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Massively multiplexed sequencing of RNA in individual cells is transforming basic and clinical life
sciences[1-4].  In standard experiments,  however,  tissues must be first dissociated. Thus, crucial
information  about  spatial  relationships  between  cells,  along  with  the  tissue-wide  expression
patterns they confer, is lost. This poses a fundamental problem for elucidating collective function of
tissues, developmental pathways, and mechanisms of cell-to-cell communication[5, 6]. Considerable
efforts  to  overcome this  challenge  have  been  undertaken.  However,  experimental  methods  are
either  technically  challenging, or  have  limited  resolution  or  throughput[5,  7,  8].  Existing

computational  approaches  predict  spatial  positions  by  comparing  each  sequenced  cell,
independently,  to  an  imaging-derived  spatial  gene  expression  database  for  that  tissue  [9,  10].
However, these approaches rely on prior knowledge of spatial expression patterns which often does
not exist, or is difficult to construct. Here, we explore a radically different idea. We postulate that
cells  in spatial  proximity,  overall,  share more similar transcriptional  profiles than cells  farther
apart. We validate this hypothesis for several complex biological systems. Consequently, we seek to
find  spatial  arrangements  of  sequenced  cells  on  tissue  space  which  optimally  preserve  this
principle.  We show that  this  hard optimization  problem can be  cast  as  a  generalized optimal
transport  problem  for  probabilistic  embedding,  for  which  we  derived  an  efficient  iterative
algorithm.  We  successfully  reconstruct  the  mammalian  liver,  intestinal  epithelium,  fly  and
zebrafish embryos, cerebellum sections and kidney. We then use the reconstructed tissues to infer
spatially informative genes directly from single cell data. Our results demonstrate that we have
identified a spatial expression organization principle in animal tissues which can be used to infer
meaningful  spatial  position probabilities  for individual  cells.  Our framework (“novoSpaRc”)  is
flexible, can naturally incorporate prior spatial information, is scalable to large number of cells and
compatible  with  any  single-cell  technology.  We  envision  that  novoSpaRc  can  be  valuable  in
collaborative  efforts  to  characterize  various  tissues[11,  12],  and  that  additional  or  generalized
principles underlying spatial organization of gene expression can be formulated and tested using
our approach.
    Single-cell transcriptome sequencing (scRNA-seq) has revolutionized our understanding of the rich
heterogeneous cellular populations that compose tissues, the dynamics of developmental processes, and
the underlying regulatory mechanisms that control cellular function[1-4]. However, to understand how
1John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, Massachusetts
02138, USA. 2Broad Institute of MIT and Harvard, 415 Main St, Cambridge, Massachusetts 02142, USA. 3School of Computer
Science  and  Engineering,  The  Hebrew  University  of  Jerusalem,  Jerusalem 9190401,  Israel.  4Systems  Biology  of  Gene
Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the
Helmholtz Association, Hannoversche Str. 28, Berlin 10115, Germany. 5Institute of Life Sciences, The Hebrew University of
Jerusalem, Jerusalem 9190401, Israel.
#These authors contributed equally
*Correspondence: nir.friedman@mail.huji.ac.il, rajewsky@mdc-berlin.de

1

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

1
2
3
4
5
6
7
8

mailto:rajewsky@mdc-berlin.de
mailto:nir.friedman@mail.huji.ac.il


single cells orchestrate multi-cellular functions, it is crucial to have access not only to the identities of
single cells but also to their spatial context. This is a challenging task since tissues must commonly be
dissociated into single  cells  prior  to  scRNA-seq.  Thus,  the  original  spatial  context  and relationships
between cells are lost. Two seminal papers tackled this problem computationally[9, 10], the key idea
being to use a reference atlas of informative marker genes as a guide to assign spatial coordinates to
sequenced  cells.  This  scheme  was  successfully  employed  in  various  tissues[13-17],  including  the
complete early Drosophila embryo[18]. However, such methodologies heavily rely on the existence of an
extensive  reference  database  for  spatial  expression  patterns,  which  may  not  always  be  available,  or
straightforward to construct. Moreover, in practice the number of available reference marker genes is
usually not large enough to label each spatial position with a unique combination of reference genes,
making it impossible to uniquely resolve cellular positions. More generally, marker genes, even when
available, convey limited information, which could possibly be enriched by the structure of the single cell
data itself.
   To this aim, we developed a new computational framework (novoSpaRc), which allows for  de novo
spatial reconstruction of single-cell gene expression, with no inherent reliance on any prior information
and the flexibility to introduce it when it does exist (Fig. 1). Similar to solving a puzzle, we seek the
optimal configuration of pieces (cells) that recreates the original image (tissue). However, contrary to a
normal puzzle, here we typically do not know the image that we want to reconstruct. While the number of
ways to spatially arrange (or “map”) sequenced cells in tissue space is enormous, our hypothesis is that
gene expression in the vast majority of these arrangements will not be as organized as in the real tissue.
For example,  we know that  typically,  there exist  genes which are specifically  expressed in spatially
contiguous territories and thus consistent with only a small subset of all possible arrangements. Thus, we
set out to identify simple, testable assumptions which govern how gene expression is organized in space,
and to subsequently find the arrangements of cells that best respects those assumptions. 
    Here, we specifically explore the assumption that cells which are physically close tend to share similar
transcription profiles,  and vice versa (Extended Data Fig.  1,  Supplementary Note).  Biologically,  this
phenotype can result from multiple mechanisms, such as gradients of oxygen, morphogens and nutrients,
trajectory of cell maturation, and communication between neighboring cells. We stress that this is an

