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Abstract

Evolution occurs in populations of reproducing individuals. The
structure of a biological population affects which traits evolve [1, 2].
Understanding evolutionary game dynamics in structured populations
is difficult. Precise results have been absent for a long time, but have
recently emerged for special structures where all individuals have the
same number of neighbors [3, 4, 5, 6, 7]. But the problem of deter-
mining which trait is favored by selection in the natural case where
the number of neighbors can vary, has remained open. For arbitrary
selection intensity, the problem is in a computational complexity class
which suggests there is no efficient algorithm [8]. Whether there exists
a simple solution for weak selection was unanswered. Here we provide,
surprisingly, a general formula for weak selection that applies to any
graph or social network. Our method uses coalescent theory [9, 10]
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and relies on calculating the meeting times of random walks [11]. We
can now evaluate large numbers of diverse and heterogeneous popula-
tion structures for their propensity to favor cooperation. We can also
study how small changes in population structure—graph surgery—
affect evolutionary outcomes. We find that cooperation flourishes
most in societies that are based on strong pairwise ties.

Population structure affects ecological and evolutionary dynamics [12,
13, 14, 2]. Evolutionary graph theory [1, 3, 6] provides a mathematical tool
for representing population structure: vertices correspond to individuals and
edges indicate interactions. Graphs can describe spatially structured popula-
tions of bacteria, plants or animals [15], tissue architecture and differentiation
in multi-cellular organisms [16], or social networks [17, 18]. Individuals repro-
duce into neighboring vertices according to their fitness. The graph topology
affects the rate of genetic change [19] and the balance of drift versus selection
[1]. The well-mixed population, which is a classical scenario for mathematical
studies of evolution, is given by the complete graph.

Of particular interest is the evolution of social behavior, which can be
studied using evolutionary game theory [20, 21, 22]. Evolutionary game
dynamics, which are tied to ecological dynamics [21], arise whenever repro-
ductive rates are affected by interactions with others.

In evolutionary games on graphs [24, 3, 4, 5, 6, 25, 7], individuals interact
with neighbors according to a game and reproduce based on payoff (Fig. 1).
A central question is to determine which strategies succeed on a given graph.
It has been shown [8] that there cannot be a general closed-form solution or
polynomial-time algorithm for this question, unless P=NP. To make analyt-
ical progress, one can suppose that selection is weak, meaning that the game
has only a small effect on reproductive success. In this case, exact results
are known for regular graphs, where each individual has the same number
of neighbors [3, 4, 5, 6]. Evolutionary games on heterogenous (non-regular)
graphs, which are ubiquitous in nature [26], have only been investigated us-
ing computer simulations [24, 25], heuristic approximations [27], and special
cases [28, 29, 25].

Here we obtain exact results for all weighted graphs (Fig. 1a). The edge
weights, wij, determine the frequency of game interaction and the probability
of replacement between vertices i and j. Individuals are of two types, A and
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Figure 1: Evolutionary games on weighted heterogeneous graphs. a,
Population structure is represented by a graph with edge weights wij. Here
vertices are sized proportionally to their weighted degree wi =

∑
j wij. b,

Each individual i interacts with each neighbor and retains the edge-weighted
average payoff fi, shown here for the payoff matrix (6). Payoff is translated
into reproductive rate Fi = 1 + δfi, where δ represents the strength of selec-
tion. c, For Death-Birth updating, first a random individual i is selected to be
replaced; then a neighbor j is chosen with probability proportional to wijFj
to reproduce into the vacancy. This update rule induces competition between
two-step neighbors (black circles). d, Coalescent theory [9, 11, 10, 23] traces
ancestries back in time as random walks. The coalescence time τij is the
expected meeting time of random walks from i and j. The meeting point
(yellow circle) represents the location of the most recent common ancestor.
e, A key quantity is the probability pi that a randomly chosen neighbor of i
will chose i in return, with both choices made proportionally to edge weight.
Cooperation thrives when these probabilities are large.
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B. The game is specified by a payoff matrix

(A B

A a b
B c d

)
. (1)

At each time step, each individual interacts with all of its neighbors. The
reproductive rate of individual i is given by Fi = 1+δfi, where fi is the edge-
weighted average of the payoff that i receives from its neighbors (Fig. 1b).
The parameter δ represents the strength of selection. Weak selection is the
regime 0 < δ � 1. Neutral drift, δ = 0, serves as a baseline.

As update rule, we first consider Death-Birth [3] (Fig. 1c). An individ-
ual is chosen uniformly at random to be replaced; then a neighbor is chosen
proportionally to reproductive rate to reproduce into the vacancy. Offspring
inherit the type of their parent. Death-Birth updating is a natural scenario
for genetic evolution and also translates into social settings: a random in-
dividual resolves to update its strategy; subsequently it adopts one of its
neighbors’ strategies proportionally to their payoff.

Over time, the population will reach the state of all A or all B. Suppose
we introduce a single A individual at a vertex chosen uniformly at random
in a population consisting of B individuals. The fixation probability, ρA, is
the probability of reaching all A from this initial condition. Likewise, ρB is
the probability of reaching all B when starting with a single B individual in
a population otherwise of A. Selection favors A over B if ρA > ρB.

The outcome of selection depends on the spatial assortment of types,
which can be studied using coalescent theory [9, 10]. Ancestral lineages are
represented as random walks [11]. A step from i to j occurs with probability
pij = wij/wi, where wi =

∑
k wik is the weighted degree of vertex i. The

coalescence time τij is the expected meeting time of two independent random
walks starting at vertices i and j (Fig. 1d). Coalescence times can be obtained
exactly and efficiently as the solution of the system of linear equations

τij =

{
1 + 1

2

∑
k(pikτkj + pjkτik) i 6= j

0 i = j.
(2)

We show in Appendix D.5 that the coalescence time τij equals the expected
total time during which individuals i and j have different types. Therefore,
if T is the time to absorption (fixation or extinction of the invading type),
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then T − τij is the time during which i and j have the same type. Of
particular interest is the expected coalescence time tn from the two ends
of an n-step random walk, with the initial vertex chosen proportionally to
weighted degree.

Our main result holds for any payoff matrix, but we first study a donation
game. Cooperators pay a cost, c, and provide a benefit, b. Defectors pay no
cost and provide no benefit. This leads to the payoff matrix

( C D

C b− c −c
D b 0

)
, (3)

For b > c > 0, this game is a Prisoners’ Dilemma. We find that cooperation
is favored over defection, ρC > 1/N > ρD, for weak selection, if and only if

−c(T − t0) + b(T − t1) > −c(T − t2) + b(T − t3). (4)

Intuitively, condition (4) states that a cooperator must have a higher
average payoff than a random individual two steps away. These two-step
neighbors compete with the cooperator for opportunities to reproduce (Fig
1b). The first term, −c(T − t0), is the cost for being a cooperator, which
is paid for the entire time, T , because t0 = 0. The second term, b(T − t1),
is the average benefit that the cooperator gets from its one-step neighbors.
For an expected time of T − t1, a one-step neighbor is also a cooperator.
The remaining terms, −c(T − t2) + b(T − t3), describe the average payoff
of an individual two steps away. That individual pays cost c whenever it
is a cooperator (time T − t2) and receives benefit b whenever its one-step
neighbors—which are three-step neighbors of the first cooperator—are coop-
erators (time T − t3).

Time T cancels in (4), leaving −ct2 + b(t3 − t1) > 0. Therefore, if t3 > t1
for a given graph, cooperation is favored whenever the benefit-to-cost ratio
exceeds (

b

c

)∗
=

t2
t3 − t1

. (5)

The critical threshold (b/c)∗ can be obtained exactly and efficiently for any
graph by solving a system of linear equations for coalescence times and sub-
stituting into equation (5). Although equation (5) is exact only for weak
selection, Monte Carlo simulations (Fig. 2) show that it is highly accurate
for fitness costs of up to 2.5%.
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Figure 2: Simulations show accuracy of our results for moderate
selection. Our results are exact for weak selection. To assess accuracy
for nonweak selection, we performed Monte Carlo simulations with selection
strength δ = 0.025 and cost c = 1. This corresponds to a fitness cost of 2.5%,
which was empirically determined to be the cost of a cooperative behavior in
yeast [30]. Markers indicate population size times frequency of fixation for
a particular value of b on a particular graph. Dashed lines indicate (b/c)∗

as calculated from Eq. (5). All graphs have size N = 100. Graphs are:
Barabasi-Albert [31] (BA) with linking number m = 3, small world [32]
(SW) with initial connection distance d = 3 and edge creation probability p =
0.025, Klemm-Eguiluz [33] (KE) with linking number m = 5 and deactivation
parameter µ = 0.2, and Holme-Kim [34] (HK) with linking number m = 2
and triad formation parameter P = 0.2.
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Figure 3: Graphs that promote or hinder cooperation. For any graph
in which each individual has one partner with edge weight w and all other
edges have weight 1, the critical benefit-cost ratio converges to 1 as w →
∞. Thus any cooperative behavior can be favored for sufficiently large w.
Examples include a, a disordered network; b, a weighted regular graph in
which each individual has one interaction of weight w and k of weight 1;
here (b/c)∗ = (w + k)2/(w2 + k) for N � k; and c, a complete graph in
which each individual has one partner with edge weight w and all other
weights are 1; here (b/c)∗ = (w − 2 + N)2/[(w − 2)2 − N ]; cooperation
is only possible if w >

√
N + 2 (dashed vertical lines). d, A population

divided into heterogeneous islands. Edge weights are 1 between vertices on
the same island and m < 1 between vertices on different islands. Cooperation
is most favored when the islands have equal size and migration is rare. e,
The weighted star graph and f, the complete bipartite graph do not support
cooperation. For both graphs, all walks of odd length are equivalent; thus
t3 = t1 and cooperation cannot be favored according to Eq. (5).
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A positive value of the critical benefit-to-cost ratio means that cooper-
ation can be favored if it is sufficiently effective. Positive values of (b/c)∗

always exceed—but can be arbitrarily close to—unity, at which point any
cooperation that produces a net benefit is favored (Fig. 3a–c). A negative
value, which arises for t3 < t1, means that cooperation cannot be favored,
but spiteful behaviors, b < 0, c > 0, are favored if b/c < (b/c)∗. If t3 = t1,
then (b/c)∗ is infinite, and neither cooperation nor spite are favored.

Which networks best facilitate evolution of cooperation? We find that
cooperation thrives when there are strong pairwise ties between individuals
(Fig. 3a–c). To quantify this property, let pi =

∑
j pijpji be the probability

that a random walk from vertex i returns to i on its second step (Fig. 1e).
In other words, pi is the probability that, if i choses a neighbor (for an
interaction), that choice is returned by the neighbor. Cooperation succeeds
best if the pi are large. For graphs satisfying a particular locality property
(see Appendix E.2), the critical benefit-to-cost ratio becomes (b/c)∗ = 1/p̄,
where p̄ is a weighted average of the pi. For unweighted regular graphs of
degree k � N , a two-step walk has probability 1/k to return, yielding the
condition [3] b/c > k.

As an application, consider a population divided into islands of arbitrary
sizes (Fig. 3d). Pairs on the same island are joined by edges of weight 1.
Pairs on different islands are joined by edges of weight m < 1. Our analytical
results suggest that for a fixed number of islands, cooperation is most favored
when the islands have equal size and m is small (Appendix K.1).

Our results also specify which population structures do not support coop-
eration. For example, on a weighted star (Fig. 3e), random walks alternate at
each step between the hub and a leaf. Any walk of odd length is equivalent to
any other. Therefore t3 = t1, which makes cooperation impossible. A similar
argument applies to the unweighted complete bipartite graph (Fig. 3f).

