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In recent years, several associations between common chronic human disorders and altered 

gut microbiome composition and function have been reported1,2. In most of these reports, 

treatment regimens were not controlled for and conclusions could thus be confounded by the 

impact of various drugs on the microbiome. This may obfuscate microbial causes, protective 

factors, or diagnostically relevant signals. The present study addresses disease and drug 

signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two recent 

quantitative gut metagenomics studies of T2D patients unstratified for treatment yielded 

divergent conclusions regarding its associated gut microbiotal dysbiosis3,4. Here we show, 

using 784 available human metagenomes, how antidiabetic medication confounds these 

results and analyse in detail the effects of the most widely used antidiabetic drug, metformin. 

We provide support for microbial mediation of therapeutic effects of metformin through 

short-chain fatty acid (SCFA) production as well as for potential microbiota-mediated 

mechanisms behind known intestinal adverse effects in the form of a relative increase of 

Escherichia abundance. Controlling for metformin treatment, we report a unified signature 

of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa3,4. These in 

turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. 

Overall, the present study emphasizes the need to disentangle effects of specific diseases 

from those of drugs in studies of human microbiomes.
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T2D is a disorder of elevated blood glucose levels (hyperglycaemia) primarily due to insulin 

resistance and inadequate insulin secretion, with rising global prevalence. Genetic and 

environmental risk factors are known, the latter including dietary habits and a sedentary 

lifestyle5, and gut microbiota involvement is increasingly recognized3,4,6,7, although 

findings diverge between studies8; e.g. Qin et al. (2012)3 report several Clostridium species 

enriched in T2D whereas Karlsson et al. (2013)4 instead report enrichment of several 

Lactobacilli (see Supplementary Discussion). Treatment involves medication and lifestyle 

intervention, which may confound reported gut dysbiosis. Many T2D patients receive 

metformin, an oral blood glucose-lowering, non-metabolizable compound whose primary 

and dominant metabolic effect is the inhibition of liver glucose production9. At least 30% of 

patients report adverse effects including diarrhea, nausea, vomiting, and bloating, with 

underlying mechanisms poorly understood. Studies in animals 10 and humans11 suggest 

some beneficial effects of metformin on glucose metabolism may be microbially mediated. 

Here, we built a multi-country T2D metagenomic dataset, starting with gut microbial 

samples from a non-diabetic Danish cohort of 277 individuals within the MetaHIT project12 

and additional novel Danish MetaHIT metagenomes from 75 T2D and 31 type 1 diabetes 

(T1D) patients sequenced using the same protocols (samples abbr. MHD). Treatment 

information was obtained for all MHD samples, as well as for samples from a previously 

reported4 cohort of 53 female Swedish T2D patients along with 92 nondiabetic individuals 

(43 NGT, 49 IGT) (SWE) and a subgroup of 71 Chinese T2D patients with available 

information on antidiabetic treatment as well as 185 non-diabetic Chinese individuals3 

(CHN). For all these 784 gut metagenomes (Supplementary Table S1), taxonomic and 

functional profiles were determined (see Methods), verifying our meta-analysis framework 

to be appropriate and robust in the context of theoretical considerations and through 

simulations (Supplementary Discussion 1, Extended Data Figure 1a) as well as 

characterizing differences between the datasets (Extended Data Figure 2). Initial analysis 

unstratified for treatment but controlling for demographic and technical variation between 

datasets (Supplementary Discussion 2, Supplementary Table S2) recovered a majority of 

previously reported associations (Supplementary Discussion 2, Supplementary Table S3) but 

with large divergence between datasets. Suspecting confounding treatments, we tested for 

influence of diet and antidiabetic medications (Supplementary Discussion 3, Supplementary 

Table S4, Extended Data Figure 1b), finding an effect only of metformin. Since the fraction 

of medicated patients (“T2D metformin+”) varied strongly (21% CHN, 38% SWE and 

77% MHD) samples were stratified on metformin treatment status. Multivariate analysis 

showed significant (Permanova FDR < 0.005) differences in gut taxonomic composition 

between metformin-untreated T2D (“T2D metformin−”) (n = 106) patients and non-

diabetic controls (“ND CTRL”) (n = 554), consistent with a broad-range dysbiosis in T2D 

(Figure 1A, Supplementary Table S5, see also Extended Data Table 1a and Supplementary 

Discussion 3 for an analysis of variances broken down by source). While metformin 

treatment status could be reliably recovered from microbial composition using support 

vector machines (SVMs), metformin-untreated T2D status itself could not (Figure 1B, 

Supplementary Table S6). In contrast, drug treatment-blinded T2D samples could in all three 

cohorts be separated from ND CTRL samples with similar accuracy as previously 

reported3,4, suggesting that the T2D metformin+ classifier robustly outperforms T2D 

metformin− classifiers across datasets (Supplementary Table S7).
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We further explored T2D gut microbiome alterations in 106 metformin-untreated T2D 

compared with 554 ND CTRL samples through univariate tests of microbial taxonomic and 

functional differences, with significant trends shown in Figure 2A. Metformin-untreated 

T2D was associated with a decrease in genera containing known butyrate producers such as 

Roseburia, Subdoligranulum, and a cluster of butyrate-producing Clostridiales spp. 

(Supplementary Table S8), consistent with previous indications3,4. More fine-grained 

taxonomic analysis indicate some driver species (Supplementary Discussion 4, 

Supplementary Table S9), and further finds changes in abundance of several unclassified 

Firmicutes, often reduced or reversed under metformin treatment (see Supplementary 

Discussion 4). Although an increase in Lactobacillus was seen in treatment-unstratified T2D 

samples (as previously found experimentally13), this trend was eliminated or reversed when 

controlling for metformin. Functionally, we found enrichment of catalase (conceivably a 

response to increased peroxide stress under inflammation) and modules for ribose, glycine 

and tryptophan amino acid degradation, but a decrease in threonine and arginine degradation 

and in pyruvate synthase capacity (Supplementary Table S10). While these functional 

differences could result from strain-level composition changes or be a compound effect of 

subtle enrichment/depletion of larger ecological guilds, the abundance of most of these 

modules correlated with abundance of the significantly altered microbial genera (Figure 2A).