assumption about overall gene expression across the entire tissue – not about individual genes and not
about  all  physically  close  cells  (Supplementary  Note).  Here,  we  show that  on  average,  the  distance
between cells in expression space indeed increases with their physical distance, for diverse tissues in
matured  organisms  or  whole  embryos  in  early  development.  Thus,  to  predict  spatial  locations  of
sequenced cells,  we seek to find a map of sequenced cells to tissue space (“cartography”) such that
overall structural correspondence is preserved, meaning that cells have similar distances to other cells in
expression and physical space. The physical space is anchored by locations that may be either known
(such as the reproducible cellular locations in the Drosophila embryo during late stage 5 of development
[19]) or approximated by a grid (Supplementary Note). The distances are computed for each pair of cells
across  graphs  constructed  over  the  two  spaces  (Extended  Data  Fig.  1,  Supplementary  Note).  Then,
novoSpaRc  optimally  aligns  distances  of  pairs  of  cells  between  the  expression  data  and  geometric
features of the physical space, in a way that is consistent with spatial expression profiles of marker genes,
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when available (Methods, Supplementary Note). For both biologically- and computationally-motivated
reasons, we seek a probabilistic mapping which assigns each cell a distribution over locations on the
physical space (Supplementary Note). We formulate this as a generalized optimal transport problem[20-
22], which has been proven to be increasingly valuable for diverse fields, including biology[23, 24], and
renders the reconstruction task feasible for large datasets.  Specifically, we formulate an interpolation
between  entropically  regularized  Gromov-Wasserstein[25,  26] and  optimal  transport[27] objectives,
serving to satisfy the structural correspondence assumption between gene expression space and physical
space,  and  to  match  available  prior  knowledge,  respectively  (Methods).  We show this  optimization
problem can be efficiently solved using projected gradient descent, reduced to iterations of linear optimal
transport sub-problems (Supplementary Note).
    To systematically assess novoSpaRc’s performance, we employed a simple generative model of spatial
gene  expression  (Methods).  As  expected,  reconstruction  quality  gradually  increased  with  decreasing
tissue dimensions, increasing signal to noise ratio of the expression levels, increasing number of marker
genes used as a reference atlas, and increasing fraction of spatially informative genes (Methods, Extended
Data Fig. 2). In addition, reconstruction quality peaked when combining both structural (driven by the
structural correspondence assumption) and atlas-based (marker gene) information (Extended Data Fig. 2).
This conclusion was further supported by the reconstruction results for the BDTNP and brain cerebellum
datasets discussed below.
    Focusing on real single-cell datasets, we first de novo reconstructed tissues with inherent symmetries
which render them effectively 1-dimensional, such as the mammalian intestinal epithelium[16] and the
liver  lobules[13].  Schematic  figures  of  the  reconstruction  process  are  shown  in  Figs.  2a  and  2e
respectively. For both tissues, cells were previously classified into distinct zones, or layers, based on
robust marker gene information (7 zones for the intestinal tissue[16], 9 layers for the liver[13]). We found
that the average pairwise distances between cells in expression space increased monotonically with the
pairwise  distances  in  physical  1-dimensional  space  (Fig.  2b,f),  consistent  with  our  structural
correspondence assumption.
    We used novoSpaRc to embed the expression data into one dimension. The embedded coordinates of
single cells correlated well, on average, with their layer or zone memberships (Fig. 2c,g, Extended Data
Figs. 3,4, Methods). Median Pearson correlation of reconstructed expression patterns to original patterns
for the top 100 variable genes was 0.99 and 0.94 for intestine and liver, respectively (Methods). The
fraction of cells correctly assigned up to one layer away from their original layer was 0.98 and 0.73 for
intestine and liver, respectively (Methods, Extended Data Fig. 3). novoSpaRc captured spatial expression
patterns of the top zonated genes (Methods, Extended Data Fig. 3) and spatial division of labor within the
intestine epithelium (Fig. 2d), as well as within the layers of the liver lobules (Fig. 2h, Extended Data
Figs. 3,4), where cells in different tissue layers perform different tasks and exhibit different expression
profiles.  For the intestinal epithelium data, varying the grid resolution to include either less or more
embedded  zones  did  not  seem  to  compromise  the  quality  of  the  reconstructed  expression  patterns
(Extended Data Fig. 5) and shows the potential for increased resolution of single cell embedding relative
to atlas-based embedding.  We recovered the observed ordering of the peaks of expression along the
intestinal villi of groups of genes that play important roles in the absorption and transportation of different
nutrient groups, including apolipoproteins cholesterol, peptides, carbohydrates and amino acids (Fig. 2d,
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Supplementary Note). Similarly, spatial expression patterns of genes in the liver exhibiting pericentral,
periportal or non-monotonic profiles were correctly identified (Fig. 2h, Extended Data Fig. 3). 
    Next,  we  focused  on  spatially  reconstructing  the  well-studied  Drosophila embryo,  as  a  more
challenging, higher dimensional tissue. At late stage 5, the fly embryo consists of ~6,000 cells. It has been
previously suggested [28] that at early stages of the fly development, the expression levels of gap genes