In some cases, small changes in graph topology can dramatically alter the
fate of cooperation (Fig. 4). Stars do not support cooperation, but joining
two stars via their hubs allows cooperation for b/c > 5/2. If we modify a
star by linking pairs of leaves to obtain a “ceiling fan”, cooperation is favored
for b/c > 8. These examples show how targeted interventions in network
structure (“graph surgery”) can facilitate transitions to more cooperative
societies. Of interest is also a “dense cluster” of stars all connected via their
hubs which form a complete graph (Fig. 4f); for this structure the critical
benefit-to-cost ratio of 3/2 is less than the average degree, k̄ = 2.

To explore the evolutionary consequences of graph topology on a large
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Figure 4: Rescuing cooperation by graph surgery. a, The star does not
support cooperation; the critical benefit-to-cost ratio is infinite. b, Joining
two stars via their hubs gives (b/c)∗ = 5/2. c, Joining them via two leaves
gives (b/c)∗ = 3. d, A “ceiling fan” has (b/c)∗ = 8. e, A “wheel” has
(b/c)∗ = (429 + 90

√
5)/82. f, If we start with m stars and join their hubs in

a complete graph, the critical benefit-cost ratio is (3m− 1)/(2m− 2), which
becomes 3/2 for large m. All (b/c)∗ values reported here hold for many leaves.
Results for arbitrary sizes are given in Appendix K.2.
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Figure 5: Conditions for cooperation on 1.3 million random graphs.
Random graph models are Erdös-Renyi (ER), Small World (SW), Barabasi-
Albert [31] (BA), random recursive graph [35] (RR), Holme-Kim [34]
(HK), Klemm-Eguiliz [33] (KE), shifted-linear preferential attachment [36]
(Shifted), Forest Fire [37] (FF), and meta-networks [38] of BA graphs (Island
BA) and ER graphs (Island ER). Population size N varies from 100 to 150.
Parameter values are given in Appendix M. Values of (b/c)∗ were obtained by
solving Eq. (2) and substituting into Eq. (5). a, Scatter plot of (b/c)∗ versus
mean degree k̄. 71% have positive (b/c)∗ and therefore admit the possibility
of cooperation. All positive (b/c)∗ values are larger than k̄. Negative (b/c)∗

values indicate that spite (b < 0, c > 0) can be favored. b, Scatter plot of
(b/c)∗ versus k̄nn, the expected degree of a random neighbor of a randomly
chosen vertex, which has been proposed as an approximation to the critical
benefit-to-cost ratio on heterogeneous graphs [27]. Although this approxi-
mation is reasonable for many graphs, there is significant variation in (b/c)∗

for each value of k̄nn. The success of cooperation depends on features of the
graph topology beyond the summary statistics k̄ and k̄nn.
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Figure 6: Conditions for cooperation on 40000 large random graphs.
Size N varies from 300 to 1000. 104 graphs were generated for each of four
random graph models: Erdös-Renyi [39] (ER) with edge probability 0 <
p < 0.25, Klemm-Eguiluz [33] (KE) with linking number 3 ≤ m ≤ 5 and
deactivation parameter 0 < µ < 0.15, Holme-Kim [34] (HK) with linking
number 2 ≤ m ≤ 4 and triad formation parameter 0 < P < 0.15, and
a meta-network [38] of shifted-linear preferential attachment networks [36]
(Island BA) with 0 < pinter < 0.25; see Methods for details.
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Figure 7: The critical benefit-cost threshold for all graphs of size
four. There are six connected, unweighted graphs of size four. Of these,
only the path graph has positive (b/c)∗. Two others have infinite (b/c)∗ and
three have negative (b/c)∗. There are two connected, unweighted graphs of
size three (not shown): the path, which has (b/c)∗ = ∞, and the complete
graph (or triangle), which has (b/c)∗ = −2.
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Figure 8: The critical benefit-cost threshold for all graphs of size
five. There are 21 connected, unweighted graphs of size five. Exact values
are shown for those with (b/c)∗ positive and below 30. Of the (b/c)∗ values,
seven are positive, twelve are negative, and two are infinite.
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Figure 9: The critical benefit-cost threshold for all graphs of size six.
There are 112 connected, unweighted graphs of size six. Of these, 43 have
positive (b/c)∗, 65 have negative (b/c)∗, and four have (b/c)∗ =∞. Numerical
values are shown for those with (b/c)∗ positive and below 30. Significantly,
there are graphs with the same degree sequence (for example, 3, 2, 2, 1, 1, 1)
but different (b/c)∗. Of the 853 graphs of size seven (not shown), 400 have
positive (b/c)∗, 450 have negative (b/c)∗, and three have (b/c)∗ =∞. For all
graphs of size up to seven, all positive values of (b/c)∗ are greater than the
mean degree k̄.
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Figure 10: Results for empirical networks. The benefit-cost threshold (b/c)∗, or
equivalently the structure coefficient [28, 2] σ, gives the propensity of a population struc-
ture to support cooperative and/or Pareto-efficient behaviors. These values should be
interpreted in terms of specific behaviors occurring in a population, and they depend on
the network ontology (that is, the meaning of links). They can be used to facilitate com-
parisons across populations of similar species, or to predict consequences of changes in
population structure. a, Unweighted social network of frequent associations in bottlenose
dolphins (Tursiops spp.) [40]. b, Grooming interaction network in rhesus macaques
(Macaca mulatta), weighted by grooming frequency [41]. c, Weighted network of group
association in Grevy’s zebras (Equus grevyi) [42]. Preferred associations, which are sta-
tistically more frequent than random, are given weight 1. Other associations occurring
at least once are given weight ε � 1. d, Weighted network of group association in Asi-
atic wild asses (onagers) [42], with the same weighting scheme as for the zebra network.
For both zebra and wild ass, the unweighted networks, including every association ever
observed, are dense and behave like well-mixed populations. In contrast, the weighted
networks, which emphasize close ties, can promote cooperation. e, Table showing data
from panels a–d as well as a social network of family, self-reported friends, and coworkers
as of 1971 from the Framingham Heart Study [43, 44], a Facebook ego-network [45], and
the co-authorship network for the General Relativity and Quantum Cosmology category
of the arXiv preprint server [46]. Average degree is reported for unweighted graphs only;
for weighted graphs it is unclear which notion of degree is most relevant. Note that large
(b/c)∗ ratios, which correspond to σ values very close to one, do not mean that cooper-
ation is never favored. Rather, the implication is that the network behaves similarly to
a large well-mixed population, in which cooperation is favored for any 2 × 2 game with
a+ b > c+ d . The donation game does not satisfy this inequality, but other cooperative
interactions do [47, 48]. 15



scale, we calculated (b/c)∗ four four ensembles of graphs: (i) 1.3 million un-
weighted graphs of sizes 100 ≤ N ≤ 150, generated by ten random graph
models (Fig. 5), (ii) 40K unweighted graphs of sizes 300 ≤ N ≤ 1000 gen-
erated by four random graph models (Fig. 6), (iii) every unweighted graph
of size up to seven (Fig. 7–9), and (iv) seven empirical human and animal
social networks (Fig. 10). In general we find that, as the average degree, k̄,
increases, cooperation becomes increasingly difficult and eventually impos-
sible. However, there is considerable variance in (b/c)∗ for each value of k̄.
The success of cooperation is not determined by the average degree, or even
the entire degree sequence (Fig. 9).

So far we have discussed the donation game (3), but our theory extends to
any pairwise game interaction of the form (6). On any graph, the condition
for natural selection to favor strategy A over strategy B, in the sense that
ρA > ρB for weak selection, can be written [28] as σa + b > c + σd. Our
result implies that σ = (−t1 + t2 + t3)/(t1 + t2 − t3). Therefore, the key
quantity σ can be calculated for any graph by solving a system of linear
equations (Fig. 11). The value of σ quantifies the extent to which a graph
supports cooperation in a social dilemma, or the Pareto-efficient equilibrium
in a coordination game [28, 2].

Our model can be extended in various ways. Birth-Death updating [3]
can be studied. Total instead of average payoff can be used to compute repro-
ductive rates [25]. Different graphs can specify interaction and replacement
[49, 4, 6]. Mutation can be introduced [50, 6]. For each of these variations,
we obtain the exact critical benefit-to-cost ratios (and σ values) in terms of
coalescence times (Appendix J). Additionally, appendix L provides interpre-
tations of our results in terms of direct fitness and—in the special case of the
donation game (3)—inclusive fitness.

In summary, we report here the first analytic result describing how nat-
ural selection chooses between competing strategies on any graph for weak
selection. Our framework applies to strategic interactions among humans in
social networks, as well as ecological and evolutionary interactions among
simpler organisms in any kind of spatially structured population (Fig. 10).
Our results reveal which population structures promote certain behaviors,
such as cooperation. We find that cooperation flourishes most in the pres-
ence of strong pairwise ties, which is an intriguing mathematical argument for
the importance of stable partnerships in forming the backbone of cooperative
societies.
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Figure 11: Structure coefficients for 1.3 million random graphs. We
computed the structure coefficient [28] σ = [(b/c)∗ + 1]/[(b/c)∗ − 1] for the
same ensemble of random graphs as in Fig. 5 of the main text. Strategy A is
favored over strategy B under weak selection if σa+ b > c+ σd; see Eq. (6)
of Methods. a, Scatter plot of σ versus (k̄+ 1)/(k̄− 1), which is the σ-value
for a regular graph of the same mean degree k̄. b, Scatter plot of σ versus
(k̄nn + 1)/(k̄nn − 1), which is the σ-value one would expect if the condition
[27] b/c > k̄nn were exact. Here, k̄nn is the expected degree of a neighbor of
a randomly chosen vertex.
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A Model and notation

A.1 Graph

Population structure is represented by a weighted, connected graph G with
edge weights wij, i, j ∈ G. G is undirected: wji = wij for each i, j ∈ G.
Self-loops are allowed, and are represented by the weights wii. Self-loops
represent interaction with oneself and replacement by one’s own offspring.

We define the weighted degree of vertex i as wi =
∑

j∈Gwij. The total
sum of all edge weights (counting both directions for each pair of vertices) is
denoted W :

W =
∑
i,j∈G

wij =
∑
i∈G

wi.

A.2 Random walks

We will make use of random walks on G in both discrete and continuous
time. For a random walk on G, steps are taken with probability proportional
to edge weight; thus the probability of a step from i to j is pij = wij/wi.
The probability that an n-step walk from vertex i terminates at vertex j is
denoted p

(n)
ij .

There is a unique stationary distribution {πi}i∈G for random walks on G,
in which vertex i has stationary probability πi = wi/W . This means that

for each i, j ∈ G, limn→∞ p
(n)
ij = πj. Random walks have the reversibility

property that for each i, j ∈ G, πip
(n)
ij = πjp

(n)
ji .

We will use the following shorthand: for any function gi on G, we define

g
(n)
i =

∑
j∈G

p
(n)
ij gj.

18



That is, g
(n)
i is the expected value of gj where j is the terminus of an n-step

random walk from i. For any function hij on G×G, we define

h(n) =
∑
i,j∈G

πip
(n)
ij hij.

In words, h(n) is the expected value of hij where i and j are the two ends of
an n-step random walk on G started from the stationary distribution.

A.3 Evolutionary Markov chain

For most of this Supplement we consider a continuous-time version of the
Death-Birth (DB) process. The translation from discrete to continuous time
does not affect fixation probabilities or other metrics for evolutionary success.

The state of the process is represented as a binary vector s = (si)i∈G ∈
{0, 1}G, where 0 and 1 correspond to the two types and si ∈ {0, 1} denotes
the type of vertex i.