To interpret our findings on T2D gut microbiota shifts further, we compared with 31 adult 

T1D patients (Supplementary Table S1, for further discussion of this sub-cohort, see also 

Supplementary Discussion 5, Supplementary Table S6 and Supplementary Table S11). This 

group is dysglycaemic like T2D patients, allowing us to separate purely glycaemic 

phenotype effects from T2D-specific microbial features. Gene richness was significantly 

(Wilcox FDR < 0.1) elevated in the T1D microbiomes (Figure 2B), whereas in T2D it was 

reduced (Supplementary Table S10), as reported previously6. Features found to distinguish 

metformin-untreated T2D from ND CTRL microbiomes did not replicate when comparing 

T1D to ND CTRL. Instead, most contrasts between metformin-untreated T2D samples and 

controls were reversed in adult T1D patients. In contrast, some microbial functions 

differentially abundant between metformin-untreated T2D and controls showed similar 

trends in T1D samples (Figure 2A), although not significantly so, possibly due to lower 

statistical power. We therefore conclude the majority of gut microbiota shifts visible in 

metformin-untreated T2D are not simply effects of dysglycaemia, but rather directly or 

indirectly associated with the causes or progression of T2D.

Suspecting microbial mediation of some of the therapeutic effects of metformin, we next 

compared T2D metformin-treated (n = 93) and T2D metformin-untreated (n = 106) samples 

to characterize the treatment effect in more detail. Multivariate contrasts of T2D metformin-

treated with T2D metformin-untreated samples appeared weaker than those between T2D 

metformin-untreated and ND CTRL samples, the former only significant at bacterial family 

level (Permanova FDR < 0.1), suggesting the effects of metformin treatment on gut 

microbial composition are poorly captured by multivariate analysis. Univariate tests of the 

effects of metformin treatment showed a significant increase of Escherichia spp. and a 

reduced abundance of Intestinibacter, the latter fully consistent across the different country 

datasets (Figure 3A) whereas the former is not seen in the CHN cohort, where diabetics and 

controls alike are enriched in Escherichia spp. relative to Scandinavian controls. Correcting 
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for differences in gender, BMI and fasting levels of plasma glucose or serum insulin (some 

of which were significantly different between datasets, Supplementary Table S12) retained 

these differences as significant (Supplementary Table S13). Fasting serum concentrations of 

metformin were obtained for the MHD cohort and correlated significantly with abundances 

of both genera (Figure 3B). Amplicon-based analysis of an independent T2D cohort likewise 

validated an increase of Escherichia spp. and a reduced abundance of Intestinibacter in 

metformin-treated patients (Extended Data Figure 1c, Extended Data Table 1b, 

Supplementary Discussion 6). The metformin-associated changes might derive from taxon-

specific resistance/sensitivity to the bacteriostatic or bactericidal properties of the drug14. 

The genus Intestinibacter was defined only recently15 and includes the human isolate 

Clostridium bartletti16, since reclassified as Intestinibacter bartlettii. Little is known about its 

role in the colon ecosystem and how it might affect human health. However, I. bartlettii 
abundances were lower in pigs susceptible to colonization by enterotoxigenic Escherichia17, 

consistent with the pattern seen here following metformin treatment. Analysis of the SEED 

and GMM functional annotations linked to Intestinibacter show it to be resistant to oxidative 

stress and able to degrade fucose, hinting to indirect involvement in mucus degradation. It 

also appears to possess the genetic potential for sulphite reduction, including part of an 

assimilatory sulphate reduction pathway. Analysis of gut microbial functional potential more 

generally (Figure 3C) suggested that indirect metformin treatment effects, including reduced 

intestinal lipid absorption18 and lipopolysaccharide (LPS)-triggered local inflammation can 

provide a competitive advantage to Escherichia species19 possibly triggering a positive 

feedback loop further contributing to the observed taxonomic changes. At the same time, 

metformin might revert T2D-associated changes, as several gut microbial genera are more 

similar in abundance to ND CTRL levels under metformin treatment, notably 

Subdoligranulum and to some extent Akkermansia. The latter was previously shown to 

reduce insulin resistance in murine models when increased in abundance through 

prebiotics20, and has been shown to similarly increase in abundance under metformin 

treatment10,21. In human samples, the trend was however inconsistent between country 

subsets and only MHD samples show a similar response (Extended Data Figure 3). With 

respect to microbiota-mediated impact on host glucose regulation, the functional analyses 

(Figure 3C) demonstrated significantly enhanced butyrate and propionate production 

potential in metformin-treated individuals (Supplementary Table S14). Intriguingly, recent 

studies in mice have shown that an increase in colonic production of these SCFAs triggers 

intestinal gluconeogenesis (IGN) via complementary mechanisms. Butyrate activates IGN 

gene expression through a cAMP-dependent mechanism in enterocytes, while propionate, 

itself a substrate of IGN, activates IGN gene expression via the portal nervous system and 

the fatty acid receptor FFAR322,23. In rodents the net result of an increased IGN is a 

beneficial effect on glucose and energy homeostasis with reductions in hepatic glucose 

production, appetite and body weight. Taken together, our characterization of a metformin-

associated human gut microbiome suggests novel mechanisms contributing to the beneficial 

effects of the drug on host metabolism.