can be optimally decoded into positional information. The expression levels of 84 transcription factors
were  registered  using  fluorescence  in  situ hybridization  (FISH)  for  each  of  the  cells  in  a  highly
quantitative manner by the Berkeley Drosophila Transcription Network Project (BDTNP)[19].
    To assess the performance of novoSpaRc, we first simulated scRNA-seq data by in silico dissociating
the BDTNP dataset into single cells (Methods), and then attempted to reconstruct the original expression
patterns across the tissue both de novo, and by using informational marker genes (Fig. 3a). Similar to the
1D datasets, we found a monotonically increasing relationship between the cell-cell pairwise distance in
expression space and in  physical  space  (Fig.  3b),  confirming that  the  data  adheres  to  our  structural
correspondence assumption.
    The reconstructed spatial gene expression patterns highly correlated with the original ones (Fig. 3c,
Methods).  We found  that  employing  novoSpaRc  using  both  structural  and  marker  gene  information
outperformed the reconstruction based on only the latter, and performance was saturated at 2 marker
genes (Fig. 3c). As expected, reconstruction quality increased with the number of genes used to provide
structural information in expression space, and with the fraction of spatially-informative genes (Methods,
Extended Data Fig. 6).  The majority of spatial patterns were recapitulated faithfully, even when only a
single marker gene was used (Fig. 3d). We observed that novoSpaRc reconstructed the patterns robustly
and independently of the marker genes used (Fig. 3c). In addition, novoSpaRc identified the physical
neighborhoods  that  single  cells  originated  from  when  used  de  novo  (up  to  inherent  symmetries,
Supplementary Note), and pinpointed their true locations (p<0.05 compared to random assignment) when
a handful of marker genes were used (Extended Data Fig. 7).
    We examined the expression patterns of four transcription factors spanning the dorsal-ventral and
anterior-posterior axes in detail (Fig. 3e). Reconstruction quality improved when employing the structural
correspondence assumption (Extended Data Fig. 8). The de novo reconstruction correctly identified both
axes  of  the  embryo.  The reconstructed  portrait  was remarkably  similar  to  the  original  one (Fig.  3e,
Extended  Data  Fig.  9).  Generally,  since  de  novo reconstruction  is  performed  without  any  prior
information  that  would  anchor  the  cells,  the  reconstructed  configuration  is  similar  up  to  global
transformations (reflections, rotations, translations) relative to the original configuration along the two
major axes of the embryo (Supplementary Note). Consequently, the resulting gene expression patterns
might  be  shifted  or  flipped relative  to  the  expected  ones.  However,  there  are  features  of  a  faithful
reconstruction we can test  for,  such that the reconstruction would be robust  to small  changes in the
optimization parameters (Extended Data Fig. 10) and that the embedding of single cells onto the embryo
would be relatively localized, as we would expect for a biologically-meaningful embedding (Fig. 3f).
This means that the distribution over locations that each single cell is assigned should be localized, and
indeed, the mean standard deviation of that distribution for all single cells is significantly lower than that
of a randomized embedding (Extended Data Fig. 10). Furthermore, we demonstrated that novoSpaRc’s
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results,  as measured by correlation to  observed imaging data  and optimization error,  were robust  to
optimization parameters and diverse noise sources, including partially sampling cells, additive expression
noise, and dropouts (Extended Data. Fig. 6).
    As an intermediate  step bridging the BDTNP dataset  and a  raw scRNA-seq dataset,  we applied
novoSpaRc to spatially reconstruct the  in silico virtual  Drosophila embryo[18] (Methods), quantifying
the  expression  of  ~8,000  genes  in  each  of  the  single  cells  (Extended  Data  Fig.  11).  novoSpaRc
successfully reconstructed the virtual embryo, with the accuracy increasing with the number of marker
genes  used  for  reconstruction  (Extended  Data  Fig.  11,  Methods).  To  assess  the  performance  of
reconstruction in  cases where no ground truth expression patterns are  available,  we show that  intra-
correlation  between  virtual  embryos  reconstructed  by  using  different  sets  of  marker  genes  reflected
successful reconstruction and increased with the number of marker genes used (Extended Data Fig. 11).
    We next employed novoSpaRc to reconstruct the stage 6 Drosophila embryo by using a scRNA-seq
dataset[18] (Fig. 4a). In that work, 84 marker genes were required for reconstruction that distributed
1,297 single cells over 3,039 embryonic locations. Since novoSpaRc naturally exhibits a probabilistic
mapping, we reasoned that the above dataset is a good candidate for testing its efficacy. When using both
structural information and the reference atlas, the accuracy of reconstruction by novoSpaRc increased
