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Abstract

In many physical networks, from neurons in the brain [1, 2] to 3D integrated circuits [3] or 

underground hyphal networks [4], the nodes and links are physical objects unable to cross each 

other. These non-crossing conditions constrain their layout geometry and affect how these 

networks form, evolve and function, limitations ignored by the theoretical framework currently 

used to characterize real networks [5, 6, 7, 8, 9, 10]. Indeed, most current network layout tools are 

variants of the Force-Directed Layout (FDL) algorithm [11, 12], which assumes dimensionless 

nodes and links, hence are unable to reveal the geometry of densely packed physical networks. 

Here, we develop a modeling framework that accounts for the physical reality of nodes and links, 

allowing us to explore how the non-crossing conditions affect the geometry of the network layout. 

For small link thicknesses, rL, we observe a weakly interacting regime where link crossings are 

avoided via local link rearrangements, without altering the overall layout geometry. Once rL 

exceeds a threshold, a strongly interacting regime emerges, where multiple geometric quantities, 

from the total link length to the link curvature, scale with rL. We show that the crossover between 

the two regimes is driven by excluded volume interactions, allowing us to analytically derive the 

transition point, and show that large networks eventually end up in the strongly interacting regime. 

We also find that networks in the weakly interacting regime display a solid-like response to stress, 

whereas they behave in a gel-like fashion in the strongly interacting regime. Finally, we show that 

the weakly interacting regime offers avenues to 3D print networks, while the strongly interacting 

regime offers insight on the scaling of densely packed mammalian brains.

Author Information Reprint and permissions information us available at www.nature.com/reprints. The authors declare that there are 
no competing interests in the project. Readers are welcome to comment on the online version.

Correspondence and requests for permission for materials should be addressed to A.-L.B. (alb@neu.edu).
Author Contributions N.D. developed, ran and analyzed the simulations, performed the mathematical modeling and derivations, and 
contributed to writing the article and the SI. S.M. contributed to programming and running the simulations, generating figures, editing, 
as well as 3D printing. A-L.B. contributed to the conceptual design of the study, and was the lead writer of the manuscript.

Reviewer Information Nature thanks [Referee Name], and [Referee Name] for their contribution to the peer review of this work.

Data Availability Statement All data used in the figures were generated using the simulation code available at https://github.com/
nimadehmamy/3D-ELI-FUEL. The data that support the findings of this study are available from the corresponding author upon 
reasonable request.

Supplementary Information is available in the online version of the paper.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2019 July 18.

Published in final edited form as:
Nature. 2018 November ; 563(7733): 676–680. doi:10.1038/s41586-018-0726-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
https://github.com/nimadehmamy/3D-ELI-FUEL
https://github.com/nimadehmamy/3D-ELI-FUEL


To lay out physical networks, we must arrange the links and the nodes in such a way to 

avoid crossing each other, while minimizing the total link length. In other words, we must 

find the shortest path for each link, even when the straight path is obstructed by other nodes 

and links, a problem equivalent to stretching a rubber band between flexible obstacles (See 

Fig. 1, also SI 3.1 for proof [13]). To achieve this, we propose a model in which the forces 

governing the motion of the nodes and links is determined by the gradient of the total 

potential energy,

V = Vel + VNL + VNN + VLL

= k
2 ∑

l
∫ dsl

d x l
dsl

2
+ k ∑

i = 1

N
∑

l ∈ < i >
X i ⋅
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(end)
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(1)

where Vel is the total elastic potential of all links l = 1, ..., L. Each link is modeled as an 

elastic cylinder with radius rL, experiencing both internal elastic forces and short-range 

external repulsive forces from other links and nodes. VNL captures the node-link interactions 

at link endpoints; the non-crossing condition is ensured by a short-range repulsive force in 

VNN (node-node interaction) and VLL (link-link interaction) modeled as short-range 

Gaussian potentials whose strength is set by AN and AL. In (1) sl is the length parameter of 

link l and x l Sl, t  represents the position of a point along the center of the link at time t; 

X i(t) is the position of node i; rN is the range of the node-node repulsive force; k is the 

elastic constant of the links. The potential energy (1) is inspired by models employed in self-

avoiding polymer chains [14] and manifold dynamics [15], but given the constraints induced 

by the network structure, (1) has different terms and displays behavior unique to networks. 