Both on a compositional and functional level, we found significant microbiome alterations 

that are consistent with well-known side-effects of metformin treatment (Figure 3C). Most 

such metformin-associated functional shifts, including enrichment of virulence factors and 
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gas metabolism genes, could be attributed to the significantly increased abundance of 

Escherichia (Supplementary Discussion 7, Supplementary Table S14, Supplementary Table 

S15).

In conclusion, our results suggest partial gut microbial mediation of both therapeutic and 

adverse effects of the most widely used antidiabetic medication, metformin, though further 

validation is required to conclude causality and to clarify how such mediation might occur. 

Our study of T2D illustrates the need to disentangle specific disease dysbioses from effects 

of treatment on human microbiomes. The importance of this point was further shown by the 

fact that the previously reported high accuracy3,4 of gut microbial signatures for identifying 

treatment-unstratified T2D patients decreased dramatically when considering a large set of 

metformin-naïve patients only, highlighting a general need to bear treatment regimens in 

mind both when developing and applying microbiome-based diagnostic and prognostic tools 

for common disorders or their pre-morbidity states.

Methods

Danish MetaHIT diabetic study

Patient recruitment, enrolment and processing—Patients with type 2 diabetes 

(T2D) were either recruited from the Inter99 study population24 or from the out-patient 

clinic at Steno Diabetes Center, Gentofte, Denmark. Patients with known T2D were included 

if the patient had clinically defined T2D on the day of examination according to the WHO 

definition25. Inclusion criteria were fasting serum C-peptide above 200 pmol/l and negative 

testing for serum glutamic acid decarboxylase (GAD) 65 antibodies (to exclude type 1 

diabetes (T1D), Latent Autoimmune Diabetes of the Adult (LADA)), secondary forms of 

diabetes like chronic pancreatitis diabetes or syndromic diabetes, no antibiotic treatment two 

months prior to inclusion, and no known gastro-intestinal diseases, no previous bariatric 

surgery or medication known to affect the immune system.

All patients with T1D were recruited from the out-patient clinic at Steno Diabetes Center, 

Gentofte, Denmark (n=31). Inclusion criteria were dependence on insulin treatment from 

time of diagnosis, fasting serum C-pepide below 200 pmol/l, HbA1c above 8.0 % (64 

mmol/l) to ensure current hyperglycemia, T1D duration and dependence on insulin treatment 

> 5 years, no antibiotic treatment at least two months prior to inclusion, and no known 

gastro-intestinal diseases. All study participants were of North European ethnicity.

The study participants were examined on two different days with approximately 14 days 

apart. On the first day study participants were examined after an over-night fast. Height was 

measured without shoes to the nearest 0.5 cm, and weight was measured without shoes and 

wearing light clothes to the nearest 0.1 kg. Hip and waist circumference was measured using 

a non-expandable measuring tape to the nearest 0.5 cm. Waist circumference was measured 

midway between the lower rib margin and the iliac crest. Hip circumference was measured 

as the largest circumference between the waist and the thighs. Blood pressure was assessed 

while the participant was lying at an up-right position after at least 5 minutes of rest using a 

cuff of appropriate size (A&D, UA-787 plus digital or A&D, UA-779). Blood pressure was 

measured at least twice and the average of the measurements was calculated. At the second 
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day of examination all participants delivered a stool sample which was immediately frozen 

after home collection and stored at minus 80 degrees. Information on medication status was 

obtained by questionnaire and interview at the first day of examination. Of the 75 T2D 

patients, ten patients (12 %) received no hyperglycaemic medications, 58 patients (77 %) 

received the biguanide metformin; of these 28 patients (37 %) received metformin as the 

only anti-hyperglycaemic medication, 10 patients (13 %) received sulfonylurea alone or in 

combination with metformin, 14 patients (19 %) received a combination of oral anti-diabetic 

drugs and insulin treatment and 4 patients (5 %) were on insulin treatment only. Eleven 

patients (15 %) patients received dipeptidyl peptidase-4 (DPP4) inhibitors or glucagon-like 

peptide-1 (GLP1), all of them in combination with metformin. Patients were reported as 

receiving antihypertensive treatment if at least one of the following drugs was reported: 

spironolactone, thiazides, loop diuretics, beta blockers, calcium channel blockers, moxonidin 

or drugs affecting the renin-angiotensin system (n=55 for T2D (73 %) and n=23 (74%) for 

T1D. Patients receiving statins, fibrates and/or ezetimibe were reported as receiving lipid 

lowering medication (n=56 for T2D (75 %; all on statin treatment), and n=24 for T1D 

(77 %; 74 % on statin treatment). All T1D patients were on insulin treatment as their only 

blood glucose lowering treatment.

All biochemical analyses were performed on blood samples drawn in the morning after an 

over-night fast of at least 10 hours. Plasma glucose was analyzed by a glucose oxidase 

method (Granutest, Merck, Darmstadt, Germany) with a detection limit of 0.11 mmol/l and 

intra- and interassay coefficients of variation (CV) of <0.8% and <1.4%, respectively. 

HbA1c was measured on TOSOH G7 by ion-exchange high performance liquid 

chromatography. Serum C-peptide was measured using a time-resolved fluoroimmunoassay 

with the AutoDELFIA C-peptide kit (Perkin-Elmer, Wallac, Turku, Finland), having a 

detection limit of 5 pmol/l and intra- and interassay CV of <4.7% and <6.4%, respectively. 

Serum insulin (excluding des and intact proinsulin) was measured using the AutoDELFIA 

insulin kit (Perkin-Elmer, Wallac, Turku, Finland) with a detection limit of 3 pmol/l and with 

intra- and interassay CV of <3.2% and <4.5%, respectively. Plasma cholesterol, plasma 

HDL-cholesterol and plasma triglycerides were all measured on Vitros 5600 using reflect-

spectrophotometrics. Plasma LDL – cholesterol was calculated using Friedewald’s equation. 

