6244 (Figure 3d, 

Extended Data Table 1b, Supplementary Figure 17).

These pathway-based correlations are the best observed in our analysis as almost half of the 

drugs exhibited a correlation greater than 0.5, although they are still quite poor. When 

stratifying by tissue source, only drugs screened in lung cancer cell lines yielded slightly 

higher median correlation compared to all tissues combined (Supplementary Figures 18 and 

19).

We then performed similar analyses using mutation data of the 64 genes sequenced both 

CGP and CCLE (Extended Data Figure 1g). We observed that few mutations were 

significantly associated with drug response (Supplementary Files 11-13), which partly 

explains the poor correlation between mutation-drug associations (rs< 0.5; Extended data 

figure 8, Supplementary Figures 20 and 21).

To test whether genomic data or drug response measures are the likely source of the poor 

correlations, we used identical (therefore perfectly correlated) gene expression data for the 

471 cell lines while keeping the original drug sensitivity measures in each study, but did not 

find improved correlations for (significant) gene-drug associations (see ‘Gene CGP fixed’ 

and ‘Gene CCLE fixed’ in Figure 4). However when using identical drug phenotypes with 

the original gene expression data, correlations significantly increased in all cases (two-sided 

Haibe-Kains et al. Page 5

Nature. Author manuscript; available in PMC 2014 November 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Kruskal-Wallis test p-value < 0.01, see ‘Drug CGP fixed’ and ‘Drug CCLE fixed’ in Figure 

4) and yielded almost perfect correlation for significant gene-drug associations with AUC 

(median correlation> 0.83). Results were similar for pathway-drug associations 

(Supplementary Figure 22). These results clearly demonstrate that the discordance between 

studies stems from the drug sensitivity measurements.

We also investigated the impact of the choice of pharmacological assay across study and 

compared CGP and CCLE drug sensitivity data with those published by Greshock and 

colleagues in a panel of 319 cell lines10; the GlaxoSmithKline (GSK) data set. The GSK 

authors used the same pharmacological assay used by the CCLE (Cell Titer Glo 

Luminescent Cell Viability Assay kit from Promega), but other parameters in the 

experimental protocols differ from those in either CGP or CCLE and they used yet another 

model to estimate IC50 values (model 205 in XL fit in Microsoft Excel).

Among the fifteen drugs shared between CGP and CCLE, only two, Lapatinib and 

Paclitaxel, were tested by GSK on a common set of 194 cell lines. As might be expected 

based on the assay used, GSK IC50 measurements were more consistent with those of CCLE 

IC50 (rs=0.42 and 0.36 for Lapatinib and Paclitaxel, respectively; Supplementary Figure 

23a) than CGP (rs=0.24 and 0.10 for Lapatinib and Paclitaxel, respectively; Supplementary 

Figure 23b), but here too the overall consistency was rather poor (and similar to the 

observed consistency between CCLE and CGP).

We then performed the same analysis but focusing on drugs and cell lines shared only by 

two studies. For Lapatinib and Paclitaxel, screened by CCLE and GSK in 249 common cell 

lines, we observed fair to poor correlations (Extended data figure 9a). Five drugs and 231 

cell lines were screened both in CGP and GSK (Extended Data Figure 1c); for these we 

observed poor correlation (rs ranging from 0.12 to 0.30; Extended data figure 9b).

These results add further evidence that the inconsistency between studies stems from the use 

of different pharmacological assays, but there is no clear evidence to conclude which of the 

three approaches is more accurate. Indeed, even if we observed perfect correlation between 

GSK and either the CGP or CCLE drug response assays, all that would indicate is a 

consistency in measurement, but not necessarily which provided the most meaningful assay 

of drug response or which could best be translated to in vivo response.

Our analysis of these three large-scale pharmacogenomic studies points to a fundamental 

problem in assessment of pharmacologic drug response. While gene expression analysis has 

long been seen as a source of “noisy” data, extensive work has led to standardized 

approaches to data collection and analysis and the development of robust platforms for 

measuring expression levels. This standardization has led to substantially higher quality, 

more reproducible expression data sets, and this is evident in the CCLE and CGP data where 

we found excellent correlation between expression profiles in cell lines profiled in both 

studies.