Evolution is modeled as a continuous-time Markov chain (S(t))t≥0 on
{0, 1}G, which we call the evolutionary Markov chain. The dynamics of the
evolutionary Markov chain are described in the following subsections.

A.4 Payoff and reproductive rate

The edge-weighted average payoff to vertex i in state s is denoted fi(s). We
first consider the general game

(A B

A a b
B c d

)
, (6)

Letting 1 correspond to A and 0 to B, we have

fi(s) = asis
(1)
i + bsi

(
1− s(1)i

)
+ c(1− si)s(1)i + d(1− si)

(
1− s(1)i

)
. (7)

For the donation game ( C D

C b− c −c
D b 0

)
, (8)
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letting 1 correspond to C and 0 to D, Eq. (7) reduces to

fi(s) = −csi + b
∑
j∈G

pijsj. (9)

The reproductive rate of vertex i in state s is Fi(s) = 1 + δfi(s), where
δ > 0 quantifies the strength of selection.

A.5 Transitions

State transitions in the evolutionary Markov chain occur via replacement
events, in which the occupant of one vertex is replaced by the offspring of
another. We denote by i → j the event that the occupant of j ∈ G is
replaced by the offspring of i ∈ G. Replacement events occur as Poisson
processes, with rates depending on the state s. The Death-Birth process is
defined using the rates

Rate[i→ j](s) =
wijFi(s)∑
k∈GwkjFk(s)

. (10)

According to Eq. (10), each vertex is replaced at overall rate 1. The con-
ditional probability that i reproduces, given that vertex j is replaced, is
proportional to wijFi(s). In this way, Eq. (10) defines a continuous-time
analogue of the DB process described in the main text.

If the replacement event i→ j occurs in state s, and sj 6= si, then a state
transition occurs and the new state s′ is defined by s′j = si and s′k = sk for all
k 6= j. (That is, vertex j inherits the type of vertex i, and all other vertices
retain their type.) If sj = si, then no transition occurs and s′ = s.

B Fixation probability under weak selection

The evolutionary Markov chain has two absorbing states: the state 1 for
which si = 1 for all i ∈ G, and the state 0 for which si = 0 for all i ∈ G.
These states correspond to the fixation of types B and A, respectively. All
other states of the evolutionary Markov chain are transient [51, Theorem
2]. Thus from any given initial state, the evolutionary Markov chain will
eventually become absorbed in one of these two fixation states. We denote
by ρs0 the fixation probability of type A from state s0 ∈ {0, 1}G—that is,
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the probability that, from initial state s0, the evolutionary Markov chain
becomes absorbed in state 1.

We are interested in the behavior of these fixation probabilities under
weak selection—that is, to first order in δ as δ → 0+. Chen [5] derived a weak-
selection perturbation formula for ρs0 , which applies to the birth-death and
death-birth processes considered here. To provide intuition for this formula,
we give a heuristic derivation here, referring to [5] for mathematical details.

Our analysis focuses on the degree-weighted frequency of type A:

ŝ =
∑
i∈G

πisi.

The degree weighted frequency at time t is represented by the random vari-
able

Ŝ(t) =
∑
i∈G

πiSi(t).

The main idea is that Ŝ(t) is a Martingale for the neutral process (δ = 0); and
that weak selection can be understood as a perturbation of this Martingale.
The weighting πi of vertex i can be understood as its reproductive value
[52, 53]. Similar arguments have been used in other contexts [54, 55, 56, 57,
58, 59].

Consider the evolutionary Markov chain with arbitrary initial state S(0) =
s0 ∈ {0, 1}G. By the Fundamental Theorem of Calculus, the expected degree-
weighted frequency Es0 [Ŝ(T )] at time T > 0 satisfies

Es0 [Ŝ(T )] = ŝ0 +

∫ T

0

d

dt
Es0 [Ŝ(t)] dt. (11)

In the limit T → ∞, the expected degree-weighted frequency of type 1 be-
comes equal to its fixation probability; therefore we have

ρs0 = ŝ0 +

∫ ∞
0

d

dt
Es0 [Ŝ(t)] dt. (12)

We now define a state function D(s) giving the expected instantaneous
rate of change in the degree-weighted frequency of type A from state s. D(s)
is defined by the relation

E
[
Ŝ(t+ ε)− Ŝ(t)

∣∣Ŝ(t) = s
]

= D(s)ε+ o(ε) (ε→ 0+). (13)
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The exact form of D(s) for DB updating is derived in Section C. Substituting
in Eq. (12), we obtain

ρs0 = ŝ0 +

∫ ∞
0

Es0 [D(S(t))] dt (14)

We now consider the case δ = 0, which represents neutral drift (no selec-
tion). We indicate neutral drift by the superscript ◦. We will show in Section
C that, under DB updating, D◦(s) = 0 for all s ∈ {0, 1}G, meaning that
Ŝ(t) is a Martingale for neutral drift. It follows from Eq. (14) that ρ◦s0 = ŝ0;
that is, the fixation probability of type A, under neutral drift, is equal to its
initial degree-weighted frequency (i.e., its initial reproductive value [52, 53]).
In particular, a neutral mutation arising at vertex i has fixation probability
πi.

We now turn to weak selection; that is, we consider asymptotic expansions
as δ → 0+. Since D◦(s) = 0, we have

D(s) = δD′(s) +O(δ2). (15)

This allows us to expand the integrand in Eq. (12):

Es0 [D(S(t))] =
∑
s

Ps0 [S(t) = s]D(s)

= δ
∑
s

P◦s0 [S(t) = s]D′(s) +O(δ2)

= δ E◦s0 [D
′(S(t))] +O(δ2). (16)

If we could freely interchange the expansion (16) with the integral in
Eq. (12), we would have

ρs0 = ŝ0 + δ

∫ ∞
0

E◦s0 [D
′(S(t))] dt+O(δ2). (17)

A formal justification for this interchange and proof of Eq. (17), for a class
of models that includes the DB process considered here, is given in Theorem
3.8 of Chen [5].

For convenience, we introduce the following notation: for any function of
the state g(s) and any initial state s0, we define

〈g〉◦s0 =

∫ ∞
0

E◦s0 [g(S(t))] dt. (18)
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Thus Eq. (17) can be rewritten as

ρs0 = ŝ0 + δ〈D′〉◦s0 +O(δ2). (19)

Of particular biological importance is case that type 1 initially occupies
only a single vertex. In biological terms, a single indivdual of a new type
has appeared in the population, e.g. by mutation or migration. We therefore
focus in particular on initial states s0 with exactly one vertex of type 1. Let
u be the probability distribution over states that assigns probability 1/N
to all states s with exactly one vertex of type 1, and probability zero to all
other states. (That is, we suppose that the new type is equally likely to
arise at each vertex. This is a natural assumption for DB updating, but
not necessarily for other update rules [51, 58, 19].) We use the subscript
u to denote the expected value of a quantity when the initial state of the
evolutionary Markov chain is sampled from u.

We define the overall fixation probability of type A as ρA = ρu, the
probability that A becomes fixed when starting from a single vertex chosen
with uniform probability. Taking the expectation of Eq. (19) with s0 sampled
from u, we have

ρA =
1

N
+ δ〈D′〉◦u +O(δ2). (20)

C Instantaneous change under weak selection

Here we compute the expected instantaneous rate of degree-weighted fre-
quency change D(s) from a state s, under DB updating and weak selection.
Note that if the event i→ j occurs (that is, if j is replaced by the offspring of
i), the resulting change in ŝ is πj(si − sj). Thus the expected instantaneous
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rate of degree-weighted frequency change is given by

D(s) =
∑
j∈G

πj

(
−sj +

∑
i∈G

si
wijFi(s)∑
k∈GwkjFk(s)

)

=
∑
i∈G

si

(
−πi +

∑
j∈G

πj
wijFi(s)∑
k∈GwkjFk(s)

)

= δ
∑
i∈G

si

(
πifi(s)− πi

∑
k∈G

p
(2)
ik fk(s)

)
+O(δ2)

= δ
∑
i∈G

πisi

(
f
(0)
i (s)− f (2)

i (s)
)

+O(δ2).

This shows that D◦(s) = 0 for all states s (thus Ŝ(t) is a Martingale as
claimed earlier), and

D′(s) =
∑
i∈G

πisi

(
f
(0)
i (s)− f (2)

i (s)
)
. (21)

For the special case of the donation game (8), we have

D′(s) =
∑
i∈G

πisi

(
−c
(
s
(0)
i − s

(2)
i

)
+ b
(
s
(1)
i − s

(3)
i

))
. (22)

Applying Eq. (20), the fixation probability of cooperation is given by

ρC =
1

N
+ δ

∑
i∈G

πi

(
−c
〈
si

(
s
(0)
i − s

(2)
i

)〉◦
u

+ b
〈
si

(
s
(1)
i − s

(3)
i

)〉◦
u

)
+O(δ2).

(23)
In the following section we will show how the quantities in Eq. (23) can be
computed using coalescence times.

D Coalescing random walks

A coalescing random walk (CRW) [11, 23] is a collection of random walks
on G that step independently until two walks meet (or “coalesce”), after
which these two step together. This process models the tracing of ancestors
backwards in time. We will consider both continuous-time and discrete-
time versions of the coalescing random walk, starting in either case with two
walkers.
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D.1 Continuous-time and discrete-time CRWs

In the continuous-time version, we consider a pair of walkers (X(t), Y (t))t≥0
with arbitrary initial vertices X(0) = i and Y (0) = j. Each steps at Poisson
rate 1, corresponding to the rate at which sites are replaced in the continuous-
time Death-Birth process. X(t) and Y (t) step independently until their time
of coalescence (first meeting), which is denoted Tcoal. After this time, X(t)
and Y (t) step together, so that X(t) = Y (t) for all t > Tcoal. Probabilities
and expectations under the continuous-time coalescing random walk from i
and j are denoted PCRW

(i,j) [ ] and ECRW
(i,j) [ ] respectively.

In the discrete-time version, we consider a pair of walkers (X(t), Y (t))∞t=0,
again with arbitrary initial vertices X(0) = i and Y (0) = j. At each time
step t = 0, 1, . . ., if X(t) 6= Y (t), one of the two walkers is chosen, with equal
probability, to take a random walk step. If X(t) = Y (t), then both make
the same random walk step. The coalescence time Tcoal is defined as the first
time t for which X(t) = Y (t). We use tildes to indicate the discrete-time pro-
cess, so that probabilities and expectations under the discrete-time coalescing

random walk from i and j are denoted P̃CRW

(i,j) [ ] and ẼCRW

(i,j) [ ] respectively.
We note that there is a difference in time-scales for the discrete-time and

continuous-time CRWs. In the continuous-time CRW, two steps occur per
unit time on average (since each walker steps at rate 1). In the discrete-time
CRW, one step in total is taken per unit time.

D.2 Coalescence times

We denote the expected coalescence time from i and j in the discrete-time

coalescing random walk by τij = ẼCRW

(i,j) [Tcoal]. Because coalescence times
can be understood as hitting times to the diagonal of G × G, and because
expected hitting times are preserved under transitions between discrete and
continuous time [60, §2.5.3], we have τij = 2ECRW

(i,j) [Tcoal]. (The factor of two
is due to the difference in time-scales.)

Now suppose that i and j are the two ends of a random walk of length n
started from the stationary distribution. Taking the expectation of τij over
all such choices, we obtain the quantity τ (n), which is denoted denoted tn in
the main text:

tn = τ (n) =
∑
i,j∈G

πip
(n)
ij τij. (24)
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D.3 Assortment and coalescence

Coalescing random walks represent the ancestry of a set of individuals traced
backwards in time, and can therefore be used to study assortment. Math-
ematically, coalescing random walks are dual to the neutral (δ = 0) case of
our model. This duality implies that, for any initial state s0 and any pair of
types x, y ∈ {0, 1},

P◦s0
[
si(t) = x, sj(t) = y

]
= PCRW

(i,j)

[
(s0)X(t) = x, (s0)Y (t) = y

]
. (25)

In biological language, this relation says that the current occupants of vertices
i and j have the same types as their corresponding ancestors in the initial
state.