With VLL = 0 and replacing Vel with the elastic energy of a spring, (1) reduces to the 

potential energy of FDL with short-range node repulsion. The lowest energy solution of (1) 

can lead to sharp bending of some links, which we avoid using a Gay-Berne potential [16] 

employed in polymer physics (SI 4). Finally, we embed the network in a high viscosity 

medium, allowing it to relax to a low energy state without oscillations. Therefore, the node 

and link positions follow the first order gradient descent equations of motion,

λN
dXi
dt = − ∂V

∂Xi
, (2)
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λL
dxl
dt = − ∂V

∂xl
+ d

dsl

∂V
∂ dxl/dsl

, (3)

where λN and λL are the node and link friction constants (SI 3.6). We use FDL to set the 

initial node positions and explore two versions of the model with different constraints: (i) In 

the Elastic Link Model (ELI), which corresponds to λN ∞, the node positions are kept 

fixed and only the links are allowed to reorganize themselves; (ii) In the Fully Elastic Model 

(FUEL) we assume λN λL, hence both nodes and links are free to move.

The network defined by (1)–(3) has an uneven potential energy landscape [17] with a very 

large number of local minima, hence identifying the globally optimal configuration is NP 

hard (SI 3.7). We therefore use simulated annealing [18] to approach an energetically 

favorable local minimum (SI 3.7). The computational complexity of the model is discussed 

in SI 8.3. Figure 1C shows how FUEL finds the correct 3D configuration of a lattice, helped 

by the noise to tunnel through the finite potential walls and escape local minima.

As FDL ignores the physical dimensions of the nodes and links, it suffers from multiple link 

and node crossings (SI 2). The number of such conflicts increases linearly with rL (Fig. 2A), 

a behavior analytically predicted by a geometric model (SI 2). To avoid these conflicts, we 

applied ELI and FUEL to several networks with different topologies (regular lattice, random, 

scale-free), spanning a range of sizes and link densities. We find that the obtained layouts 

undergo a geometrical layout transition as we increase the link thicknesses (Fig. 2E, F, G, 

H).

Weakly Interacting Regime: For small link thicknesses, rL, the ELI and FUEL layouts are 

largely indistinguishable from the initial FDL layout. Indeed, at low rL, the average link 

length l  is independent of rL even as the link thickness increases by orders of magnitude 

(Fig. 2B). This is unexpected, given that there is a tenfold increase in the number of conflicts 

(potential link crossings) in this regime (Fig. 2A). The unchanged l  indicates that ELI and 

FUEL avoid the increasing number of conflicts by small local bending of the links, without 

the need to noticeably alter l  A similar behavior is seen for the average curvature of the 

links, C , finding that it shows modest changes throughout the weakly interacting regime 

(Fig. 2C), indicating that despite multiple local bending necessary to avoid conflicts the 

links remain largely straight. Note that the behavior of C  in this regime is model 

dependent, as the movement of nodes in FUEL offers avenues to avoid crossings, requiring 

less curving. Altogether, we find that in the weakly interacting regime local link 

rearrangements are sufficient to solve the multiple conflicts FDL suffers from.

Strongly Interacting Regime: Once rL exceeds a critical value, rL
c , we observe a dramatic 

change in the layout geometry (Fig. 2F, H). In ELI, with fixed node positions, the links must 

take long convoluted routes outside the network to reach their end-nodes, as they are unable 

to find sufficient empty space between the nodes. This change in the link structure is 

particularly visible on the skeleton of the layout (white links in Fig. 2F, H). In FUEL, with 
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flexible node positions, the links reach their destination by pushing the nodes away from 

each other. These changes alter the behavior of l , which in the strongly interacting regime 

increases linearly with rL, and induce rapid changes in the average curvature, C , at rL
c .