The poor correlation between drug response phenotypes is troubling and may represent a 

lack of standardization in experimental assays and data analysis methods. However, there 

may be other factors driving the discrepancy. As reported by the CGP, there was only a fair 
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correlation (rs< 0.6) between Camptothecin IC50 measurements generated at two sites using 

matched cell line collections and identical experimental protocols. While this might lead to 

speculation that the cell lines could be the source of the observed phenotypic differences, 

this is highly unlikely as the gene expression profiles are well correlated between studies.

While our analysis has been limited to common cell lines and drugs between studies, it is not 

unreasonable to assume that the measured pharmacogenomic response for other drugs and 

cell lines assayed are also questionable. Ultimately, the poor correlation in these published 

studies presents an obstacle to using the associated resources to build or validate predictive 

models of drug response. Because there is no clear concordance, predictive models of 

response developed using the data from one study are almost guaranteed to fail when 

validated on data from the other11 and there is no way with available data to determine 

which study is more accurate. This suggests that users of both datasets should be cautious in 

their interpretation of results derived from their analyses.

Clearly the investment in these projects warrants additional work to resolve the 

discrepancies in drug response phenotype so that the wealth of data that has been generated 

can be used to its fullest advantage. Our findings support the need for standardization of 

drug-response measurements or development of new, robust drug sensitivity assays; without 

such assays, it will not be possible to reliably identify genomic predictors of drug response 

or effectively a drug's mechanism of action.

Methods

To ensure reproducibility of our analysis, we developed an automated pipeline in R that can 

generate all the results, figures and tables of the paper (Supplementary data).

Data retrieval and curation

We retrieved and curated data from three large pharmacogenomic studies, namely the 

Cancer Genome Project (CGP), the Cancer Cell Line Encyclopedia (CCLE) and the 

GlaxoSmithKline cell line collection.

For CGP, gene expression data (raw Affymetrix CEL files) were downloaded from Array 

Express (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-783/). Drug sensitivity 

measurements, mutation data and cell lines annotations were downloaded from the CGP 

website(http://www.cancerrxgene.org/downloads/). Drug information was collected from 

Supplementary Information of Garnett et al.4. Minimum and maximum screening 

concentrations (μM) for each drug/cell line were extracted from 

gdsc_compounds_conc_w2.csv available on the CGP website. The natural logarithm of IC50 

measurements were retrieved from column “*_IC_50” of 

gdsc_manova_input_w2.csvavailable on the CGP website. The AUC measurements were 

retrieved from gdsc_manova_input_w2.csv in column “*_AUC”. Coding variants in 68 

genes were also extracted from gdsc_manova_input_w2.csv.

For CCLE, gene expression, mutation data cell line annotations and drug information were 

downloaded from the CCLE website (http://www.broadinstitute.org/ccle) Drug sensitivity 
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data were downloaded from the addendum published by Barretina et al.13. Screening 

concentrations (μM) for each drug/cell line were extracted from Supplementary Table 11 in 

column “Doses (μM)”. IC50 measurements were retrieved from Supplementary Table 11 in 

column “IC50 μM (norm)”. AUC measurements were retrieved from Supplementary Table 

11 in column “Act Area(norm)”. Coding variants in 1667 genes (column ‘Protein Change’) 

measured using the Oncomap3 and hybrid capture platforms were extracted from 

CCLE_Oncomap3_2012-04-09.maf and 

CCLE_hybrid_capture1650_hg19_NoCommonSNPs_NoNeutralVariants_CDS_2012.05.07.

maf, respectively.

For GSK, gene expression data and cell line annotations were downloaded from the National 

Cancer Informatics Program website (http://cbiit.nci.nih.gov/ncip). IC50measurements and 

drug information were downloaded from Supplementary Table 2 (stab_2.xls) of Greshock et 

al.10.