We first apply this result to an initial state s0 that has a single vertex
k of type 1 and all others of type 0: (s0)k = 1 and (s0)` = 0 for all ` 6= k.
Consider the random variable Si(t)Sj(t), which equals one if vertices i and j
both have type 1 at time t and zero otherwise. Applying the duality relation
(25), we find

E◦s0
[
Si(t)Sj(t)

]
= PCRW

(i,j) [X(t) = Y (t) = k]

= PCRW
(i,j) [Tcoal < t,X(t) = k] . (26)

That is, vertices i and j both have type 1 at time t if and only if they are both
descended from the original vertex k of type 1; in particular, this requires
that the lineages of these vertices have coalesced before time t in the past.

We next consider the initial state sampled from probability distribution
u (defined in Section B), which corresponds to setting a randomly chosen
vertex to type 1 (with uniform probability) and all others vertices to type 0.
Applying Eq. (26), we have

E◦u
[
Si(t)Sj(t)

]
=

1

N

∑
k∈G

PCRW
(i,j) [Tcoal < t,X(t) = k]

=
1

N
PCRW
(i,j) [Tcoal < t] . (27)

The second equality follows from the law of total probability, since we have
summed over all possible values of X(t).
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We now move from a particular time t to a time-average, using the oper-
ator 〈 〉◦u. We calculate:〈

1

N
− sisj

〉◦
u

=

∫ ∞
0

(
1

N
− E◦u

[
Si(t)Sj(t)

])
dt

=
1

N

∫ ∞
0

(
1− PCRW

(i,j) [Tcoal < t]
)
dt

=
1

N
ECRW

(i,j) [Tcoal]

=
τij
2N

. (28)

(The factor of 2 arises from the translation from continuous time to discrete
time.) In particular, this entails that for n1, n2 ≥ 0〈∑

i∈G

πisi

(
s
(n1)
i − s(n2)

i

)〉◦
u

=
τ (n2) − τ (n1)

2N
. (29)

D.4 Recurrence relations for coalescence times

The coalescence times τij satisfy the recurrence relation

τij =

{
0 i = j

1 + 1
2

∑
k∈G (pikτjk + pjkτik) i 6= j.

(30)

Eq. (30) is a system of
(
N
2

)
linear equations. The connectedness of G implies

that this system has a unique solution. All coalescence times τij can be
therefore obtained in polynomial time (see Section M for a discussion of
algorithms and their efficiency).

We will also make use of the concept of remeeting times. To define these
we introduce a process called the remeeting random walk (RRW), which con-
sists of two random walks (X(t), Y (t)) both starting at the same vertex i ∈ G:
X(0) = Y (0) = i. These random walks step independently until their time
Tremeet of first remeeting, after which they step together. As in the CRW, we
can consider this process in either continuous time (with each walk proceed-
ing at rate 1) or discrete time (with one of the two walkers stepping at each

timestep). We let τ+ii = ẼRRW

i [Tremeet] denote the expected remeeting time in
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the discrete-time RRW. (τ+ii is shortened to τi in the main text.) A simple
recurrence argument shows that

τ+ii = 1 +
∑
j∈G

pijτij (31)

To derive a recurrence relation for the τ (n), we expand according to
Eq. (30):

τ (n) =
∑
i,j∈G

πip
(n)
ij τij

=
∑
i,j∈G
i 6=j

πip
(n)
ij

(
1 +

1

2

∑
k∈G

(pikτjk + pjkτik)

)

=
∑
i,j∈G

πip
(n)
ij

(
1 +

1

2

∑
k∈G

(pikτjk + pjkτik)

)
−
∑
i∈G

πip
(n)
ii

(
1 +

∑
k∈G

pikτik

)

=
∑
i,j∈G

πip
(n)
ij +

1

2

∑
i,j,k∈G

πjp
(n)
ji pikτjk +

1

2

∑
i,j,k∈G

πip
(n)
ij pjkτik −

∑
i∈G

πip
(n)
ii τ

+
ii

=
∑
i∈G

πi +
1

2

∑
j,k∈G

πjp
(n+1)
jk τjk +

1

2

∑
i,k∈G

πip
(n+1)
ik τik −

∑
i∈G

πip
(n)
ii τ

+
ii

= 1 + τ (n+1) −
∑
i∈G

πip
(n)
ii τ

+
ii .

We therefore have the recurrence relation

τ (n+1) = τ (n) +
∑
i∈G

πip
(n)
ii τ

+
ii − 1. (32)

In particular, we have

τ (0) = 0 (33)

τ (1) =
∑
i∈G

πiτ
+
ii − 1 (34)

τ (2) =
∑
i∈G

πiτ
+
ii

(
1 + p

(1)
ii

)
− 2 (35)

τ (3) =
∑
i∈G

πiτ
+
ii

(
1 + p

(1)
ii + p

(2)
ii

)
− 3. (36)
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We note that if G has no self-loops then p
(1)
ii = 0 for all i ∈ G.

Letting n → ∞ in Eq. (32), (using Cesàro means to get convergence in
the case that random walks on G are periodic) we obtain the identity∑

i∈G

π2
i τ

+
ii = 1. (37)

Eq. (37) can also be obtained by applying Kac’s formula [60, Corollary 2.24]
to the random walk on G×G.

D.5 Time spent in different strategies

The probability that i and j employ different strategies at time t, under the
neutral DB process with the uniform distribution u over initial placements
of the mutant, can be calculated as

P◦u[Si(t) 6= Sj(t)] =
1

N

∑
k∈G

PCRW
(i,j) [Tcoal > t ∧ (X(t) = k ∨ Y (t) = k)]

=
1

N

∑
k∈G

PCRW
(i,j) [Tcoal > t,X(t) = k]

+
1

N

∑
k∈G

PCRW
(i,j) [Tcoal > t, Y (t) = k]

=
2

N
PCRW
(i,j) [Tcoal > t].

The total expected time that i and j spend as different strategies can be
calculated as∫ ∞

0

P◦u[Si(t) 6= Sj(t)] dt =
2

N

∫ ∞
0

PCRW
(i,j) [Tcoal > t] dt

=
2

N
ECRW

(i,j) [Tcoal]

=
τij
N
.

To connect to results described in the main text, we note that one unit of
time in the continuous-time DB process corresponds, on expectation, to N
time-steps of the discrete-time DB process described in the main text. Thus
τij is equal to the time that i and j employ different strategies in the neutral
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discrete-time DB process. Let τabs denote the expected time until absorption
(mutant fixation or extinction) in the neutral discrete-time DB process. (τabs
is denoted T in the main text.) Then τabs − τij is the expected time that i
and j employ the same strategy, from mutant appearance until absorption,
in the neutral discrete-time DB process.

E Conditions for success

E.1 General case

Combining Eqs. (23) and (29), we obtain the fixation probability of cooper-
ators under weak selection:

ρC =
1

N
+

δ

2N

(
− cτ (2) + b

(
τ (3) − τ (1)

) )
+O(δ2). (38)

Cooperation is favored under weak selection, in the sense that ρC > 1/N to
first order in δ, if and only if

−cτ (2) + b
(
τ (3) − τ (1)

)
> 0. (39)

This is equivalent to Condition (1) and Eq. (2) of the main text. We show
in Section F that this is also the condition for ρD < 1/N .

Using Eqs. (33)–(36), we can rewrite Condition (39) as

−c

(∑
i∈G

πiτ
+
ii

(
1 + p

(1)
ii

)
− 2

)
+ b

(∑
i∈G

πiτ
+
ii

(
p
(1)
ii + p

(2)
ii

)
− 2

)
> 0. (40)

E.2 Asymptotic formula

Here we derive Eq. (3) of the main text, (b/c)∗ = 1/p̄, which is an asymptotic
expression that applies in a particular limit. Consider a graph G with no self-
loops. Then p

(1)
ii = 0 and we shorten p

(2)
ii to pi. Substituting in Condition

(40), we obtain a critical benefit-cost ratio of(
b

c

)∗
=

∑
i∈G πiτ

+
ii − 2∑

i∈G πiτ
+
ii pi − 2

. (41)

From Eq. (37) we have

1 =
∑
i∈G

π2
i τ

+
ii =

∑
i∈G

(
πi
pi

)
πiτ

+
ii pi ≤ max

i∈G

(
πi
pi

)∑
i∈G

πiτ
+
ii pi.
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This implies that ∑
i∈G

πiτ
+
ii pi ≥

(
max
i∈G

(
πi
pi

))−1
. (42)

Now consider an infinite sequence of graphs {GN}∞N=N0
for which

limN→∞maxi∈GN
(πi/pi) = 0. (This is the “locality property” discussed in

the main text.) For such a family, Eq. (42) implies that the sums in the
numerator and denominator of Eq. (41) diverge to infinity, resulting in

lim
N→∞

(b/c)∗ = lim
N→∞

1/p̄, (43)

where p̄ =
(∑

i∈GN
πiτ

+
ii pi
)
/
(∑

i∈GN
πiτ

+
ii

)
is a weighted average of the pi

with weights πiτ
+
ii .

E.3 Weighted regular graphs

G is a weighted regular graph if each vertex has the same distribution of
weights to its neighbors. This means that the set {wij}j∈G of outgoing
weights is the same for each i ∈ G. In this case, πi = 1/N for each i ∈ G,
and Eq. (37) implies that τ+ii = N for each i ∈ G. The fixation probability
of cooperators (38) becomes

ρC =
1

N
+

δ

2N

(
−c
(
N +Np(1) − 2

)
+b
(
Np(1) +Np(2) − 2

) )
+O(δ2). (44)

Above, we have dropped the subscripts of p
(1)
ii and p

(2)
ii because they are the

same at each vertex.
In the case that G has no self-loops, p(1) = 0 and p(2) = 1/κ, where

κ =
(∑

j∈G p
2
ij

)−1
is the Simpson degree of G [15, 6]. The fixation probability

(44) simplifies to

ρC =
1

N
+

δ

2N

(
− c (N − 2) + b (N/κ− 2)

)
+O(δ2),

and the critical benefit-cost ratio is(
b

c

)∗
=

N − 2

N/κ− 2
. (45)

Eq. (45) generalizes previous results for graphs with transitive symmetry
[4, 6] and for unweighted regular graphs [5]. In the unweighted case, the
Simpson degree κ is equal to the topological degree k.
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F Starting from a single defector

Suppose now that we start from a single defector (again placed uniformly at
random). The game matrix can be written from the defector’s point of view
as ( D C

D 0 b
C −c b− c

)
. (46)

From Eq. (21) we see that D′(s)—the first-order term of the expected
instantaneous rate of degree-weighted frequency change—is unaffected by the
addition of a constant to the payoff matrix. Thus we can, without affecting
weak-selection fixation probability, add −b + c to each entry of the matrix
(46), resulting in the payoff matrix

( D C

D −b+ c c
C −b 0

)
.

This is the original payoff matrix (8) with the roles of C and D reversed
and with b and c replaced by their opposites. The fixation probability ρD is
therefore obtained by replacing b and c by their opposites in Eq. (38):

ρD =
1

N
+

δ

2N

(
cτ (2) − b

(
τ (3) − τ (1)

) )
+O(δ2).

In particular, this shows that Condition (39) implies ρC > 1/N > ρD, and
the opposite inequality in Condition (39) implies ρC < 1/N < ρD.