After the transition, the curvature decreases as 1/rL. It is remarkable, however, that despite 

the different mechanisms the two models employ, the scaling of l  and C  in the strongly 

interacting regime in ELI and FUEL is universal, independent of the network topology. The 

observed linear increase in l  and the 1/rL decrease in C  is consistent with isometric 

scaling, indicating that the layouts in the strongly interacting regime are structurally similar 

to each other if we rescale them by rL (SI 5.1).

We can reveal the origin of the observed transition in the layout geometry by estimating the 

transition point rL
c . When the links are much thinner than the node repulsion range rN, the 

layout is dominated by the repulsive forces between the nodes, that together occupy the 

volume VN = 4 2NrN
3 /3 (SI 10). When the volume occupied by the links becomes 

comparable to VN the layout must change to accommodate the links, inducing a transition 

from the weakly interacting regime to the strongly interacting regime. To calculate the 

transition point, the volume of all nodes and links need to be taken into account (Sec. SI 10), 

obtaining

rc = 6A
1
3

A
2
3 + 12B

, (4)

where A = − 12 3 k3/2 + 9 k3/2 2 − 12B3  and B = (3/4)1/3cL/N2/3 and the average ⋅  is 

taken over the degree distribution. In scale-free and random networks, in the N ∞ limit we 

obtain rc ≈ aL−1/2N1/3 (SI 10), Using that in many real and model networks we have 

L ≈ mN, we obtain rc N−1/6, implying that in the N ∞ limit rc 0, i.e. the weakly 

interacting regime is absent in the thermodynamic limit. In other words, for large networks 

the crossings are so numerous that they cannot be ignored. Consequently, FDL and all 

currently used layout tools that ignore link crossings are expected to fail for large networks, 

as their layout is dominated by conflicts.

While networks with different N and L transition at different rL/rN ratios, if we scale rL/rN 

with rc the layout transition occurs near one for all networks. Using the scaling exponent of 

the average link length ϕ(l) ≡ dlog l /dlog rL as the order parameter, the data collapse of Fig. 

2K confirms the validity of (4). The fact that networks of rather different topologies (Scale-

free, random, lattices and random geometric graphs (Sec. SI 11)) show similar dependence 

of the transition point on rL, suggests that the transition of Fig. 2 independent of the network 

topology and the degree distribution. After rescaling of the transition point, networks of 

various sizes collapse on the same curve with the same width (Fig. 2K, see SI 10 and SI 11).
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Finite-size scaling indicates that the layout transition occurs over a finite range of rL/rN, 

regardless of the network size (Sec. SI 11), indicating that we are observing a crossover [19, 

20] from a mean-field behavior (exponent ϕ(l) = 0) ) to a scaling behavior (ϕ(l) = 1) . Indeed, 

the weakly interacting regime of both ELI and FUEL is well described by FDL, which 

ignores the interactions between the links and the possible link crossings are resolved as 

local perturbations. Yet, this weakly interacting regime disappears in the thermodynamic 

limit. For N ∞ only the strongly interacting regime survives that, dominated by strong 

link-link interactions, displays universal scaling.

The observed crossover also alters the network’s physical properties. For example, a 

network’s response to external forces is captured by the Cauchy stress tensor Tμν ≡ ∂μ ∂νV

[21] (SI 6), which depends on the physical and material properties of nodes and links. In the 

weakly interacting regime, the links are largely straight, hence the node terms VNN and VNL 

dominate the total stress. As the nodes are surrounded by a varying number of nodes, the 

stress does not spread uniformly in all directions, but has shear (off-diagonal) stress 

components, a common feature of solids. In the strongly interacting regime, the links fill up 

the space, hence the link contributions Vel + VLL dominate Tμν, resulting in a diagonal total 

stress tensor (SI 6). In other words, we predict that networks in the strongly interacting 

regime display a fluid or gel-like response to external stress. To test the validity of the 

predicted solid-gel transition, we compress the networks generated by FUEL in the y 
direction and measure the tensile forces σμ ≡ Tμμ (Fig. 3A, SI 6). We again, observe a 

crossover at rc predicted by (4) from a roughly constant stress in the weakly interacting 

regime to a monotonically increasing stress in the strongly interacting regime (Fig. 3B). 