Cell line annotations

Cell line names were harmonized in CGP, CCLE and GSK to match identical cell lines; this 

was done through manual search over alternative names of cell lines, as reported in the 

corresponding cell line annotation files and online databases such as hyper CLDB (http://

bioinformatics.istge.it/hypercldb/) and BioInformation Web (http://bioinfoweb.com). We 

identified 471 cancer cell lines being investigated both in CGP and CCLE, 231 cell lines 

shared between CGP and GSK, 249 cell lines shared between CCLE and GSK, and 194 cell 

lines shared by all three studies (Extended Data Figure 1c). To annotate the tissue of origin 

of each cell lines we chose the nomenclature used in CGP; CCLE and GSK tissue type 

information was therefore updated to follow this nomenclature, which resulted in 24 tissue 

types.

Drug sensitivity data

Drug sensitivity measures, which are IC50 and AUC values, were set to common scale 

(−log10 (M) for IC50 and [0,1] for AUC) across studies so that high values are representative 

of cell line sensitivity to drugs. For CGP, extracted IC50 measures (x) were transformed 

using −log10 (exp(x)/106) , and AUC measures were left untransformed. For CCLE, 

extracted IC50 measures (x) were transformed into logarithmic scale, −log10 (x/106) , and 

AUC measures were divided by the number of drug concentrations tested (8). For GSK, 

extracted IC50 measures (x) were transformed using −log10 (x/103).

We also discretized the drug sensitivity measures into three categories (resistant, 

intermediate and sensitive) using the waterfall method described in the CCLE study3. The 

full procedure, as provided by Dr. Kavitha Venkatesan (personal communication) is 

described below:

1. Extract the drug sensitivity measurements, either IC50 or AUC.

2. Sort increasing log IC50 values (or AUC) of the cell lines to generate a waterfall 

distribution.
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3. If the waterfall distribution is non-linear (Pearson correlation coefficient to the 

linear fit ≤ 0.95), estimate the major inflection point of the log IC50 curve as the 

point on the curve with the maximal distance to a line drawn between the start and 

end points of the distribution.

4. If the waterfall distribution appears linear (Pearson correlation coefficient to the 

linear fit > 0.95), then use the median IC50 instead.

5. Cell lines within a 4-fold IC50 (or within a 1.2-fold AUC) difference centered 

around this inflection point are classified as being intermediate, cell lines with 

lower IC50 (or AUC) values than this range are defined as sensitive, and those with 

IC50 (or AUC) values higher than this range are called resistant.

6. Require at least x=5 sensitive and x=5 resistant cell lines after applying these 

criteria.

Using this approach we generated drug sensitivity calls for all drugs in CGP and CCLE 

(Supplementary Tables 1 and 2).

Gene expression data

Raw gene expression profiles (Affymetrix CEL format) for 789 CGP, 1036 CCLE and950 

cell lines were downloaded, respectively, from ArrayExpress14 (E-MTAB-783), CCLE 

(www.broadinstitute.org/ccle/) and NCIP (http://cbiit.nci.nih.gov/ncip) websites. Gene 

expression data were normalized with frozen RMA15 using the Bioconductor Chip 

Description File (CDF) definitions (hthgu133a fro CGP, and hgu133plus2 for CCLE and 

GSK, respectively). We then used the R package jetset16, which maps Affymetrix probe sets 

to unique Entrez gene ids by selecting the best probe set for each gene; subsequent analyses 

were restricted to the 12,187 probe sets common to the CGP, CCLE and GSK arrays. For 

replicates in CGP and GSK, the CEL files were ordered by hybridization date and the first 

experiment was selected.

Mutation data

Missense mutations in 64 protein-coding genes sequenced in 431 cell lines both in CGP and 

CCLE were downloaded from their respective website. Similarly to CGP and CCLE 

studies3,4, mutation data were discretized to represent the presence or absence of missense 

mutation in a given gene in a given cell line.

Gene-drug associations

We assessed the association between gene expression and drug response, referred to as 

gene-drug association, using a linear regression model controlled for tissue source:

where Y denote the drug sensitivity variable, Gi and T denote the expression of gene i and 

the tissue type respectively, and βs are the regression coefficients. The strength of gene-drug 

association is quantified by βi, above and beyond the relationship between drug sensitivity 
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and tissue source. The variables Y and G are scaled (standard deviation equals to 1) to 

estimates tandardized coefficients from the linear model. Significance of the gene-drug 

association is estimated by the statistical significance of βi (two-sided t test).