G Arbitrary 2× 2 games

We now consider arbitrary 2× 2 matrix games of the form (6). The general
condition for success follows from the Structure Coefficient Theorem [28],
which states that the condition for A to be favored over B (in the sense
ρA > ρB under weak selection) takes the form σa + b > c + σd for some
structure coefficient σ that is independent of the game. Because of this
independence, we can obtain σ from our analysis of the simplified Prisoner’s
Dilemma (8):

σ =
(b/c)∗ + 1

(b/c)∗ − 1
. (47)
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Combining with Condition (39), we obtain

σ =
−τ (1) + τ (2) + τ (3)

τ (1) + τ (2) − τ (3)
, (48)

as stated in the main text.
We note that the condition σa + b > c + σd tells us that ρA > ρB,

but does not, in general, tell us how these fixation probabilities compare
with the neutral fixation probability 1/N [61]. However, for games that
satisfy a + d = b + c (a property known as “equal gains from switching”)
σa+ b > c+ σd implies ρA > 1/N > ρB.

H Bounds on (b/c)∗ and σ

Here we prove the bounds |(b/c)∗| > 1 and σ > 0. These will follow from the
inequalities τ (1) + τ (2) ≥ τ (3) and τ (2) + τ (3) ≥ τ (1). We begin with a lemma:

Lemma 1. Let G be a connected weighted graph (undirected, possibly with
self-loops). For each vertex i of G,

1 + p
(2)
ii ≥ 4πi. (49)

Equality occurs if and only if all edges not adjcacent to i have weight zero.

Proof. Let vertex i ∈ G be arbitrary and fixed. Our proof uses a variational
approach: we hold constant the weights of the edges wij adjacent to i, but
allow the weights of edges not adjacent to i to vary. We will also allow
the edges not adjacent to i to be directed—that is, wjk may differ from wkj
for j, k 6= i—while maintaining that the edges adjacent to i be undirected
(wij = wji for all j).

In this generalized setting, we denote in-degrees and out-degrees as fol-
lows:

win
j =

∑
k∈G

wkj, wout
j =

∑
k∈G

wjk.

The total edge weight of G is again denoted W :

W =
∑
j,k∈G

wjk =
∑
j∈G

win
j =

∑
j∈G

wout
j . (50)
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For vertex i we have win
i = wout

i = wi. The πi in (49) is to be understood as
wi/W . It is useful to observe the identity

W = 2wi + 2
∑
h,k 6=i

whk. (51)

We define the function

F

(
(whk)h,k 6=i

h6=k

)
= wi +

∑
j∈G

w2
ij

wout
j

− 4
w2
i

W
. (52)

Note that if all edges not adjacent to i have weight zero (i.e. whk = 0 for all
h, k 6= i), then wout

j = wji = wij for each j 6= i and wi = W/2, whereupon
substituting in (52) gives F = 0. We will prove that this is the minimum
value of F . Dividing by wi will then yield

1 +
∑
j∈G

w2
ij

wiwout
j

− 4
wi
W
≥ 0,

which is equivalent to the desired inequality (49).
To prove that zero is the minimum value of F , we first observe from

(51) that if
∑

h,k 6=iwhk ≥ wi then wi ≤ W/4. In this case, writing the first
and third terms of F as wi(1 − 4wi/W ), we see that F > 0. Therefore, to
minimize F , it suffices to restrict the domain of F to the simplex

∆ =

{
(whk)h,k 6=i

∣∣∣∣∣ whk ≥ 0,
∑
h,k 6=i

whk < wi

}
.

We now look for critical points of F on the interior of ∆, as well as critical
points of F restricted to the one of the faces of ∆ where one or more of the
whk are zero. Such critical points of F have the property that for all h, k 6= i,
either whk = 0 or ∂F

∂whk
= 0. In the latter case, we have

0 =
∂F

∂whk
= − w2

ih

(wout
h )2

+ 4
w2
i

W 2
, (53)

which implies that
wih
wout
h

= 2
wi
W
. (54)
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We note in particular that Eq. (54) is independent of k. This implies a
stronger characterization of potential minimizing points of F : They must
satisfy the property that for all h 6= i, either Eq. (54) holds or else whk = 0
for all k 6= i. Equivalently, for potential minimizing points of F , the vertices
h other than i can be partitioned into two disjoint subsets, labeled V1 and
V2, such that wout

h = wih for h ∈ V1 and wout
h = (W/2wi)wih for h ∈ V2.

We now apply Eq. (50):

W = wi +
∑
h∈V1

wout
h +

∑
h∈V2

wout
h

= wi +
∑
h∈V1

wih +
W

2wi

∑
h∈V2

wih

= 2wi +

(
W

2wi
− 1

)∑
h∈V2

wih.

Rearranging algebraically, we obtain(
2wi −

∑
h∈V2

wih

)
(W − 2wi) = 0.

The first factor on the left-hand side is necessarily positive; therefore all
potential minimizing points of F satisfy wi = W/2. In this case, all edges
not adjacent to i have weight zero, which we have already shown implies that
F = 0. Thus F ≥ 0 with equality if and only if all edges not adjacent to i
have weight zero. Dividing Eq. (52) by wi completes the proof.

Positivity of the numerator and the denominator of σ in Eq. (48) for
N ≥ 3 follows from the above lemma:

Theorem 1. For any connected weighted graph G, the meeting times τ (1),
τ (2), and τ (3) satisfy

(a) τ (1) + τ (2) ≥ τ (3),

(b) τ (2) + τ (3) ≥ τ (1),

(c) τ (1) + τ (3) ≥ τ (2) + 2.

In (a) and (b), equality occurs if and only if G has two vertices and no
self-loops. In (c), equality occurs if and only if G has two vertices.
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Proof. For (a) we use Eq. (34)–(36):

τ (3) − τ (1) =
∑
i∈G

πiτ
+
ii

(
p
(1)
ii + p

(2)
ii

)
− 2

≤
∑
i∈G

πiτ
+
ii

(
p
(1)
ii + 1

)
− 2

= τ (2).

Equality occurs if and only if p
(2)
ii = 1 for all i, which is only possible when

G has two vertices and no self-loops.
For (b) and (c), we combine Eqs. (36) and (37) with Lemma 1:

τ (3) =
∑
i∈G

πiτ
+
ii

(
1 + p

(1)
ii + p

(2)
ii

)
− 3

≥
∑
i∈G

πiτ
+
ii

(
p
(1)
ii + 4πi

)
− 3

=
∑
i∈G

πiτ
+
ii p

(1)
ii + 1. (55)

Equality in (55) attains if and only if when 1 + p
(2)
ii = 4πi for all vertices i

of G. By Lemma 1, this means that each vertex i has the property that all
edges not adjacent to i have weight 0. The only connected graphs with this
property are those of size two.

Inequality (c) is now obtained by using Eqs. (34) and (35) to rewrite the
last line of (55) as τ (2)− τ (1) + 2. For (b), we rewrite the last line of Eq. (55)

as τ (1) − τ (2) + 2
∑

i∈G πiτ
+
ii p

(1)
ii , which is greater than or equal to τ (1) − τ (2)

with equality if and only if G has no self-loops.

We now turn to the bounds on (b/c)∗ and σ.

Corollary 1. For any graph of size N ≥ 3, we have the bounds σ > 0 and
|(b/c)∗| > 1. For graphs of size N = 2, ρA = ρB = 1/2 regardless of the game
(6); thus both (b/c)∗ and σ are undefined.

Proof. We begin with the case N ≥ 3, for which the inequalities in Theorem
1 are strict. Inequalities (b) and (a) assert that the numerator and denomi-
nator, respectively, of Eq. (48) for σ are positive, and therefore σ > 0. The
bound |(b/c)∗| > 1 can be obtained by writing(

b

c

)∗
=
σ + 1

σ − 1
,
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and noting that the right-hand side has absolute value greater than 1 for
σ > 0.

For the case N = 2, we observe that, from an initial state with one A
and one B, fixation is determined by the first death event. Whichever type is
chosen for death, the other type becomes fixed, regardless of the game. Thus
(b/c)∗ and σ are undefined.

Note that (b/c)∗ can come arbitrarily close to 1 (equivalently, σ can be
arbitrarily large), as in Fig. 3c of the main text. It is not immediately clear
whether (b/c)∗ can come arbitrarily close to -1 (equivalently, whether σ can
be arbitrarily close to 0).

I Arbitrary mutation rates

Here we relax the assumption that offspring always inherit the type of the
parent. We introduce mutation of arbitrary probability 0 ≤ u ≤ 1 per
reproduction. With probability 1−u, a new offspring inherits the type of the
parent. Otherwise a mutation occurs, which is equally likely to result in either
type. So, for example, the offspring of a type A individual has probability
1 − u of inheriting type A, probability u/2 of mutating but remaining type
A, and probability u/2 of mutating to type B.

For u > 0 there is a unique stationary distribution over states of the
evolutionary process, which we call the mutation-selection stationary distri-
bution or MSS distribution [51, 6]. We use EMSS to denote the expectation
of a quantity under the MSS distribution, and E◦MSS to denote the same
expectation under neutral drift (δ = 0).

Following Tarnita and Taylor [58], we say that type A is favored by se-
lection if EMSS[x̂] > 1

2
; that is, if A has greater degree-weighted abundance

than B in the MSS distribution. Eq. (B.3) of Tarnita and Taylor [58] implies
that for weak selection and DB updating, A is favored if and only if

E◦MSS[D′] > 0. (56)

Evaluating E◦MSS[D′] requires analyzing the assortment of types under the
MSS distribution. This can be accomplished using the method of identity-
by-descent [62, 56, 4]. Two individuals are identical by descent (IBD) if no
mutation separates them from their common ancestor. We let qij denote the
stationary probability that the occupants of i and j are IBD to each other.
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These IBD probabilities can be rigorously defined using the notion of the
IBD-enriched Markov chain [6]. IBD probabilities on an arbitrary weighted,
connected graph G can be obtained as the unique solution to the system of
equations [6]:

qij =

{
1 i = j
1−u
2

∑
k∈G(pikqjk + pjkqik) i 6= j.

(57)

By generalizing Lemma 3 of Allen & Nowak [6], one can use IBD probabilities
to calculate assortment under the neutral MSS distribution:

E◦MSS [sisj] =
1 + qij

4
. (58)

For the donation game (8), combining Eqs. (22), (56), and (58), we obtain
that cooperation is favored under weak selection if and only if

−c
(
1− q(2)

)
+ b
(
q(1) − q(3)

)
> 0. (59)

Above, according to our convention, we have set q(n) =
∑

i,j∈G πip
(n)
ij qij.

For an arbitrary game of the form (6), the Structure Coefficient Theorem
[28] implies that A is favored under weak selection if and only if σa+b > c+σd
where

σ =
1 + q(1) − q(2) − q(3)

1− q(1) − q(2) + q(3)
.

This result generalizes Theorem 15 of Allen & Nowak [6] to arbitrary weighted
graphs.

To connect Condition (59) to our main result (39), we apply an estab-
lished connection between coalescence times and identity-by-descent proba-
bilities [63, 59]. Since each step in the discrete-time coalescing random walk
corresponds to a replacement, and mutations occur with probability u per
replacement, the IBD probability qij has the low-mutation expansion

qij = ẼCRW

(i,j)

[
(1− u)Tcoal

]
= 1− uτij +O(u2) (u→ 0). (60)

Eq. (60) can also be obtained directly by comparing Eq. (57) for qij with
Eq. (30) for τij. The equivalence of Conditions (39) and (59) in the low-
mutation limit (u→ 0) follows directly from Eq. (60).
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J Variations on the model

Here we consider three variations on the model: using accumulated rather
than averaged payoffs, using different interaction and replacement graphs,
and using Birth-Death rather than Death-Birth updating. In each case we
obtain the exact condition for success in terms of coalescence times. Al-
though we do not explicitly combine these variations (e.g. Birth-Death up-
dating with accumulated payoffs), such combinations can be analyzed using
straightforward combinations of the methods described here.