Blood leucocytes and white blood cell differential count were measured on Sysmex XS 

1000i using flow cytometrics. Plasma metformin was determined by high performance 

liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Briefly the 

proteins were precipitated with acetonitril containing the deuterated internal standard, 

Metformin-d6, Hydrochloride, and the supernatant diluted by acetonitril. The analysis was 

performed on a Waters Acquity UPLC I-class system connected to a Xevo TQ-S tandem 

mass spectrometer in electrospray positive ionization mode. Separation was achieved on a 

Waters XBridgeT BEH Amide 2.5μm column and gradient elution with A: 100 mM 

ammonium formate pH 3.2 and B: Acetonitril. The MRM transitions used for metformin and 

metformin-d6 were 130.2>71.0 and 136.2>60.0. Calibrators were prepared by spiking drug 

free serum with metformin to a concentration of 2000 ng/ml. B12 was measured using 

Vitros Immunodiagnostic Products. GAD65 was measured on serum samples by a sandwich 

ELISA (RSR ltd.). Inter-assay and intra-assay CV were < 16.6 % and <6.7 % respectively, 

and with a detection limit of 0.57 U/ml.
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Stool samples were obtained at the homes of each participant and samples were immediately 

frozen by storing them in their home freezer. Frozen samples were delivered to Steno 

Diabetes Center using insulating polystyrene foam containers, and then they were stored at 

−80 °C until analysis. The time span from sampling to delivery at the Steno Diabetes Center 

was intended to be as short as possible and no more than 48 hours.

A frozen aliquot (200 mg) of each faecal sample was suspended in 250 μl of guanidine 

thiocyanate, 0.1 M Tris, pH 7.5, and 40 μl of 10% N-lauroyl sarcosine. Then, microbial 

DNA extraction was conducted as previously reported12. The DNA concentration and its 

molecular size were estimated using nanodrop (Thermo Scientific) and agarose gel 

electrophoresis.

Generation and availability of metagenomic samples

Already available Danish metagenomic samples were those reported in26 Li et al. and 

references therein (excluding 14 samples removed due to average read length below 40 nt, 

and with 5 Chinese and 21 Swedish samples with less than the rarefaction threshold of 7M 

reads in total excluded from functional profile or diversity analyses), with newly sequenced 

samples deposited in the European Bioinformatics Institute Sequence Read Archive under 

accession ERP004605.

All information on Swedish data was retrieved from published data4. In addition to 

published data on Chinese individuals3, we retrieved information on metformin treatment on 

a subset of 71 Chinese T2D patients. One hundred and twelve samples from Qin et al.3 

lacked metformin treatment metadata and were therefore discarded except for measuring 

differences between the country datasets disregarding treatment or diabetic status. 

Characteristics of all study participants included in the present protocol are given in 

Supplementary Table S1.

Validation cohort recruitment and sample processing

Additional Danish T2D patients were recruited at the Novo Nordisk Foundation Center for 

Basic Metabolic Research, University of Copenhagen during 2014 as a part of the ongoing 

MicrobDiab study (http://metabol.ku.dk/research-project-sites/microbdiab/). T2D patients 

were included in the study if time since T2D diagnosis was less than 5 year, if they were 

between 35 and 75 years of age, Caucasian and if they had not received antibiotics within 

the past four months of inclusion. In total 30 T2D patients (21 male/9 female) were 

identified. Fecal samples were collected at the home of the patients including immediate 

freezing of samples in home freezers, and transport of samples to the hospital stored on dry 

ice. The samples were stored at −80 degrees C until DNA extraction. Information of 

medication was obtained from questionnaires. In total 21 (70%) of the T2D patients received 

metformin.

Ethics statement

All individuals in both the Danish MetaHIT study and the Danish validation study gave 

written informed consent before participation in the studies. Both studies were approved by 

the Ethical Committees of the Capital Region of Denmark (MetaHIT study: HC-2008-017; 
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validation study: H-3-2013-102 ). Both studies were conducted in accordance with the 

principles of the Declaration of Helsinki.

Metagenomic analysis

Construction of a non-redundant metagenomic reference gene catalogue—
Illumina shotgun sequencing was applied to DNA extracted from 620 faecal samples 

originating from the MetaHIT project (Supplementary Table S1). Raw sequencing data were 

processed using the MOCAT (version 1.1) software package27. Reads were trimmed (option 

read_trim_filter) using a quality and length cutoff of 20 and 30bp, respectively. Trimmed 

reads were subsequently screened against a custom database of Illumina adapters (option 

screen_fastafile) and the human genome version 19 using a 90% identity cut-off (option 

screen). The resulting high-quality reads were assembled (option assembly) and assemblies 

revised (option assembly revision). Genes were predicted on scaftigs with a minimum length 

of 500 bp (option gene_prediction).

Predicted protein-coding genes with a minimum length of 100 bp were clustered at 95% 

sequence identity using CD-HIT (version 4.6.1)28 with parameters set to: -c 0.95, -G 0 -aS 

0.9, -g 1, -r 1). The representative genes of the resulting clusters were “padded” (i.e., 

extended up to 100 bp at each end of the sequence using the sequence information available 

from the assembled scaftigs), resulting in the final reference gene catalogue used in this 

study.

The reference gene catalogue was functionally annotated using SmashCommunity29 (version 

1.6) after aligning the amino acid sequence of each gene to the KEGG30 (version 62) and 

eggNOG31 [(version 3) databases.