Pathway-drug associations

For each drug, genes were ranked according to the statistical significance of their gene-drug 

association (Student t statistic). We then used this drug-specific gene ranking to perform 

pre-ranked geneset enrichment analyses (GSEA9 version 2.0.13) in order to assess 

enrichment of gene ontology terms17 curated in MSigDB9 (c5.all.v4.0.entrez.gmt). Only 

pathways whose corresponding gene sets contained between 15 genes and 250 genes, were 

considered for further analysis (913 genesets). We used the resulting normalized enrichment 

(NES9) scores to quantify the strength of pathway-drug associations.

Measures of consistency

We computed Spearman rank-ordered correlation coefficients (rs)12 to assess the 

consistency between CGP and CCLE drug phenotypes (IC50 and AUC measures), gene/

mutation-drug associations (coefficient β) and pathway-drug associations (normalized 

enrichment scores). We used Cohen's Kappa (κ) coefficient18 to assess consistency between 

CGP and CCLE drug sensitivity calls (resistant, intermediate, sensitive) and mutation data. 

We used the following qualitative descriptions of correlation coefficient (rs) values 

associated with intervals: rs< 0.5, poor consistency; 0.5 ≤rs< 0.6, fair consistency; 0.6 ≤rs< 

0.7, moderate consistency; 0.7 ≤rs< 0.8, substantial consistency; and rs≤ 0.8, almost perfect 

consistency. Same qualitative descriptions were used for Cohen's Kappa (κ) coefficient.
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Extended Data

Extended Data Figure 1. 
Intersection between the pharmacogenomic studies in terms of drugs, cell lines and genes. 

(a) Venn diagram reporting the number of drugs shared between CGP and CCLE studies; (b) 

Description of the 15 anticancer drugs screened both in CGP and CCLE studies; (c) Venn 

diagram reporting the number of drugs shared between CGP, CCLE and GSK studies; (d) 

Venn diagram reporting the number of cell lines shared by CGP and CCLE studies; (e) 

Number of cell lines for each tissue types among the 471 common to CGP and CCLE 

studies; (f) Venn diagram reporting the number of cell lines shared between CGP, CCLE 

and GSK studies; (g) Venn diagram reporting the number of genes whose presence of 

mutations was assessed both in CGP and CCLE studies; (h) Venn diagram reporting the 

number of genes whose expression was assessed both in CGP and CCLE studies.
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Extended Data Figure 2. 
Box plot of the correlations of missense mutation profiles between identical cell lines in 

CGP and CCLE. Two-sided Wilcoxon rank sum test was used to test whether agreement 

was significantly higher in identical cell lines compared to different cell lines (upper right 

corner).
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Extended Data Figure 3. 
Scatter plot reporting the IC50 values of Camptothecin for 252 cell lines screened within the 

CGP project, as measured at the facilities of the Massachusetts General Hospital (MGH) and 

the Wellcome Trust Sanger Institute (WTSI). Spearman correlation coefficient (Rs) is 

reported in the upper left corner.
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Extended Data Figure 4. 
Scatter plots reporting the drug sensitivity measurements, which are the IC50 values within 

the range of tested concentration (thus excluding extrapolated IC50 in CGP and placeholder 

values in CCLE) in the 471 cell lines and for each the 15 drugs investigated both in CGP 

and CCLE. The last bar plot (bottom right corner) reports the Spearman correlation 

coefficient (Rs) for each drug where significance of each correlation coefficient is reported 

using the symbol ‘*’ if two-sided p-value < 0.05.
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Extended Data Figure 5. 
Scatter plots reporting the drug sensitivity (AUC) measured in the 471 cell lines and for each 

the 15 drugs investigated both in CGP and CCLE. The last bar plot (bottom right corner) 

reports the Spearman correlation coefficient (Rs) for each drug where significance of each 

correlation coefficient is reported using the symbol ‘*’ if two-sided p-value < 0.05.
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Extended Data Figure 6. 
Scatter plots reporting the gene-drug associations computed with AUC, as quantified by the 