J.1 Accumulated payoffs

Accumulated payoffs means that the payoffs to vertex i from its neighbors are
multiplied by the corresponding edge weights and summed, without normal-
ization. For the simplified Prisoners’ Dilemma (8), the accumulated payoff
to vertex i in state s is given by

fi(s) = wi

(
−csi + bs

(1)
i

)
= Wπi

(
−csi + bs

(1)
i

)
.

To derive (b/c)∗ for accumulated payoffs, we calculate D′(s), the first-
order term in the instantaneous rate of change in ŝ from state s, starting
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with Eq. (21):

D′(s) =
∑
i∈G

πisi

(
f
(0)
i (s)− f (2)

i (s)
)

= W
∑
i∈G

πisi

[
πi

(
−csi + bs

(1)
i

)
−
∑
j∈G

p
(2)
ij πj

(
−csj + bs

(1)
j

)]

= W

[
−c

(∑
i∈G

π2
i s

2
i −

∑
i,j∈G

πip
(2)
ij πjsisj

)
+ b

(∑
i∈G

π2
i sis

(1)
i −

∑
i,j∈G

πip
(2)
ij πjsis

(1)
j

)]

= W

[
−c

(∑
i∈G

π2
i s

2
i −

∑
i,j∈G

π2
jp

(2)
ji sisj

)
+ b

(∑
i∈G

π2
i sis

(1)
i −

∑
i,j∈G

π2
jp

(2)
ji sis

(1)
j

)]

= W

[
−c
∑
i,j∈G

π2
i p

(2)
ij

(
s2i − sisj

)
+ b

∑
i,j∈G

π2
i p

(2)
ij

(
sis

(1)
i − sjs

(1)
i

)]

= W

[
−c
∑
i,j∈G

π2
i p

(2)
ij

(
s2i − sisj

)
+ b

∑
i,j,k∈G

π2
i p

(2)
ij pik (sisk − sjsk)

]
.

Now combining with Eqs. (20) and (28), we obtain the fixation probability
of cooperation:

ρC =
1

N
+
δW

2N

(
−c
∑
i,j∈G

π2
i p

(2)
ij τij + b

∑
i,j,k∈G

π2
i p

(2)
ij pik (τjk − τik)

)
+O(δ2).

The critical benefit-cost ratio is therefore(
b

c

)∗
=

∑
i,j∈G π

2
i p

(2)
ij τij∑

i,j,k∈G π
2
i p

(2)
ij pik (τjk − τik)

.

J.2 Different interaction and replacement graphs

Here we consider a variation in which the edge weights for game interaction
differ from those for replacement [49, 64, 4, 6]. In this case, the population
structure is represented by a pair of weighted graphs (G, I) which have the
same vertex set V . We assume that the replacement graph G is connected
(so that the population is unitary), but the interaction graph I need not be.

We define an (n,m)-random walk to be a random walk consisting of n
steps according to the weights of G, followed by m steps according to the

40



weights of I. Let p
(n,m)
ij denote the probability that an (n,m)-random walk

starting at i terminates at j. The payoff fi(s) to vertex i in state s can be
written analogously to Eq. (9) as

fi(s) = −csi + b
∑
j∈V

p
(0,1)
ij sj.

(This expression uses averaged payoffs; the extension to accumulated payoffs
is straightforward.)

The results in Section B carry over verbatim, with the understanding that
πi is defined using the weights for the replacement graph G. Following the
steps in Section C, we obtain

D′(s) =
∑
i∈V

πisi

(
−c
(
s
(0,0)
i − s(2,0)i

)
+ b
(
s
(0,1)
i − s(2,1)i

))
. (61)

Above, we have adopted the notation s
(n,m)
i =

∑
j∈V p

(n,m)
ij sj. Applying

Eq. (28), we find an analogue of Eq. (29):〈∑
i∈G

πisi

(
s
(n1,m1)
i − s(n2,m2)

i

)〉◦
u

=
τ (n2,m2) − τ (n1,m1)

2N
, (62)

where
τ (n,m) =

∑
i,j∈V

πip
(n,m)
ij τij.

Substituting Eqs. (61) and (62) into Eq. (23) we obtain the fixation proba-
bility of cooperation:

ρC =
1

N
+

δ

2N

(
− cτ (2,0) + b

(
τ (2,1) − τ (0,1)

) )
+O(δ2).

The critical benefit-cost ratio is therefore(
b

c

)∗
=

τ (2,0)

τ (2,1) − τ (0,1)
.

J.3 Birth-Death updating

In Birth-Death (BD) updating [3], first an individual is chosen to reproduce,
with probability proportional to its reproductive rate. The offspring then
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replaces a random neighbor, chosen with probability proportional to edge
weight.

We study a continuous-time analogue of the birth-death process, in which
site i replaces site j at rate Fi(s)pij:

Rate[i→ j](s) = Fi(s)pij. (63)

As for DB updating, we suppose that a new type is equally likely to arise
at each vertex. This assumption is mathematically convenient, although it is
arguably more natural to suppose that mutations arise in proportion to how
often a vertex is replaced [51, 58, 19].

Our methods for DB updating largely carry over to BD, with some mod-
ifications that we describe here.

J.3.1 Fixation probability under weak selection

Instead of weighting each vertex i by its degree, we weight by the inverse
degree 1/wi. The inverse degree can be understood as the reproductive value
of vertex i under BD updating [53], and is proportional to the fixation prob-
ability of a neutral mutation arising at i [53, 19]. We therefore replace ŝ with
the quantity

s̃ =
1

W̃

∑
i∈G

si
wi
, W̃ =

∑
i∈G

1

wi
.

The arguments of Section B carry over using s̃ in place of ŝ, leading to an
analogue of Eq. (19):

ρs0 = s̃0 + δ〈D′〉◦s0 +O(δ2).

Above, D′(s) is the first-order term of the expected instantaneous rate of
change in s̃, defined by the following analogues of Eqs. (13) and (15):

E
[
S̃(t+ ε)− S̃(t)

∣∣S(t) = s
]

= D(s)ε+ o(ε) (ε→ 0+)

D(s) = δD′(s) +O(δ2) (δ → 0).

When we consider the uniform distribution u for initial mutant appearance,
Eq. (20) for ρu carries over verbatim.
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We calculate the instantaneous rate of change D(s) as follows:

D(s) =
1

W̃

∑
i,j∈G

Rate[i→ j]
si − sj
wj

=
1

W̃

∑
i,j∈G

wij
wiwj

Fi(s)(si − sj)

=
δ

W̃

∑
i,j∈G

wij
wiwj

fi(s)(si − sj) +O(δ2)

=
δ

W̃

∑
i,j∈G

wij
wiwj

si(fi(s)− fj(s)) +O(δ2)

=
δ

W̃

∑
i,j∈G

wij
wiwj

(
−c(s2i − sisj) + b

∑
k∈G

(piksisk − pjksisk)

)
+O(δ2).

Hence we get, after swapping i and j second part of the second sum,

D′(s) =
1

W̃

(
−c
∑
i,j∈G

wij
wiwj

(s2i − sisj) + b
∑
i,j,k∈G

wij
wiwj

pik(sisk − sjsk)

)
(64)

J.3.2 Coalescence and assortment

The final key step is finding the appropriate modification of the coalescing
random walk (CRW) used in Section D. The rate of stepping from i to j must
correspond to the rate at which the j → i replacement occurs at neutrality,
which is wij/wj for BD updating. Therefore the CRW for BD is a continuous-
time process in which steps from i to j occur at rate wij/wj (instead of at
the usual rate pij = wij/wi).

We let τ̃ij denote the coalescence time from vertices i and j under this
modified CRW. (Note that the τ̃ij are defined in continuous time) These
coalescence times satisfy the system of equations

τ̃ij =


0 i = j

1∑
`∈G

wi`+wj`

w`

(
1 +

∑
k∈G

wikτ̃ik + wjkτ̃jk
wk

)
i 6= j.

(65)

Again, the connectedness of G implies that this system has a unique solution,
which can be obtained in polynomial time (see Section M).
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Armed with this modified CRW, the arguments of Section D.3 can be
readily adapted to BD updating. In particular, Eq. (28) has the analogue〈

1

N
− sisj

〉◦
u

=
τ̃ij
N

(66)

In contrast to Eq. (28), there is no factor of 2 in the denominator on the
right-hand side of Eq. (66). This is because the τ̃ij are defined in continuous
time, whereas the τij are defined in discrete time.

J.3.3 Condition for success

Combining Eqs. (20), (64) and (66), we obtain the fixation probability of
cooperation

ρC =
1

N
+

δ

W̃N

(
−c
∑
i,j∈G

wij
wiwj

τ̃ij + b
∑
i,j,k∈G

wij
wiwj

pik(τ̃jk − τ̃ik)

)
+O(δ2).

The critical benefit-cost ratio is therefore(
b

c

)∗
=

∑
i,j∈G

wij

wiwj
τ̃ij∑

i,j,k∈G
wij

wiwj
pik(τ̃jk − τ̃ik)

.

K Examples

K.1 Island model

Consider a population subdivided into n islands of size N1, . . . , Nn. Weights
are 1 for distinct vertices on the same island and m < 1 for vertices on
different islands. Therefore, the weighted degree of a vertex on island i is
wi = Ni − 1 +m(N −Ni).

We let τii′ denote the coalescence time for two distinct vertices on island
i, and τij the coalescence time for a pair on islands i and j. The recurrence
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relations (30) become

τii′ = 1 +
1

Ni − 1 +m(N −Ni)

(
(Ni − 2)τii′ +m

∑
j 6=i

Njτij

)

τij = 1 +
(Ni − 1)τij +m

∑
k 6=i,j Nkτkj +m(Nj − 1)τjj′

2(Ni − 1 +m(N −Ni))

+
(Nj − 1)τij +m

∑
k 6=i,j Nkτik +m(Ni − 1)τii′

2(Nj − 1 +m(N −Nj))
.

(67)

K.1.1 Two islands

In the case of two islands, we obtain the critical b/c ratio exactly, by solving
Eq. (67) with the aid of Mathematica and applying Eq. (41). We obtain an
answer in the form (b/c)∗ = num/denom, where the numerator and denomi-
nator are given respectively by

num =
(
(Nm+N − 2)2 −D2(m− 1)2

)2
×
{
D6(m−1)3m−D4(m−1)2

(
3N2m(m+ 1)− 2N

(
m2 + 5m− 2

)
+ 10m− 6

)
+D2N(m− 1)

[
3N3m(m+ 1)2 − 2N2

(
2m3 + 9m2 + 6m− 1

)
+ 2N

(
7m2 + 6m− 7

)
− 8(m− 2)

]
− (N − 2)N2(m+ 1)(Nm+ 2)(Nm+N − 2)2

}
,
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denom = 4

{
−D8(m− 1)4m

(
N(m− 1) +m2 − 3m+ 4

)
−D6(m−1)3

[
N3m

(
m3 −m2 − 3m− 1

)
+N2

(
−5m4 − 5m3 + 11m2 + 9m+ 2

)
+ 4N

(
4m3 − 2m2 − 4m− 1

)
− 2m

(
m2 + 6m− 9

) ]
+D4(m−1)2

[
(N5m(m+1)2

(
3m2 − 1

)
−N4

(
9m5 + 36m4 + 30m3 +m+ 4

)
+N3

(
46m4 + 96m3 + 28m2 + 8m+ 22

)
− 4N2

(
m4 + 22m3 + 18m2 + 11

)
+ 8N

(
m3 + 9m2 − 2m+ 4

)
− 8m(m+ 1)

]
−D2N(m−1)(Nm+N−2)2

[
N4m

(
3m3 + 5m2 + 3m+ 1

)
−N3

(
7m4 + 19m3 + 15m2 + 5m− 2

)
+ 4N2

(
4m3 + 6m2 + 3m− 2

)
− 2N

(
m3 + 4m2 + 5m− 8

)
+ 8(m− 2)

]
+ (N − 2)N2(m+ 1)(Nm+N − 2)4

(
N2m2 +Nm− 2

)}
.