Furthermore, as we rotate the network, we find that the total stress ratio σ /σ⊥ displays large 

fluctuations in the weakly interacting regime, a common behavior in anisotropic solids. The 

fluctuations vanish at the transition point rc, reaching the hydrostatic ratio σ /σ⊥ = 1/ 2 (Fig. 

3C), as expected for gels under pressure.

In summary, the layout geometry of physical networks is characterized by two distinct 

regimes: a weakly interacting regime, where the overlap between the nodes and links is 

avoided via local link rearrangements, and a strongly interacting regime, whose layout is 

shaped by excluded link volume interactions. Networks in the weakly interacting regime are 

solid-like, while those in the strongly interacting regime behave like a gel. The observed 

transition between the two regimes is unique to three dimensions. Indeed, as links are one 

dimensional objects, the non-crossing condition results in knot-like constraints in 3D, 

preventing the links from passing through each other. In D ≥ 4, knots of one dimensional 

objects can be untied [22], so the non-crossing conditions will not constraint the embedding. 

Therefore, D = 3 is the lowest dimension where links can avoid each other by bending, and 

also the highest dimension where they cannot pass by each other without breaking or 

tunneling.

Both phases have potentially important applications. The weakly interacting regime is the 

one traditionally used in network visualizations, and can help us 3D print networks, offering 

novel ways to explore the inner structure of a complex system. We illustrate this in Fig. 3D, 
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where we applied FDL to the Flavor Network [23]. Given the high link density, 2D 

visualizations suffer from visual cluttering, making only a fraction of the links visible [23]. 

A 3D layout offers more clarity, but given the dense communities, FDL leads to excessive 

node and link overlaps (inset, Fig. 3D), obstructing the true wiring of the network. Applying 

FUEL, and choosing rL so that the layout stays in the weakly interacting regime, the 

obtained layout geometry reveals the underlying communities present in the network. This 

layout is amenable to 3D printing, as shown in Fig. 3E, offering unprecedented opportunities 

to interact with the network and to directly inspect its inner structure. Note that the finding 

that for large N the weakly interacting regime disappears, indicates that the toolset 

introduced here, capable of resolving crossings, is inevitable as we aim to visualize large 

networks, when link crossings dominate the layout.

The strongly interacting regime has direct relevance to the brain, a three dimensional 

physical network where the close-packing of the axons is critical to their ability to form 

synapses [24, 25]. Isometric scaling laws observed in rodent brains [26] indicate that volume 

Vw and the area Aw of the white matter relate to each other as Vw ∝ Aw
1.5 [26]. This implies 

that in these networks the average neuron length scales as l = Vw/Aw ∝ rL with the axon 

thickness, a behavior accurately predicted by the strongly interacting regime (Fig. 2B). 

Indeed, if we adapt the conventional approach and describe anatomical regions as nodes, and 

axon bundles connecting these regions as links, the thickness of the axon bundles (rL) is 

comparable to the size of the anatomical regions, supporting the prediction of the empirical 

scaling that these brain networks are in the strongly interacting regime. Thus, (1)–(3) offers 

an appropriate modeling framework to capture the layout geometry of dense neuronal 

networks, generating an economic spatial layout [27, 28] while respecting the non-crossing 

conditions each axon must obey [1].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Modeling Framework for Avoiding Link Crossings:
(A) We model each link as a stretched, flexible rubber band, corresponding to many short 

springs connected to each other, pulled apart by elastic forces Fel. The links exert a repulsive 

force FLL on each other that falls sharply at radii larger than rL. While in FDL the links cross 

each other (left figure), in ELI and FUEL such crossings are prohibited (right figure). (B) A 

small network with N = 6 nodes laid out with FDL (left), resulting in multiple link crossings 

(red links). The right plot shows how the network laid out by ELI that resolves the crossings. 