standardized coefficient of the gene of interest in a linear model controlled for tissue type, in 

the 471 cell lines and for each the 15 drugs investigated both in CGP and CCLE. The last 

bar plot (bottom right corner) reports the Spearman correlation coefficient (Rs) for each drug 

where significance of each correlation coefficient is reported using the symbol ‘*’ if two-

sided p-value < 0.05.
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Extended Data Figure 7. 
Scatter plots reporting the pathway-drug associations computed with AUC, as quantified by 

the standardized coefficient of the gene of interest in a linear model controlled for tissue 

type, in the 471 cell lines and for each the 15 drugs investigated both in CGP and CCLE. 

The last bar plot (bottom right corner) reports the Spearman correlation coefficient (Rs) for 

each drug where significance of each correlation coefficient is reported using the symbol ‘*’ 

if two-sided p-value < 0.05.
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Extended Data Figure 8. 
Scatter plots reporting the mutation-drug associations computed with AUC, as quantified by 

the standardized coefficient of the gene of interest in a linear model controlled for tissue 

type, in the 471 cell lines and for each the 15 drugs investigated both in CGP and CCLE. 

The last bar plot (bottom right corner) reports the Spearman correlation coefficient (Rs) for 

each drug where significance of each correlation coefficient is reported using the symbol ‘*’ 

if two-sided p-value < 0.05.
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Extended Data Figure 9. 
Comparison of drug sensitivity measured in CGP and CCLE with GSK. (a) Scatter plots 

reporting the drug sensitivity measurements (IC50) of all drugs and cell lines screened both 

in CCLE and GSK datasets (2 drugs in 249 cell lines). (b) Scatter plots reporting the drug 

sensitivity measurements (IC50) of all drugs and cell lines screened both in CCLE and GSK 

datasets (5 drugs in 231 cell lines).

Extended Data Table 1

Spearman correlation coefficients and significance for consistency of drug sensitivity, gene-

drug and pathway-drug associations for (a) IC50 and (b) AUC.

a

Drug IC50 measures Gene-drug associations Significant 
(FDR < 
20%) gene-
drug 
associations

Pathway-drug associations Significant 
(FDR < 
20%) 
pathway-
drug 
associations

ERLOTINIB 0.09 [NS] 0.05 *** 0.22 *** 0.1 ** 0.16 *
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a

Drug IC50 measures Gene-drug associations Significant 
(FDR < 
20%) gene-
drug 
associations

Pathway-drug associations Significant 
(FDR < 
20%) 
pathway-
drug 
associations

LAPATINIB 0.28 ** 0.19 *** 0.34 *** 0.17 *** 0.3 ***

PHA665752 0.03 [NS] 0.06 *** -1 [NS] 0.09 ** 0.35 [NS]

CRIZOTINIB 0.1 [NS] 0.17 *** 0.27 ** 0.08 ** 0.62 ***

TAE684 0.26 ** 0.17 *** 0.42 *** 0.07 * 0.27 *

NILOTINIB 0.07 [NS] 0.24 *** 0.55 *** 0.16 *** 0.32 [NS]

AZD0530 0.41 *** 0.27 *** 0.4 *** 0.3 *** 0.51 ***

SORAFENIB 0.4*** 0.09 *** 0.25 * 0.14 *** 0.58 ***

PD0332991 0.2 ** 0.1 *** 0.25 *** 0.08 ** -0.12 [NS]

PLX4720 0.32 *** 0.12 *** -0.01 [NS] -0.05 [NS] 0.7 ***

PD0325901 0.53 *** 0.4*** 0.57 *** 0.68 *** 0.76 ***

AZD6244 0.47 *** 0.36 *** 0.65 *** 0.63 *** 0.69 ***

NUTLIN3 0.3 *** 0.12 *** 0.41 *** 0.12 *** 0.29 ***

17AAG 0.61 *** 0.38 *** 0.63 *** 0.49 *** 0.34 ***

PACLITAXEL 0.16 [NS] 0.1 *** 0.25 [NS] 0.24 *** 0.37 ***

b

Drug AUC measures Gene-drug associations Significant 
(FDR < 
20%) gene-
drug 
associations