Profiling of metagenomic samples—Raw insert (sequenced fragments of DNA 

represented by single or paired-end reads) count profiles were generated using MOCAT27 by 

mapping high-quality reads from each metagenome to the reference gene catalogue (option 

screen) using an alignment length and identity cut-off of 45 and 95%, respectively. For each 

gene, the number of inserts that matched the protein-coding region was counted. Counts of 

inserts that mapped with the same alignment score to multiple genes were distributed 

equally among them. Taxonomic abundances were computed at the level of metagenomic 

operational taxonomic units (mOTUs)32, normalized to the length of the concatenated 

marker genes for each mOTU to yield the abundances used for the study, and subsequently 

binned at broader taxonomic levels (genus, family, class, etc.).

Rarefaction of metagenomic data and microbial diversity measurements—For 

all metagenome-derived measures except the mOTU taxonomic assignments, read counts 

were rarefied in order to avoid any artifacts of sample size on low-abundance genes. 

Rarefied matrices were obtained as follows. Data matrices were rarefied to 7M reads per 

sample. This threshold was chosen to include most samples, but 5 Chinese and 21 Swedish 

samples were excluded due to having less than 7M reads per sample. Rarefactions were done 

using a C++ program developed for the Tara project33. In total we did 30 repetitions, in each 

of which we measured the richness, evenness, chao1 and Shannon diversity metrics within a 

rarefaction. The median value of these was taken as the respective diversity measurement for 
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each sample. The first of 30 rarefactions of each sample was used to create a rarefied gene 

abundance matrix and KO abundance profiles were calculated by summing the rarefied 

abundance of genes annotated to the respective KO gene.

Metagenomic species (MGS) construction—Clustering of the catalogue genes by co-

abundance, as described in Nielsen et al.34, defined 10,754 co-abundance gene groups 

(CAGs) with very high correlations (Pearson correlation coefficient > 0.9). The 925 largest 

of these, having more than 700 genes, were termed metagenomic species (MGS). The 

abundance profiles of the CAGs and MGS were determined as the medium gene abundance 

(downsized to 7M reads per sample) throughout the samples. Furthermore, the CAGs and 

MGS were taxonomically annotated, by sequence similarity to known reference genomes.

Functional annotation/binning of metagenomes—To avoid falsely drawing gut 

microbial functional conclusions from high abundance of single genes remotely homologous 

to members of a functional pathway, an approach was used that required presence of 

multiple pathway members. Functional pathway abundance was calculated from gene 

catalog KO annotation and MGS abundances per sample. Thus KOs present in each MGS 

were used to determine for that CAG/MGS which functional modules were represented 

within its genetic repertoire, requiring for this that >90% of KO’s necessary for the 

completion of a reaction pathway should be present, when also taking alternative enzymatic 

pathways into account. The module abundance within a sample was calculated from CAG 

abundance in each respective sample, summing over all CAGs which had the module 

present. Rarefied median coverage of CAG/MGSs were used, so no further normalization of 

the module abundance matrix was required. Abundance of genetic potential falling under the 

same higher-order functional levels was calculated by summing up all abundances of the 

lower-level functional modules within each sample.

Existing functional annotation databases cover gut metabolic pathways relatively poorly. To 

account for this, a number of additional bacterial gene functional modules were curated and 

annotated, extending the KEGG system; these are referred to in result tables as GMMs (Gut 

Microbial Modules) and were previously described in Le Chatelier et al12.

16S amplicon processing—16S amplicons from frozen samples were sequenced 300bp 

+ 200bp paired end reads using a Illumina miSeq machine. We used the LotuS35 pipeline in 

short amplicon mode with default quality filtering, clustering and denoising OTUs with 

UPARSE36, removing chimeric OTUs against the RDP reference database (http://

drive5.com/uchime/rdp_gold.fa) with uchime37, merging reads with FLASH38 and assigning 

a taxonomy against the SILVA 119 rRNA database39 and further refined by BLAST searches 

against the NCBI rRNA database40 to identify Intestinibacter OTUs, using the following 

LotuS command line options: “-p miSeq -refDB SLV -doBlast blast -amplicon_type SSU -

tax_group bacteria -derepMin 2 -CL 2 -thr 14”.

Univariate tests of taxonomic or functional abundance differences—Microbial 

taxa where mean abundance over all samples was less than 30 reads, or which were present 

in less than 3 samples were excluded from univariate and classifier analyses. All abundances 

were normalized by total sample sum. For module tables no feature filters were used except 

Forslund et al. Page 10

Nature. Author manuscript; available in PMC 2016 June 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://drive5.com/uchime/rdp_gold.fa
http://drive5.com/uchime/rdp_gold.fa


requiring the module to be present in at least 20 samples. Filtered data tables were made 

available online.

Univariate testing for differential abundances of each taxonomic unit between two or more 

groups was tested using Mann-Whitney-U or Kruskal-Wallis tests, respectively, corrected for 

multiple testing using the Benjamini-Hochberg false discovery control procedure rate (e.g. 

q-values)41 . Post-hoc statistical testing for significant differences between all combinations 

of two groups was conducted only for taxa with abundances significantly different at P < 

0.2. Wilcoxon rank-sum tests were calculated for all possible group combinations and 

corrected for multiple testing again using the Benjamini-Hochberg false discovery rate, as 

implemented in R. Where controlling for potential confounders such as source study, we 

used blocked “independence_test” function calls with options “ytrafo = rank, teststat=scalar” 

for blocked WRST and “ytrafo = rank, teststat=quad” for blocked KWT, as implemented in 

the COIN software package42 for R. Similarly we applied these independence tests in the 

framework of post-hoc testing as described above.