with the number of marker genes, reaching high correlation (Pearson correlation coefficient: 0.74) with
the FISH data (Fig.  4b,  Extended Data Fig.  12,  Methods).  The  de novo,  atlas-free reconstruction by
novoSpaRc  accurately  separated  the  major  post-gastrulation  spatial  domains  (mesoderm,  neurogenic
ectoderm, dorsal ectoderm), as well as finer spatial domains (Fig. 4c,d). We clustered the reconstructed
patterns of the highly variable genes and averaged to obtain a representative pattern for each cluster,
termed  archetype  (Methods,  Supplementary  File).  novoSpaRc  identified  numerous  distinct  spatial
archetypes  (Fig.  4c,d,  Extended  Data  Fig.  13).  We  compared  representative  genes  of  each  spatial
archetype with FISH images to visually assess the accuracy of the spatial reconstruction. Gene patterns
expressed through the anterior-posterior  or  the  dorsal-ventral  axis  were largely recapitulated:  typical
mesoderm genes, such as twi and sna, were co-localized ventrally (Fig. 4c,d, right), while typical dorsal
ectoderm  genes,  such  as  zen and  ush, were  co-localized  dorsally  (Fig.  4c,d,  middle).  novoSpaRc
accurately captured localized spatial populations (Fig. 4c,d,  left,  Extended Data  Fig. 13,  archetype 5),
while less extensive spatial domains were reconstructed with diverse degrees of accuracy (Extended Data
Fig. 13). Note that within the de novo reconstruction, accurate localization entails global transformations
as  described  above.  This  is  mostly  evident  for  archetype  5  (Extended  Data.  Fig.  13,  see  also
Supplementary Note).
    Before proceeding to more complex tissues, we reconstructed the zebrafish embryo dataset [9] (Fig.
4e).  Similar  to  the  original  seminal  study,  we  mapped  the  cells  onto  the  surface  of  a  hemisphere
constituting of 64 distinct locations. The resulting spatial expression patterns were highly correlated to the
experimentally verified ones and novoSpaRc reconstructed the zebrafish embryo by using only 15 marker
genes, in contrast to the 47 genes previously required[9] (Extended Data Fig. 14, Methods). The accuracy
of the reconstruction increased with the number of marker genes (Extended Data Fig. 14). Furthermore,
no data imputation or other specialized preprocessing was necessary as before[9].
    To  further  showcase  the  applicability  of  novoSpaRc  to  complex  tissues,  diverse  sequencing
technologies and different organisms, we used it to reconstruct slices of brain cerebellum [29] (Fig. 5),
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the mammalian kidney [30] (Extended Data Fig. 15), and a dataset of hundreds of individual Drosophila
embryos [31] (Extended Data Fig. 16).
    The adult mammalian brain is a well-studied, highly differentiated and complex tissue. To benchmark
novoSpaRc’s capabilities in reconstructing complex tissues, we used murine cerebellum slices from a
recently developed spatial transcriptomics technology [29]. The sagittal section dataset contained 46,376
locations with a median of 52 quantified transcripts per location. To ensure that enough information is
available to novoSpaRc, we first coarse-grained the data by binning neighboring locations. This resulted
after quality filtering in 7,704 locations with a median of 379 quantified transcripts (Methods, Fig. 5a).
novoSpaRc successfully reconstructed the whole transcriptome, with the Pearson correlation over  all
15,878 genes equal to 0.5 when using only 15 marker genes and increasing to 0.94 when using 50 marker
genes (Fig. 5b, Methods). Spatial expression patterns start to emerge when using only a handful of marker
genes.  For  example,  spatial  positions  of  Purkinje  cells  were  revealed  by  reconstructing  with  only  5
marker genes (excluding all genes exhibiting a Pearson correlation with Pcp4 of 0.25 or higher) and the
signal improved dramatically by including more markers (Fig. 5c). The reconstructed cerebellum slices
illustrated great concordance with the original spatial gene expression for a large number of known cell
type marker genes (Fig. 5d). To illustrate the versatility of novoSpaRc, we further applied it to a coronal
section of a brain cerebellum, also published in [29], with similarly successful results (Fig. 5e).
    Next, we used novoSpaRc to spatially reconstruct a single-cell dataset from whole-kidney [30], which
is  a  complex  tissue  with  stereotypical  organization.  As  no  reference  atlas  of  gene  expression  was
available in this case, the reconstruction was performed  de novo. We focused on six major cell types
within the kidney (Extended Data Fig. 15) and mapped the cells onto a 2-dimensional target space. The
de novo reconstruction recapitulated the urine flow within the kidney sub-compartments, as shown by the
spatial gene expression of corresponding marker genes (Extended Data Fig. 15). We note that, since no
prior  information  was  required  for  this  reconstruction,  this  case  demonstrates  the  applicability  of
novoSpaRc to a wide variety of medically-relevant tissues.
    Finally, to show that novoSpaRc can reconstruct individual samples and not only a prototypical tissue,