Above, N = N1 + N2 is the total population size and D = |N1 − N2| is the
difference in size between the islands.

For rare migration (m→ 0), the critical b/c ratio becomes

lim
m→0

(
b

c

)∗
=
N2(N − 2)3 +N (N2 − 7N + 8)D2 + (2N − 3)D4

4N(N − 2) (N −D2)
. (68)

If, in addition, the islands are evenly sized (D = 0), we have

lim
m→0

(
b

c

)∗
= (N − 2)2/4.

We can show that the above value is at least a local infimum of (b/c)∗. This
is based on the following observations (made with the aid of Mathematica):

(i) For all N ≥ 4 and 0 < m < 1,

d(b/c)∗

dD

∣∣∣∣
D=0

= 0.

(ii) For all N ≥ 4 and 0 < m < 1,

d2(b/c)∗

dD2

∣∣∣∣
D=0

> 0.
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(iii) For D = 0 and all N ≥ 4, (b/c)∗ approaches an infimum as m→ 0.

We conjecture that (b/c)∗ = (N − 2)2/4 is a global infimum as well.

K.1.2 More than two islands

For three and four islands, we have obtained the exact critical b/c ratio
under the limit m → 0, but the results are too lengthy to record here. For
these cases, we have shown with the aid of Mathematica that limm→0(b/c)

∗

is minimized when the islands are evenly sized.
For five islands, we have obtained limm→0(b/c)

∗ under the assumption
that two of the islands have equal size. Under this assumption, we have then
shown that limm→0(b/c)

∗ is minimized when the remaining three islands also
have the same size.

For any number n of evenly-sized islands (Ni = N/n), with arbitrary
migration, we have(

b

c

)∗
=

(N − 2)(N − n+mN(n− 1))2

Nn(N − n+m2(N − 1))− 2(N − n+mN(n− 1))2
. (69)

This value of (b/c)∗ is minimized as m→ 0, at which point it approaches the
value

lim
m→0

(
b

c

)∗
=

(N − 2)(N − n)

Nn− 2N + 2n
. (70)

We note that this limiting value is approached in the regime m� 1/n. We
conjecture that, for each fixed population size N ≥ 4 and number of islands
n ≥ 2, the right-hand side of Eq. (70) is a global infimum of all positive
values of (b/c)∗ for all migration rates 0 < m < 1 and all distributions of
island sizes {Ni}ni=1, as long as there are at least two individuals per island
(Ni ≥ 2 for each i).

K.2 Joined stars

Here we derive the results shown in Fig. 4bcf of the main text.

Two stars joined by hubs For two n-stars joined by an edge between
their hubs, solving Eqs. (30) and (31) yield

τ+HH =
8n3 + 22n2 + 17n+ 15

(n+ 1)2(2n+ 5)
τ+LL =

12n+ 10

2n+ 5
, (71)
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By inspection, we have

πH =
n+ 1

4n+ 2
, πL =

1

4n+ 2
, p

(2)
HH =

n2 + n+ 1

(n+ 1)2
, p

(2)
LL =

1

n+ 1
.

Substituting these values into Eq. (41) yields(
b

c

)∗
=

(n+ 1)2 (10n2 + 17n+ 5)

n(4n3 + 12n2 + 11n+ 5)

n→∞−−−→ 5

2
.

Two stars joined leaf to hub For two n-stars with an edge joining the
leaf to the hub of the other, a similar procedure yields(

b

c

)∗
=

(n+ 1) (36n2 + 90n+ 19)

4n (3n2 + 11n+ 9)

n→∞−−−→ 3.

Two stars joined leaf to leaf For two n-stars with an edge joining a leaf
of each, we obtain(

b

c

)∗
=

2(n+ 1) (490n4 + 3065n3 + 5982n2 + 4559n+ 1136)

350n5 + 2671n4 + 6818n3 + 7489n2 + 3544n+ 568

n→∞−−−→ 14

5
.

“Dense cluster” of stars For m n-stars, with each hub joined to each
other hub, we obtain (

b

c

)∗
=

num

denom

where

num = (m+ n− 1)2

×
(
2m4 +m3(11n− 8) +m2

(
20n2 − 25n+ 11

)
+m

(
12n3 − 22n2 + 12n− 7

)
− 2

(
2n3 + n2 + n− 1

) )
,

denom = 2m5(n−1)+m4
(
12n2 − 19n+ 10

)
+m3

(
26n3 − 61n2 + 61n− 19

)
+3m2

(
8n4 − 28n3 + 40n2 − 29n+ 6

)
+m

(
8n5 − 48n4 + 92n3 − 103n2 + 57n− 9

)
− 8n5 + 24n4 − 34n3 + 32n2 − 14n+ 2.

Letting n→∞ for fixed m, we obtain

lim
n→∞

(
b

c

)∗
=

3m− 1

2m− 2
.

If we then take m→∞, we have (b/c)∗ → 3/2.
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K.3 Ceiling fan

Let us now consider the “ceiling fan” graph (Fig. 4e of the main text), in
which each of the n leaves of a star is joined by an edge to one other. Solving
Eqs. (30) and (31) yields

τ+HH =
9n− 3

n+ 3
, τ+LL =

15n

2(n+ 3)
,

where H and L indicate hub and leaf vertices, respectively. By inspection,
we have

πH =
1

3
, πL =

2

3n
, p

(2)
HH =

1

2
, p

(2)
LL =

n+ 2

4n
.

Substituting these values into Eq. (41) yields(
b

c

)∗
=

4(6n− 7)

3n− 16

n→∞−−−→ 8.

K.4 Wheel

In a wheel graph (Fig. 4e of the main text), each of the n leaves is joined
to two neighboring leaves as well as to the hub. We define τL,j to be the
coalescence time for two leaves that are j apart, 0 ≤ j ≤ n. Clearly, we have
τL,0 = τL,n = 0. We also define τLH to be the coalescence time between a leaf
and the hub.

The recurrence relations (30) for coalescence times become

τL,j = 1 +
1

3
(τL,j−1 + τL,j+1 + τLH) for 1 ≤ j ≤ n− 1, (72)

τLH = 1 +
1

3
τLH +

1

2n

n−1∑
j=0

τL,j. (73)

Solving Eq. (73) for τLH yields

τLH =
3

2
+

3

4n

n−1∑
j=0

τL,j. (74)
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It is convenient to define τ ′L,j = τL,j − τLH . Then Eqs. (72) and (74) become

τ ′L,j = 1 +
1

3

(
τ ′L,j−1 + τ ′L,j+1

)
for 1 ≤ j ≤ n− 1, (75)

τLH = 6 +
3

n

n−1∑
j=0

τ ′L,j. (76)

We guess a solution (ansatz) of the form

τ ′L,j = a+ b
(
γj + γn−j

)
. (77)

Substituting this ansatz into Eq. (75), we obtain

a+ b
(
γj + γn−j

)
= 1 +

2a

3
+
b

3

(
γj−1 + γn−j+1 + γj+1 + γn−j−1

)
= 1 +

2a

3
+
b

3

(
γ + γ−1

) (
γj + γn−j

)
.

For this to hold for all 1 ≤ j ≤ n− 1 necessitates that

a = 1 +
2a

3
and γ + γ−1 = 3,

which gives the solutions

a = 3 and γ =
3±
√

5

2
.

It turns out not to matter which value of γ is used; we will use γ = (3−
√

5)/2.
To solve for b, we substitute into Eq. (76),

τLH = 6 +
3

n

n−1∑
j=0

(
3 + b

(
γj + γn−j

))
= 15 +

3b

n

(1 + γ)(1− γn)

1− γ
. (78)

Additionally, since τL,0 = 0, we have

τLH = −τ ′L,0 = −b(1 + γn)− 3. (79)
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Combining Eqs. (78) and (79) and solving for b yields

b =
−18n(1− γ)

3(1 + γ)(1− γn) + n(1 + γn)(1− γ)
.

Substituting this value of b into Eqs. (79) and (77), we obtain the coales-
cence times

τLH =
18n(1− γ)(1 + γn)

3(1 + γ)(1− γn) + n(1 + γn)(1− γ)
− 3,

τL,j = τ ′L,j + τLH

=
18n(1− γ)

3(1 + γ)(1− γn) + n(1 + γn)(1− γ)

(
1 + γn − γj − γn−j

)
=

18n(1− γ)

3(1 + γ)(1− γn) + n(1 + γn)(1− γ)

(
1− γj

) (
1− γn−j

)
.

In particular, for neighboring leaves (j = 1), we have

τL,1 =
18n(1− γ)2(1− γn−1)

3(1 + γ)(1− γn) + n(1 + γn)(1− γ)
. (80)

Turning now to remeeting times, we compute

τ+HH = 1 + τLH

=
18n(1− γ)(1 + γn)

3(1 + γ)(1− γn) + n(1 + γn)(1− γ)
− 2,

τ+LL = 1 + 1
3
τLH + 2

3
τL,1

=
18n(1− γ)

3(1 + γ)(1− γn) + n(1 + γn)(1− γ)

(
1 + γn − 2γ

3
(1 + γn−2)

)
.

The other values needed to compute (b/c)∗ are

πH =
1

4
, πL =

3

4n
, p

(2)
HH =

1

3
, p

(2)
LL =

2n+ 3

9n
.

Using the above values, the critical b/c ratio can be obtained from Eq. (41)(
b

c

)∗
=

πHτ
+
HH + nπLτ

+
LL − 2

πHτ
+
HHp

(2)
HH + nπLτ

+
LLp

(2)
LL − 2

. (81)
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Now turning to the n→∞ limit, we calculate:

lim
n→∞

τ+HH = 16,

lim
n→∞

τ+LL = 18− 12γ = 6
√

5,

lim
n→∞

p
(2)
LL =

2

9
.

Substituting into Eq. (81) and simplifying gives

lim
n→∞

(
b

c

)∗
=

429 + 90
√

5

82
.

L Direct and inclusive fitness

The conditions for success derived in Sections B–K are based on fixation
probability and, in the case of nonzero mutation, expected degree-weighted
abundance. Other approaches in the literature are based on the fitness and/or
inclusive fitness of individuals. In the interest of synthesizing different ap-
proaches, we calculate the fitness and—in the case of the donation game
(8)—the inclusive fitness effect associated to each vertex.

L.1 Fitness

The (direct) fitness of an individual is a measure of its reproductive suc-
cess. In homogeneous populations, the fitness of an individual is defined as
its survival probability plus its expected number of offspring. For hetero-
geneous populations, individuals have different reproductive values—that is,
they make different expected contributions to the future gene pool of the
population, even under neutral drift [52, 53, 65, 58]. For our model, we iden-
tify the reproductive value of vertex i as its relative weighted degree πi [53],
which is also equal to the fixation probability of a neutral mutation arising
at this vertex [53, 19].