Analysis of correlations between taxonomic or functional features, community diversity 

indices and sample metadata variables were conducted using Spearman correlation tests as 

implemented in R, and corrected for multiple tests using the Benjamini-Hochberg false 

discovery rate control procedure. To control for confounders such as source study in 

univariate correlation analyses, blocked Spearman tests as implemented in COIN (settings 

“independence_test”, options ytrafo = rank, xtrafo=rank, distribution=asymptotic) were 

used.

In some analyses taxa were corrected for the influence of a continuous confounder variable 

like microbial community richness; in these cases the residual of a linear model between 

normalized, log-transformed taxa abundances and overall sample gene richness was used to 

correct for the confounding variable. Power analysis was conducted by randomly 

subsampling to a given sample number, repeated 5 times to achieve robust results.

Ordinations and multivariate tests—All ordinations (NMDS, dbRDA) and subsequent 

statistical analyses were calculated using the R-package vegan43 using Canberra distances 

on normalized taxa abundance matrices, then visualized using the ggplot2 R package44. 

Community differences were calculated using a permutation test on the respective NMDS 

reduced feature space, as implemented in vegan.

Furthermore, we calculated intergroup differences for the microbiota using PERMANOVA45 

as implemented in vegan. This test compares the intragroup distances to the intergroup 

distances in a permutation scheme and from this calculates a P-value. For all PERMANOVA 

tests we used 2×105 randomizations and a normalized genus-level mOTU abundance matrix, 

using Canberra intersample distances. PERMANOVA post hoc P-values were corrected for 

multiple testing using the Benjamini-Hochberg false discovery rate control procedure. 

Analysis of variance broken down by cohort, treatment and disease status was conducted by 

fitting these distances to a linear model of sample metadata distances, as further described in 

Supplementary Discussion 3.2.
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Classifier construction and evaluation—To create classifiers for separating samples 

from different subsets, a L1 restricted LASSO using the R glmnet package46 was carried out 

to test for an optimal value of lambda (number of features to be used in the final predictor) 

in a 5-fold cross-validated and internally 4-fold cross-validated LASSO run on all data. 

After this, the previously determined value of lambda was manually controlled for number 

of features used against the root mean square error of the classifier. In a 5-fold cross-

validation an independent LASSO classifier was trained on 4/5 of the data using the 

previously determined value of lambda, and response values were predicted on 1/5 of the 

data. LASSO models with a Poisson response type were used in all cases.

Binary classifications between T2D and ND CTRL samples were performed with a R 

reimplementation of the robust recursive feature elimination support vector machine (rRFE-

SVM)47 procedure. The SVM was performed in an outer cross-validation scheme on 4/5 of 

the data. Of these randomly 90% were selected 200 times in each cross-validation for the 

RFE, to create a feature ranking from an average over these runs. Classifier performance was 

validated on the remaining 1/5 of samples using the pre-established feature ranking. In case 

of several cohorts, ROC-AUC scores were measured for each cohort separately.

Code availability

The MGS technology has previously been described34 and is available online (http://

git.dworzynski.eu/mgs-canopy-algorithm/wiki/Home). The mOTU resource has been made 

publically available (http://www.bork.embl.de/software/mOTU/) and was analyzed using 

MOCAT27 which is also publically available (http://vm-lux.embl.de/~kultima/MOCAT/). 

The 16S pipeline LotuS35 is freely available online (http://psbweb05.psb.ugent.be/lotus). 

The novel gene catalog has been deposited online (http://vm-lux.embl.de/~kultima/share/

gene_catalogs/620mhT2D/), as have the raw amplicon sequences (http://vm-lux.embl.de/

~forslund/t2d/). Statistical analysis and data visualization was conducted using freely 

available R libraries: vegan, coin and ggplot2 and was described in more details 

elsewhere48,49. Data matrices and R source code for replicating the central tests conducted 

on the data have been deposited online (http://vm-lux.embl.de/~forslund/t2d/).

Evaluation of dietary habits

A subset of the Danish study participants answered a validated food frequency questionnaire 

(FFQ) in order to obtain information on the habitual dietary habits. A complete dataset was 

obtained for 66 % of the non-diabetic individuals and 88 % of T2D patients. When 

evaluating the dietary data the consumed quantity was determined by multiplying portion 

size by the corresponding consumption frequency reported. Standard portion sizes for 

women and men, separately, were used in this calculation50,51. All food items in the FFQ 

were linked to food items in the Danish Food Composition Databank52. Estimation of daily 

intake of macro- and micronutrients for each participant was based on calculations in the 

software program FoodCalc version 1.353.
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Extended Data

Extended Data Figure 1. 
A. As a positive control for the meta-analysis pipeline, true signal was removed from the 

data by randomly reshuffling sample labels. Artificial contrast was thereafter introduced 

between random groups containing as many such reshuffled samples as were in the original 

sets of T2D metformin+ (nCHN=15, nMHD=58, nSWE=20) and T2D metformin− (nCHN=56, 

nMHD=17, nSWE=33) samples in each original study subset, using the genus Akkermansia as 

an example feature. Samples randomly assigned to the sets of fake “metformin treated” and 

“control” categories had their Akkermansia genus abundances adjusted to match the scale of 

the metformin effect on Escherichia genus abundance reported here (metformin-treated 

samples roughly 150% as likely to have nonzero abundance, with a roughly threefold higher 

abundance where present), while retaining their dataset origin labels. The full meta-analysis 

pipeline (study set blocked KWT test, post-hoc WRS test) was applied to these samples. 

Benjamini-Hochberg-corrected P-values (FDR scores/Q-values) from testing for a 

metformin effect on Akkermansia abundance are here plotted in logarithmic scale on the 

vertical axis for 100 randomizations of the entire shuffled dataset, either without (left 

boxplot) or with (right boxplot) the artificial Akkermansia metformin signal added after 
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shuffling the data to remove original signal. Box plot borders show medians and quartiles, 

with points outside this range shown as vertical whisker lines and point markers, whiskers 

extend to 1.58 × interquartile range / sqrt (n). Horizontal guide lines are shown for ease of 

visualization corresponding to different false discovery rate thresholds. For randomly 

reshuffled data, as expected no significant contrast is detected, while the artificially 

introduced signal is reliably detected, roughly matching expectations from the definition of 

the false discovery rate itself.