we used a dataset that captures expression patterns in hundreds of individual Drosophila embryos [31]. In
that case, the expression of four gap genes and four pair-rule genes was measured along the anterior-
posterior axis for 101 and 177 embryos, respectively, providing a distribution over expression patterns.
novoSpaRc was able to predict expression patterns based on a limited reference atlas (Extended Data Fig.
16). For a given embryo, novoSpaRc reconstruction using a reference atlas based on the gene expression
within the same embryo consistently outperformed reconstruction using a reference atlas based on the
averaged gene expression across all embryos in the dataset (Extended Data Fig. 16), yet reached high
correlation values for both (median  Pearson correlation for reconstructing a fourth gene based on the
three remaining genes were 0.99 (0.95) and 0.94 (0.77) for the gap and pair-rule genes, respectively).
    We examined the effect of the interpolation between structural and marker gene information (Extended
Data  Fig.  17),  as  well  as  extensively  benchmarked  novoSpaRc’s  performance  when  comparing  to
available  reconstruction  methods  that  fully  rely  on  a  reference  atlas  (Seurat[9] and  DistMap[18]).
novoSpaRc possesses several advantages when compared to the other existing methods (Extended Table
1, Methods) and shows overall substantial benefits in reconstruction performance (Extended Data Fig.
18).
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    A novoSpaRc-based spatial reconstruction allows us to identify known and potentially new  spatially
informative genes directly from the single-cell sequencing data. For the intestine and liver datasets, we
recovered highly zonated genes without a reference atlas (Methods, Supplementary File), and found that
the top inferred zonated genes were indeed supported experimentally and/or computationally (Fig. 6a,b,
Extended  Tables  2,  3).  Gene  ontology  (GO)  enrichment  analysis  [32] further  revealed  zonation-
compatible biological processes enriched for different domains in the intestine and the liver, reconstructed
by novoSpaRc (Methods,  Supplementary Note,  Supplementary Files).  For  the  Drosophila single  cell
dataset  we  ranked  all  8924  genes  according  to  their  spatially  informative  rank  (Methods,  Fig.  6c,
Supplementary File),  and found that transcription factors were,  as known from classic genetics  [33],
among the most highly informative genes (Fig. 6c). In addition, novoSpaRc identifies numerous lncRNAs
and TFs as  being spatially  highly informative,  many of  them having been already predicted in  [18].
Finally, we ranked all 15,878 genes in the cerebellum by their spatially informative rank (Methods, Fig.
6d, Supplementary File), and found that well-known marker genes with defined spatial expression pattern
are indeed among the highest ranking spatially informative genes (Fig. 6d).
    Taken together, we have demonstrated here that novoSpaRc can spatially reconstruct a diverse number
of biological tissues, based on a simple hypothesis about how gene expression is organized in space - a
structural correspondence between distances of cells in expression space and in physical space, and can
be  used  to  extract  spatially  informative  genes.  Our  current  implementation  is  based  on  pairwise
comparison of cells and locations. This requirement can be readily altered. In fact, it is compelling to
conjure that within certain biological contexts, different cell types may require higher-order interactions
or exhibit different spatial organization principles. In this context, it is important to stress that because of
the availability of general mathematical results in optimal transport theory, our framework is versatile and
can support a large variety of alternative ways to compare distances in expression and physical space by
varying the optimization loss functions (Methods, Supplementary Note). Such alternative schemes are
currently not supported by novoSpaRc, but can be implemented.
    Our data analyses and the success of the reconstructions by novoSpaRc suggest that we have identified
a general organization principle for how gene expression is organized in tissue space. It will be interesting
to find tissues in which this organization principle is weak or not valid. However, we are almost certainly
underestimating the strength of the structural correspondence principle as most of the single-cell data
available are relatively shallow and noisy. Our data also suggest that many more genes than perhaps
anticipated are involved in control  of spatial  tissue features and functions.  We believe that  we have
demonstrated that we can systematically identify at least a subset of these genes directly from the single-
cell data. In the future, we will extend these analyses to identify genes predicted to functionally interact in
space. Finally, our developed framework can be flexibly extended beyond spatial reconstruction. We are
currently utilizing it to recover different types of biological signals such as temporal progression on short
(e.g. cell cycle) and long (e.g. developmental) scales. 