(C) Finding the final layout of a lattice with rL ≪ rN, also showing the evolution of the total 

Dehmamy et al. Page 8

Nature. Author manuscript; available in PMC 2019 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



link length over time during the simulation. We started from a random layout and used 

simulated annealing to find the final layout. The thermal noise helps links pass through each 

other and resolve crossings.
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Figure 2. Crossover in Network Layouts:
(A) The number of link crossings in FDL grows linearly with rL, saturating at very high rL. 

A proper layout must resolve this increasing number of conflicts. (B) The average link 

length remains largely constant in the weakly interacting regime, but grows linearly (dashed 

gray line) in the strongly interacting regime. (C) The average link curvature rises slowly in 

the weakly interacting regime, then falling linearly in the strongly interacting regime. (D) 

The relaxation time grows significantly near the transition point. The transition occurs over a 

finite range of rL/rN (Shaded area A–D), regardless of the system size, offering evidence of a 

crossover. ELI and FUEL geometries: ELI (E, F, orange) and FUEL (G, H, blue) layout 

for a BA network [29] with N = 20, m = 2. When rL ≪ rN, both ELI (E) and FUEL (G) 

layouts are similar to FDL. At larger rL links bend to avoid each other. (F) In ELI at large rL, 

links don’t fit inside the region containing the nodes and make outward arcs. (H) As nodes 

are free to move in FUEL, at large rL the layout behaves more gently than ELI (link 

skeletons shown in white in (F) and (H)). (I) In the weakly interacting regime the links are 

thin rL ≪ rN  and the layout radius is approximately the radius R of the bounding sphere 

surrounding N balls of radius rN. (L) At larger rL/rN, thick links exclude each other and their 

volume dominates the volume of the layout. (J) The order parameter ϕ(l) = dlog l /dlog rL

(scaling exponent of l rL
ϕ(l) versus rL/rN for networks with different N and L and 

geometries (random, scale-free). (K) Rescaling the ratio of rL/rN using (4) collapses the 

transition point.
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Figure 3. Stressed Networks and 3D Printing Networks:
(A) The tensile stress build-up in nodes and links as a result of compressing the network 

between two walls. Arrows indicate tensile stress (cyan indicates σ (x) parallel to to the 

direction of compression, and green is σ⊥(x), perpendicular to it). The networks are colored 

based on the total amount of stress. In the weakly interacting regime (left) the stress is 

concentrated in the nodes and in the strongly interacting regime (right), almost all the stress 

is in the links. (B) The parallel stress σ  of scale-free and random network topologies as a 
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function of link thickness. Since the definition of x,y,z is frame-dependent, we measure the 

forces for 50 random network orientations. (C) The ratio of parallel and transverse tensile 

stress σ⊥/σ , error bars correspond to one standard deviation around the mean, calculated 

over the 50 random orientations. In the weakly interacting regime the ratio depends on 

layout orientation, a solid-like feature. In the strongly interacting regime, the fluctuations of 

σ⊥/σ  decay to zero. 3D Printing Networks: The Flavor Network [23] with N = 184, L = 

716, represents a network of ingredients sharing flavor compounds. (D) An FDL layout 

applied to this network results in multiple conflicts (red). The inset highlights a densely 

connected region containing dairy products, so highly overlapping that it is impossible to 

discern the underlying network. (E) Laying out the flavor network using FUEL, the conflicts 

disappear, unveiling the inner structure of network communities. We 3D printed the resulting 

flavor network using a commercial 3D printer, allowing us to inspect the full internal 

structure of the network.
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