B. To investigate statistical power for the other medications tracked, five random sub-

samplings were made of pairs of medicated and non-medicated samples, at each increasing 

number of included sample pairs, and the overall analysis replicated for each, testing each 

genus for significantly (KW-test followed by post-hoc WRS test) differential abundance 

between cases and controls, at different BH FDR significance cutoffs marked in the figure 

using different colours. Out of the total number of samples for which medication status was 

known, equal numbers n of medicated and unmedicated samples were chosen randomly in 

repeated iterations. This number n was varied up to its largest possible value (smallest of 

either number of medicated or unmedicated samples in overall dataset) and is what is shown 

on the horizontal axis. The vertical axis shows number of features significant relative to each 

cutoff, with standard deviation over each set of five randomized samples shown as error 

bars.

C. The graphs show Intestinibacter and Escherichia median and quartile abundances as 

boxplots, whiskers extend to 1.58 × interquartile range / sqrt (n), with samples extreme 

relative to the interquartile range shown as point markers and with samples below detection 

threshold (DT) plotted at y = 0, in 21 additional T2D metformin+ and 9 additional T2D 

metformin− samples. Differences in abundance between sample categories are significant 

(WRS test, BH FDR < 0.1). The samples where Intestinibacter was detected all fall among 

the 9/30 untreated rather than the 21/30 metformin-treated samples, consistent with severe 

depletion under treatment, whereas Escherichia abundances increase under treatment, 

likewise consistent with observations from the main dataset.
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Extended Data Figure 2. 
Differences in physiological variables and microbiome characteristics between Chinese 

(n=368), Danish MetaHIT (n=383) and Swedish (n=145) gut metagenome sample sets.

A. Several participant metadata variables are significantly different between cohorts, of 

which a subselection is shown here as boxplots displaying median and quartiles, with 

samples outside this range shown as point markers and whiskers, whiskers extend to 1.58 × 

interquartile range / sqrt (n).

B. In a PCoA ordination of Bray-Curtis distances between samples on bacterial family level, 

clear differences between samples from the different cohorts become apparent. These are 

largely explained by taxonomic differences as summarized at the phylum level.

C. Boxplots for gut microbial taxa show medians and quartiles of log-transformed read 

counts for mOTUs summarized at the level of bacterial genera, for the three country subsets 

across sample categories, with samples outside this range shown as point markers and 

whiskers, whiskers extend to 1.58 × interquartile range / sqrt (n). For all boxplots, tests for 

significant differences (Kruskal-Wallis test adjusted for study source) were performed with 

P-values shown at the head of each figure. Star markers note significance of tests done for 

each country subset separately.
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Extended Data Figure 3. 
Taxonomic microbiome composition comparison between T2D metformin− (n=106), T2D 

metformin+ (n=93) and ND CTRL (n=554) gut metagenomes with particular focus on 

possible taxonomic restoration under metformin treatment for certain taxa. Boxplots show 

medians and quartiles log-transformed read counts for mOTUs summarized at the level of 

bacterial genera, for the three country subsets across sample categories, with samples outside 

this range shown as point markers and whiskers, whiskers extend to 1.58 × interquartile 

range / sqrt (n). Tests for significant differences (Kruskal-Wallis test adjusted for study 

source) were performed with P-values shown at the head of each figure. Star markers show 

results of tests for each country subset separately.

Extended Data Table 1

A. The analysis of variances table shows the results of modelling the Canberra distances 

between T2D metformin− (n=106), T2D metformin+ (n=93) and ND CTRL (n = 554) 

samples with predictor variables encoding same/different diabetes status, same/different 

treatment, and same/different study source/country. Fractions of explained variance are taken 

as fractions of sum of square deviations from the model relative to the total deviation.

B. Bacterial taxa found significantly different in gut abundance under metformin treatment 

were tested (WRS-test) for significant differential relative abundance in a separate cohort 

under 16S amplicon sequencing between T2D metformin+ (n=26) and T2D metformin− 

(n=8) samples.

a

Degrees of freedom Sum of squares Explained variation F-statistic Pr(>F)

Treatment 1 128 3.8% 21454.01 <2E-016 ***

Disease 1 42 1.2% 7039.86 <2E-016 ***

Forslund et al. Page 16

Nature. Author manuscript; available in PMC 2016 June 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



a

Degrees of freedom Sum of squares Explained variation F-statistic Pr(>F)

Country 1 376 11.1% 63206.96 <2E-016 ***

Treatment × Disease 1 1 0.0% 192.62 <2E-016 ***

Treatment × Country 1 67 2.0% 11209.33 <2E-016 ***

Disease × Country 1 1 0.0% 218.97 <2E-016 ***

Treatment × Disease 
× Country 1 0 0.0% 22.79 0.00000181 ***

Residuals 567001 3375 100.0%

Total: 3990

b

Database OTU identifier MWU P-value Enriched in Mean abundance (%)

OTU_45 0.048968332 T2D metformin+ 0.803960725

OTU_1038 0.0319637913 T2D metformin− 0.000185722

Database OTU identifier OTU_45 OTU_1038

Domain Bacteria Bacteria

Phylum Proteobacteria Firmicutes

Class Gammaproteobacteria Clostridia

Order Enterobacteriales Clostridiales

Family Enterobacteriaceae Peptostreptococcaceae

Genus Escherichia-Shigella Intestinibacter

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Type 2 diabetes is confounded by metformin treatment
Major treatment effects are seen in multivariate analysis and in classifier performance.