Code availability A python package for novoSpaRc, as well as scripts reconstructing selected tissues
presented in the manuscript, are provided at https://github.com/rajewsky-lab/novosparc. 
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Figure 1 | Overview of novoSpaRc. A matrix containing single-cell transcriptome profiles, sequenced 
from dissociated cells, is the main input for novoSpaRc. The output is a virtual tissue of chosen shape 
which can be queried for the expression of all genes quantified in the data. 
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Figure 2 | novoSpaRc successfully reconstructs complex tissues with effective 1D structure de novo.
a, e, The reconstruction scheme for the mammalian intestinal epithelium and liver lobules respectively. b,
f,  Demonstration of the monotonic relationship between cellular pairwise distances in expression and
physical space. Center point, mean; error bars, SD. c, g, novoSpaRc infers the original spatial context of
single cells with high accuracy. Heatmaps show the inferred distribution over embedded layers (rows) for
the cells in each of the original layers (columns). d, novoSpaRc captures the spatial division of labor of
averaged expression of genes that play a role in the absorption of different nutrient classes in the intestine.
h, novoSpaRc captures spatial expression patterns (pericentral, periportal and non-monotonic) at single-
cell resolution in the liver. The expression level of each gene in both (d) and (h) is normalized to its
maximum value.
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Figure 3 | novoSpaRc accurately reconstructs the Drosophila embryo based on the BDTNP 
dataset[19]. a, FISH data is used to create virtual scRNA-seq data, which novoSpaRc then inputs to 
reconstruct a virtual embryo. b, Demonstration of the structural correspondence hypothesis. Pairwise 
cellular distances in expression space increase monotonically with distances in physical space. Center 
point, mean; error bars, SD c, novoSpaRc spatially reconstructs the Drosophila embryo with only a 
handful of marker genes. The quality of reconstruction (as measured by Pearson correlation with FISH 
data) increases with the number of marker genes and saturates at perfect reconstruction at 2 marker genes,
when using both structural information (driven by the structural correspondence assumption) and marker 
gene information (black line, ‘structural + reference’). This outperforms reconstruction that relies only on
marker gene information (dotted line, ‘only reference atlas’). Results are averaged for 100 different 
marker gene combinations. Center line: median; whiskers: +/-2.698SD. d, Distribution of gene-specific 
coefficients of correlation with the FISH data, from an instance of novoSpaRc reconstruction using 1 
marker gene. Lower correlation values correspond to finer expression patterns. e, Visualization of 
reconstruction results for 4 transcription factors. The original FISH data (first row) is compared to 
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reconstruction by novoSpaRc that exploits both structural and marker gene information (using 2 and 1 
marker genes) and reconstruction without any marker gene information (de novo). f, The original 
locations of three cells are compared to their respective reconstructed locations by novoSpaRc (using 2 
and  marker genes). The expression patterns of the 2 and 1 marker genes used for the results shown in 
panels d-f are shown in Extended Data Fig. 7c.
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Figure 4 | novoSpaRc identifies spatial archetypes in the Drosophila embryo by using scRNA-seq 
data and successfully reconstructs the zebrafish embryo. a, Schematic overview. The expression 
patterns as reconstructed by novoSpaRc are compared with the BDTNP expression values. b, 
Reconstruction of the Drosophila embryo using scRNA-seq data. Distributions of gene-specific Pearson 
correlation coefficients reflect better reconstruction with increasing number of marker genes. c, Three of 
the spatial archetypes novoSpaRc identified in the Drosophila embryo. d, Representative genes for each 
of the spatial archetypes depicted in c. FISH data (left columns) are compared against the novoSpaRc 