Pathway-drug associations Significant 
(FDR < 
20%) 
pathway-
drug 
associations

ERLOTINIB 0.35 ** 0.1 *** 0.3 *** 0.13 *** 0.36 ***

LAPATINIB 0.44 *** 0.2 *** 0.38 *** 0.39 *** 0.66 ***

PHA665752 -0.09 [NS] 0.11 *** -0.12 [NS] 0.28 *** 0.39 ***

CRIZOTINIB 0.25 * 0.2 *** 0.25 *** -0.11 [NS] 0.21 [NS]

TAE684 0.37 *** 0.18 *** 0.45 *** 0.1 ** 0.26 *

NILOTINIB 0.1 [NS] 0.44 *** 0.64 *** 0.51 *** 0.44 *

AZD0530 0.45 *** 0.3 *** 0.17 ** 0.38 *** 0.39 *

SORAFENIB 0.29 ** 0.2 *** 0.44 *** 0.31 *** 0.54 **

PD0332991 0.29 *** 0.21 *** 0.58 *** 0.23 *** 0.41 ***

PLX4720 0.33 *** 0.05 *** 0.14 * -0.24 [NS] -0.49 [NS]

PD0325901 0.55 *** 0.46 *** 0.61 *** 0.76 *** 0.78 ***

AZD6244 0.48 *** 0.38 *** 0.63 *** 0.66 *** 0.71 ***

NUTLIN3 0.28 *** 0.27 *** 0.68 *** 0.2 *** 0.28 ***

17AAG 0.58 *** 0.42 *** 0.62 *** 0.51 *** 0.46 ***

PACLITAXEL 0.35 *** 0.21 *** 0.4*** 0.34 *** 0.56 ***

Significance of positive correlation coefficient is reported using the following convention:
***

for p-value <0.001
**

for p-value <0.01
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*
for p-value <0.05, ‘NS’ for p-value ≥0.05; all p-values are two-sided. When less than ten IC50 values were available, 

correlation coefficient was not computed and was therefore represented by empty cells in the table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Consistency between gene expression profiles of cell lines in CGP and CCLE studies.(a) 

Box plot representing the correlation coefficients of the biological replicates in CGP, 

identical and between different cell lines from CGP and CCLE datasets; (b)heatmap 

representing the correlations between gene expression profiles of cell lines; the order of cell 

lines is identical in rows (CCLE) and columns (CGP).
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Figure 2. 
Consistency between drug sensitivity data published in CGP and CCLE studies. (a) Scatter 

plots reporting the drug sensitivity (IC50) measured in the 471 cell lines and for the 15 drugs 

investigated both in CGP and CCLE. (b) Bar plot representing the Spearman correlation 

coefficient for IC50 and AUC drug sensitivity measures; significance is reported using the 

symbol ‘*’ if two-sided p-value < 0.05.
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Figure 3. 
Consistency of associations of genomics features with drug sensitivity. The bars represent 

the Spearman correlation coefficients computed from: (a) all and (b) significant (FDR<20%) 

gene-drug associations; (c) all and (d) significant (FDR<20%) pathway-drug associations, as 

estimated in CGP and CCLE datasets. Significance is reported using the symbol ‘*’ if two-

sided p-value < 0.05.
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Figure 4. 
Effects on consistency by intermixing CCLE and CGP data. The box plots report the 

correlations between: (a) all and (b) significant (FDR < 20%) gene-drug associations with 

IC50; (c) all and (d) significant (FDR < 20%) gene-drug associations with AUC. Each box 

represent the datasets used to compute correlations:‘Original’ refers to the original datasets; 

‘GeneCGP.fixed’ refers to [CGPg+CGPd] vs. [CGPg+CCLEd]; ‘GeneCCLE.fixed’ refers to 

[CCLEg+CGPd] vs. [CCLEg+CCLEd]; ‘DrugCGP.fixed’ refers to [CGPg+CGPd] vs. 

[CCLEg+ CGPd]; ‘DrugCCLE.fixed’ refers to [CGPg+CCLEd] vs. [CCLEg+CCLEd] 

where gand d stand for gene expression and drug sensitivity data, respectively.
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