A. Projection of genus level gut microbiomes samples from Danish, Chinese and 
Swedish studies constrained by diabetic state and metformin treatment. Multivariate 

analysis (dbRDA plot based on Canberra distances between bacterial genera) reveals a T2D 

dysbiosis which overlaps only in part with taxonomic changes in metformin-treated patients. 

The ordination projects all T2D metformin+ (n=93, dark red), T2D metformin− (n=106, 

orange) and ND CTRL (n=554, teal) gut metagenomes, with confounding country effect 

adjusted for. Bacterial genera which show significant effects of metformin treatment and 

T2D status compared to ND CTRL, respectively (limited to top five for each), are 

interpolated into the plane of maximal separation based on their abundances across all 

samples. Marginal box-/scatterplots show the separation of the constrained projection 

coordinates (boxes show medians/quartiles, error bars extend to most extreme value within 

1.5 interquartile range). The T2D separation is significant (Permanova FDR<0.005) in the 

joint dataset and independently significant in CHN and MHD samples. The metformin 

separation is significant (Permanova FDR<0.1; Canberra distances) in MHD and SWE 

samples.

B. Classifying type 2 diabetes and metformin treatment status based on gut 
microbiome profiles. Support Vector Machine (SVM) classifiers were used to separate T2D 

metformin+ (n=93), T2D metformin− (n=106) and ND CTRL (n=554) gut metagenomes 

from each other based on genus-level gut microbiome taxonomic composition. Bold curves 

represent mean performance in hold-out testing of 1/5 of the data each time, with separate 

tests shown as dashed curves and with error bars showing +− 1SD. Metformin-treated T2D 

samples can be well separated from controls (using Intestinibacter abundance as the only 

feature), whereas distinguishing T2D metformin-samples from ND CTRL samples works 

poorly even in the best case, requiring 63 distinct microbial features to achieve this 

separation.
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Figure 2. Gut microbiome signatures in metformin-naïve type 2 diabetes and in type 1 diabetes
Differences between healthy controls and T2D patients contrasted against T1D as an 

alternative form of dysglycaemia.

A. Taxonomic and functional microbiome signatures of metformin-naïve type 2 
diabetes. The heatmaps show bacterial genera (horizontal axis) and microbial gene 

functions (vertical axis) that are significantly (study source adjusted KW-test and post-hoc 

MWU test, markers in innermost marginal heatmaps indicating *: FDR<0.05; +: FDR<0.1) 

different in abundance (nonparametric enrichment scores shown as intensity of innermost 

marginal heatmaps; red-green colour scale) between T2D metformin− (n=106) and ND 

CTRL (n=554) gut metagenomes, revealing a robust diabetic signature across datasets. None 

of these features are significantly different in a comparison of T1D (n=31) with ND CTRL 

(n=277) gut metagenomes (outermost marginal heatmaps, same notation as above), implying 

they are not direct effects of dysglycaemia. The central heatmap shows Spearman 

correlations (purple to red color scale) between abundance of bacterial taxa and microbial 

gene modules (Spearman test FDR scores shown as markers *: FDR<0.05; ***: 

FDR<0.001).

B. Elevated gene richness in adult type 1 diabetes samples. Comparing MHD samples 

only, T1D (n=31) gut metagenomes show significantly (MWU test, +: FDR<0.1, *: 

FDR<0.05) higher gut microbiome richness (i.e. gene count) than all other sample subsets 

(ND CTRL n=277, T2D metformin+ n=58, T2D metformin− n=17 gut metagenomes). 

Sample median richness is shown as horizontal black bars.
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Figure 3. Impact of metformin on the human gut microbiome
Characterization of the microbially-mediated therapeutic and adverse effects of metformin.

A. Gut microbial shifts under metformin treatment. Metformin treatment significantly 

(study-source adjusted KW-test and post-hoc MWU test, +: FDR<0.1; *: FDR<0.05; ***: 

FDR<0.001) increases Escherichia and lowers Intestinibacter abundance. Boxplots show 

median/quartile abundances, whiskers extend to 1.58 × interquartile range / sqrt (n), for T2D 

metformin+ (nCHN=15, nMHD=58, nSWE=20), T2D metformin− (nCHN=56, nMHD=17, 

nSWE=33) and ND CTRL (nCHN=185, nMHD=277, nSWE=92) gut metagenome samples.
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B. Correlations between serum levels of metformin and gut microbiota in Danish 
MetaHIT samples, including SCFA production modules. Serum metformin levels of T2D 

patients (n=75 gut metagenomes) are significantly (Spearman FDR < 0.1) positively 

correlated with Escherichia abundance, and in significant negative correlation with 

Intestinibacter abundance. Bacterial gene function modules for butyrate and propionate 

production increase in abundance as serum metformin levels increase. Dot markers are 

shown for all MHD samples where serum metformin concentration was measured. 

Metformin-untreated T2D samples (serum concentrations < 10 mg/ml) are shown in orange, 

treated samples in dark red. Spearman coefficients (calculated for treated samples only) and 

FDRs are shown.

C. Microbial shifts under metformin treatment contribute to improved glucose control 
and to adverse effects. Schematic illustration of gut microbial changes and their impact on 

host health. Observed associations (orange lines) between microbial taxa abundances 

(orange ellipses), microbial functional potential (orange boxes), and blood values (filled 

orange boxes) and metformin treatment are linked with literature-derived metformin− or 

microbiota-induced host physiological effects (blue boxes and arrows; dashed arrows 

indicate hypothesized causality). Drug-host-microbiota interactions can contribute to 

previously described therapeutic (green triangles) and side (red triangles) effects of 

metformin treatment.
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