predictions (right columns). e, novoSpaRc reconstructs gene expression patterns in the zebrafish embryo 
by using only 15 marker genes, and the results improve with increasing number of marker genes 
(Extended Data Fig. 14). Genes shown were not used in any reconstruction. Top row: FISH data[9]; 
second row: Seurat predictions by using 47 marker genes[9]; third row: novoSpaRc predictions by using 
15 marker genes.
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Figure 5 | novoSpaRc reconstructs mouse cerebellum tissue. a, The original and the coarse-grained 
spatial expression of a Purkinje cells marker (Pcp4) in a sagittal cerebellum section from direct spatial 
RNA sequencing  [29]. b, The overall Pearson correlation between original and novoSpaRc predicted 
gene expression increases drastically by using more marker genes. With only 5 marker genes, the 
correlation is already substantially higher than that of a random mapping of cells to locations. Density 
plots contain values for all 15,878 genes. c, The spatial gene expression of Pcp4 signal is visible with 
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only 5 marker genes and increases as more markers are included for the reconstruction. d, Examples of 
original and predicted expression for neuronal marker genes. Reconstruction was performed with 35 
marker genes. e, novoSpaRc accurately reconstructs a coronal cerebellum section stemming from [29].
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Figure 6  | Utilizing novoSpaRc to identify spatially informative genes. (a, b), Identifying spatially
informative genes in the mammalian intestine and liver (Methods). We identify de novo (no marker genes
used) the most highly zonated genes along the crypt-to-villus axis in the intestine (a) and across the liver
lobule  axis,  where novoSpaRc’s  spatial  reconstruction of  these genes is  shown on the left  and their
respective original expression patterns are shown on the right. The expression level of each gene in both
(a) and (b) is normalized to its maximum value.  (c, d), Identifying spatially informative genes in the
Drosophila  embryo  (reconstruction  with  the  BDTNP  marker  genes)  and  a  slice  of  the  mammalian
cerebellum (reconstruction with 50 markers), using a measure of spatial autocorrelation (Methods).  c,
Expression patterns of the top 20 spatially informative genes in the Drosophila embryo (left). The spatial
autocorrelation values of the 84 transcription factors chosen for the BDTNP dataset [19] are among the
highest values over all 8924 genes of the fly embryo, demonstrating that they are identified to be highly
spatially informative. d, Top 20 spatially informative genes (out of top 1000 variable genes) in a slice of
the cerebellum. Four out of the five marker genes in Fig. 5 (Pcp4, Meg3, Mbp,  and Nefl), which are
patterned neuronal markers, are among the top spatially informative genes. For the fly (c), 0.25 fraction of
the genes identified as the top 20 spatially informative genes (left) were used as marker genes. More
generally, only 0.19 fraction of the genes in the top 100 spatially informative genes were used as marker
genes. For the cerebellum (d), none of the genes identified as the top 20 spatially informative genes were
used as marker genes.
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Methods
Data acquisition and pre-processing. The single cell RNA-seq datasets were acquired from the GEO
database  with  the  following  GEO  accession  numbers:  GSE99457  for  the  intestinal  epithelium  [16],
GSE84490 for the liver  [13], GSE95025 for the  Drosophila embryo  [18], GSE66688 for the zebrafish
embryo [9] and GSE107585 for the kidney [30]. The cerebellum Slide-seq datasets  [29] were acquired
from the Broad Institute Single Cell Portal (https://portals.broadinstitute.org/single_ cell/study/slide-seq-
study). The individual Drosophila embryos dataset [31] is available as Supplemental Information file of
the original manuscript. The BDTNP dataset was downloaded directly from the BDTNP webpage [19].
For the cases where normalized data was not available or used by the authors, we adopted the standard
library size  normalization in  log-space,  e.g.  if  d i j represents  the raw count  for  gene  i in  cell  j,  we
normalized it as 