We formally define the fitness of an individual as its survival probability
multiplied by its own reproductive value, plus the expected total reproductive
value of all offspring it produces, over a short time interval [t, t + ε). The
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fitness vi(s) of vertex i in state s is calculated as follows:

vi(s) = πi

(
1− ε

∑
j∈G

Rate[j → i](s)

)
+ ε
∑
j∈G

πj Rate[i→ j](s) + o(ε)

= πi + ε

(∑
j∈G

πjwijFi(s)∑
k∈GwkjFk(s)

− πi

)
+ o(ε)

= πi + εδπi

(
fi(s)− f (2)

j (s)
)

+R(ε, δ), (82)

where the remainder term R(ε, δ) satisfies

lim
ε→0+

lim
δ→0

R(ε, δ)

εδ
= 0.

The constant term in Eq. (82) is the fitness of vertex i under neutral drift,
which is equal to its reproductive value πi. The second term represents the
effects of weak selection. We define the direct fitness effect of selection on
individual i, denoted v′i(s) to be the coefficient of εδ:

v′i(s) = πi

(
fi(s)− f (2)

i (s)
)
. (83)

For an arbitrary matrix game (6), substituting the payoffs from Eq. (7), we
obtain

v′i(s) = πi

(
a

[
sis

(1)
i −

∑
j∈G

p
(2)
ij sjs

(1)
j

]

+ b

[
si

(
1− s(1)i

)
−
∑
j∈G

p
(2)
ij sj

(
1− s(1)j

)]

+ c

[
(1− si)s(1)i −

∑
j∈G

p
(2)
ij (1− sj) s(1)j

]

+ d

[
(1− si)

(
1− s(1)i

)
−
∑
j∈G

p
(2)
ij (1− sj)

(
1− s(1)j

)])
.

(84)

For the donation game (8), Eq. (84) simplifies to

v′i(s) = πi

(
−csi + bs

(1)
i + cs

(2)
i − bs

(3)
i

)
. (85)
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Eqs. (83)–(85) apply to a particular state s. We can also calculate the
direct fitness effect of a particular strategy at a particular vertex for the
overall evolutionary process. For this we introduce mutation with probability
0 < u < 1, as discussed in Section I. The expected direct fitness effect of
strategy A at vertex i, under the neutral MSS distribution, can be written
as

E◦MSS [v′i|si = 1] = πi E◦MSS

[
fi − f (2)

i

∣∣si = 1
]
. (86)

To explicitly compute the right-hand side of (86) for the general game
(6) requires triplet IBD probabilities [66, 67] and is beyond the scope of this
work. However, for the donation game (8), only pairwise IBD probabilities
are required. A generalization of Lemma 3 of [6] yields

E◦MSS [sj|si = 1] =
1 + qij

2
.

Applying this identity to Eq. (85) yields the overall direct fitness effect of
cooperation at vertex i:

E◦MSS [v′i|si = 1] =
πi
2

(
−c
(
q
(0)
i − q

(2)
i

)
+ b
(
q
(1)
i − q

(3)
i

))
=
uπi
2

[
−cτ (2)i + b

(
τ
(3)
i − τ

(1)
i

)]
+O(u2) (u→ 0).

Above, we have defined q
(n)
i =

∑
j∈G p

(n)
ij qij and τ

(n)
i =

∑
j∈G p

(n)
ij τij. The

second equality above uses Eq. (60).

L.2 Inclusive fitness

Inclusive fitness theory [68, 56, 4] analyzes the evolution of social behavior
using a quantity called the inclusive fitness effect. This quantity is defined
as the effect that this individual has on its own fitness, plus a weighted sum
of the effects it has on the fitnesses of all others, where the weights quantify
genetic relatedness.

In order to formulate such a quantity, there must be a well-defined contri-
bution that each individual makes to its own fitness and to the fitness of each
other individual. However, Eq. (84) for the direct fitness effect is quadratic in
s1, . . . , sN , and does not separate into distinct contributions due to particular
individuals. Therefore, for the general game (6), there is no inclusive fitness
effect of a single given individual. (But see Refs. [66, 67, 69] for alternative
notions of inclusive fitness at the level of pairs or genetic lineages.)
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For the donation game (8) the direct fitness effect (85) is linear in s1, . . . , sN
and does separate into distinct contributions due to particular individuals.
Specifically, we can write

v′i(s) =
∑
j∈G

ejisj, (87)

where we have defined the fitness effect of cooperation at j on individual i as

eji = πi

(
−cp(0)ij + bp

(1)
ij + cp

(2)
ij − bp

(3)
ij

)
. (88)

Because the fitness effects eij are well-defined for game (8), the inclusive
fitness effect of cooperation at vertex i exists and can be written as

vIFi (s) =
∑
j∈G

eijsj. (89)

In the above expression, the relatedness of a hypothetical cooperator at vertex
i to the occupant of vertex j is defined to be sj. This notion of relatedness
applies to a particular state s, and might be termed “identity in state”. It is
common to normalize relatedness coefficients so that they lie in the range -1
to 1; for example, one might use (sj− s̄)/(1− s̄) instead of sj to quantify the
relatedness of a cooperator at i to the occupant of j, where s̄ = 1

N

∑
k∈G sk is

the average population type. However, such normalizations are not needed
for models with constant population size [4].

We observe that, as a consequence of the reversibility property πip
(n)
ij =

πjp
(n)
ij , fitness effects are symmetric: eij = eji. In other words, the effect

that cooperation at i has on vertex j is equal to the effect that cooperation
at j has on vertex i. It follows that the direct and inclusive fitness effects
of cooperation at i are equal in every state: vIFi (s) = v′i(s). This is an
interesting but idiosyncratic property of the model we consider. We would
not, for example, find the result for different interaction and replacement
graphs (Section J.2) since there is no analogous reversibility property for
(n,m)−random walks.

Since—for the donation game (8)—the direct and inclusive fitness effects
of cooperation at i are equal in every state, they are also equal for the overall
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evolutionary process:

E◦MSS

[
vIFi |si = 1

]
= E◦MSS [v′i|si = 1]

=
πi
2

(
−c
(
q
(0)
i − q

(2)
i

)
+ b
(
q
(1)
i − q

(3)
i

))
=
uπi
2

[
−cτ (2)i + b

(
τ
(3)
i − τ

(1)
i

)]
+O(u2) (u→ 0).

M Computational issues

As we pointed out below Eq. (30), computing the coalescence times involves
solving a system of

(
N
2

)
linear equations. Simple Gaussian elimination takes

O(N6) steps for such a system. However this can be improved by a (standard)
block-wise inversion approach combined with a state-of-the-art matrix mul-
tiplication algorithm. For example, based on variants of the Coppersmith-
Winograd algorithm, coalescence times can be computed in O(N4.75) time.

Further improvement can be achieved by allowing approximate solutions
and observing that (30) is a symmetric diagonally dominant (SDD) system.
Such systems can be solved in nearly linear time in the number of non-zero
entries of the coefficient matrix. More precisely, for a system described by
an n×n matrix with m non-zero entries, finding a vector ε far in norm from
the exact solution can be done in O(m log2 n log 1/ε) time [70]. It follows
that for a graph of size N with average degree k̄, coalescence times can be
determined to within ε in O

(
(N logN)2 k̄ log 1/ε

)
time. Furthermore, the

algorithm can be efficiently parallelized [71].
In our experiments we have used a MatLab implementation by Koutis

(http://tiny.cc/cmgSolver). Representative run times on a 2011 Mac-
Book Air, MatLab 2015a were as follows: for N = 1000, average degree 4,
the running time was 12 seconds. For N = 2000, average degree 4, the run-
ning time was 120 seconds. For N = 2000, average degree 8, the running
time was 280 seconds.

For Figure 5 we computed (b/c)∗ for 1.3 million unweighted graphs, gener-
ated from 10 different random graph models. Parameter values were sampled
from a uniform distribution on the specified ranges (see below). Initial graph
sizes were uniformly sampled in the range 100 ≤ N ≤ 150; if the random
graph model produced a disconnected graph, the largest connected compo-
nent was used. The critical (b/c)∗ ratio was computed by solving Eq. (2) for
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coalescence times and substituting into Eq. (41). (No Monte Carlo simula-
tions were used for these investigations.)

Random graph models and parameter ranges are as follows: 100K Erdos-
Renyi [39] with edge probability 0 < p < 1; 100K small world [32] with initial
connection distance 1 ≤ d ≤ 5 and edge creation probability 0 < p < 0.05;
100K Barabasi-Albert [31] with linking number 1 ≤ m ≤ 10; 100K random
recursive [35] (like Barabasi-Albert except that edges are added uniformly
instead of preferentially) with linking number 2 ≤ m ≤ 8, 200K Holme-
Kim [34] with linking number 2 ≤ m ≤ 4 and triad formation parameter
0 < P < 0.15; 200K Klemm-Eguiluz [33] with linking number 3 ≤ m ≤ 5
and deactivation parameter 0 < µ < 0.15; 200K shifted-linear preferential
attachment [36] with linking number 1 ≤ m ≤ 7 and shift 0 < θ < 40; 100K
forest fire [37] with parameters 0 < pf < pb < 0.15; 100K Island BA; and
100K Island ER. Island BA is a meta-network of islands [38], in which each
island is a shifted-linear preferential attachment with the same parameters as
above. The number of islands varies from 2 to 5. Considering the islands as
meta-nodes, the meta-network among the islands is an ER graph with edge
probability 0 < pinter < 1. Island ER is the as Island BA except that each
island is an ER graph with edge probability 0 < pintra < 1.

We also computed the critical b/c ratio for some large real-world networks
using Northeastern’s computational cluster. This was computed on a node
with Intel Xeon CPU E5-2680 2.8GHz and 256GB RAM.

• The Framingham Study graph (N = 5253, average degree 6.5). This
network has a critical b/c ratio of 7.96. The running time was around
3.5 hours.

• The ego-facebook network from the Stanford SNAP database (N =
4039, average degree 43.7) took 25 minutes and has critical b/c ratio
48.5.

• The (largest connected component of the) ca-GrQc graph from the
Stanford SNAP database (N = 4159, average degree 6.5 took 23 hours
and has critical b/c ratio 6.6. The reason for this is most likely that
this graph is very badly conditioned.
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Figure 12: Results from additional Monte Carlo simulations. Sim-
ulation are shown for averaged payoffs (solid dots) and accumulated pay-
offs (open dots). Vertical lines indicate theoretical (b/c)∗ for averaged
and accumulated payoffs, as well as the mean degree k̄. The horizontal
line pertains to neutral drift, for which Nρ = 1. (a) Barabasi-Albert net-
work [31] with m = 4, N = 100. (b) Klemm-Eguiluz network [33] with
m = 3, µ = 0.4, N = 100. (c) Small world network [32] with initial connec-
tion distance d = 3, link creation probability p = 0.1 and N = 80. (d) Forest
fire network [37] with parameters pb = 0.32, pf = 0.28, N = 80.
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N Monte Carlo Simulations

To verify that our results (which are exact in the limit of weak selection)
are accurate for nonweak selection, we performed Monte Carlo simulations.
Results are presented in Figures 2 and 12.

The simulation setup is as follows. For each graph, we run 5× 105 Monte
Carlo trials. For each trial, all nodes are defectors upon the inception, except
one randomly-selected node which is a cooperator. The fixation probability
is approximated as the fraction of Monte Carlo trials which eventuate in
unanimous cooperation before timestep T , which is set to 400000 (which
theoretically should be infinite). The cost of cooperation is c = 1. For Fig. 2,
selection strength is δ = 0.025. For Fig. 12, selection strength is δ = 10−2

for averaged payoffs and δ = 10−3 for accumulated payoffs. The smaller δ-
value for accumulated payoffs is needed to compensate for the summing of a
potentially large number of individual payoffs.
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