d ij→d ij
'
=lo g2(105×

dij

∑
k

d kj

+1).
Highly variable genes were identified by plotting the dispersion of a gene as a function of its mean and
selecting the outliers above cutoff values (usually 0.125 for the mean and 1.5 for the dispersion).
In the Slide-seq datasets  [29], we summed up the transcriptomes of neighboring cells by rounding the
coordinates of the physical locations to the next integer multiple of 50. This resulted in a total of 8,331
(9,890)  cells  for  the  sagital  (coronal)  section  of  the  cerebellum.  Low quality  locations  were  further
filtered out by requiring at least 50 genes per cell resulting in a total of 7,704 (8,258) for the sagital
(coronal) section. Marker genes for the reconstruction were randomly selected from the set of 747 genes.
As one of the means of benchmarking the different reconstructions was to visually assess the expression
pattern of  Pcp4, we ensured that no genes having at least a Pearson correlation of R>=0.25 with  Pcp4
were selected as marker genes.

Mathematical  formulation of  novoSpaRc. novoSpaRc’s  procedure  includes  several  steps.  We first
compute the graph-based distance matrices for single cells in expression space,  D❑

exp∈ R❑

N ×N ,  and for

locations,  D❑

phys∈ R❑

M×M (Extended Data Fig. 1, Supplementary Note). Then, optionally, if a reference

atlas is available, we compute the matrix of disagreement, D❑

exp , phys∈ R❑

N×M, between each of the cells to
each of the locations, based on the inverse correlation between the partial expression profile for each
location given by the reference atlas and the respective expression profile for each cell. Equipped with
these  measures  of  intra-  and  inter-dataset  distances,  we  set  out  to  find  an  optimal  (probabilistic)
assignment of each of the single cells to cellular physical locations. 
    We formulate this problem as an optimization problem within the generalized framework of optimal
transport[20-22].  Optimal  transport  is  a  mathematical  framework  that  was  first  established  in  the
eighteenth century by Gaspard Monge and was initially motivated by a question of the optimal (minimal
cost)  way  to  rearrange  one  pile  of  dirt  into  a  different  formation  (the  respective  minimal  cost  is
appropriately  termed  earth  mover’s  distance).  The  framework  evolved  both  theoretically  and
computationally  [21,  22,  27]  and  drew  extensions  to  correspondence  between  pairwise  similarity
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measures via the Gromov-Wasserstein distance[25, 26]. Thus, in our context, it allows us to build upon
these results and tools to feasibly solve the cellular assignment problem. 

    We would like to find a probabilistic embedding, T❑∈ R
+¿N × M¿

, of N  single cells to M  locations, which

would minimize the discrepancy between the pairwise graph-based distances in expression space and in
physical space, and if a reference atlas is available, simultaneously minimize the discrepancy between its
values across the tissue and the expression profiles of embedded single cells. For each cell i, the value of

T i , j is the relative probability of embedding it to location j. These optimization requirements over T❑ are

formulated as follows. We measure the pairwise discrepancy of T  for the expression and physical spaces
using the Gromov-Wasserstein discrepancy[25]

D1 (T )= ∑
i, j , k , l

L (Di ,k
exp , D j , l

phys )T i , jT k , l ,

where L is a loss function, specifically we use the quadratic loss L (a ,b )=
1
2
|a−b|

2
. This term captures our

preference to embed single cells such that their pairwise distance structure in expression space would
resemble  their  pairwise  distance  structure  in  physical  space.  Intuitively,  if  expression  profiles
corresponding to cells i and k  are embedded into cellular locations j and l, respectively, then the distance
between i and k  in expression space should correspond to the distance between j and l in physical space
(e.g. if i and k  are close expression-wise they should be embedded into close locations and vice versa).
The  discrepancy  measure  weighs  these  correspondences  by  the  respective  probability  of  the  two
embedding events.
    To measure the match to existing prior knowledge, or an available reference atlas, we use the measure

D2 (T )=∑
i , j

Di , j
exp , physT i , j .

This term represents the average discrepancy between cells to locations according to the reference atlas,
weighted by T . Finally, we regularize T  by preferring embeddings with higher entropy, where the entropy
is defined as

H (T )=− ∑
i , j=1

❑

T i , j logT i, j .

Intuitively, higher entropy implies more uncertainty in the mapping. Entropic regularization drives the
solution away from arbitrary deterministic choices and was shown to be computationally efficient[27].
    Putting these together, we define the optimization problem for the optimal probabilistic embedding T ¿:

T ¿
=argmin(1−α)D1 (T )+α D2 (T )−ϵH (T )

subject ¿

∑
j

T i, j=pi∀ i∈ {1 ,… , N }

∑
i

T i , j=qi∀ j∈ {1 ,…,M }

where ϵ  is a non-negative regularization constant, and α ∈ [0,1] is a constant interpolating between the
first two objectives, and can be set to α=0 when no reference atlas is available. The constraints reflect the

fact that the transport plan  T  should be consistent with the marginal distributions  p∈ { p∈ R
+¿

N ;∑
i

pi=1}¿
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and  q∈ {q∈ R
+¿

M ;∑
i

qi=1},¿ over  the original input  spaces of expression profiles and cellular  locations,

respectively. These marginals can capture, for example, varying densities of single cells in the vicinity of
different cellular grid locations, or the quality of different single cell expression profiles (hence forcing
low-quality  single  cells  to  have  a  smaller  contribution  to  the  reconstructed  tissue-wide  expression
patterns). When such prior knowledge is lacking, p and q should be set to be uniform distributions.
   We derive an efficient algorithm for this optimization problem inspired by the combined results for
entropically regularized optimal transport[27] and Gromov-Wasserstein distance-based mapping between
metric-measure spaces[26] (Supplementary Note). 
    Then, given the original single cell expression profiles, represented by a matrix A∈ RN ×g (for N  single

cells  and  g genes),  and  the  inferred  probabilistic  embedding  T ∈ R
+¿

N ×M
¿
 (for  N  single  cells  and  M

locations), we can derive a virtual  in situ hybridization (vISH),  S=ATT ∈ R
+¿g×M¿

 (for  g genes and  M

locations), which contains the gene expression values for every cellular location of the target space.
    Note again that since our mapping is probabilistic, each of the cellular locations of the vISH does not
correspond to a single cell in the original data. Rather, the vISH represents the expression patterns over an
averaged, stereotypical tissue that the single cells could have originated from.

novoSpaRc  algorithm.  To  spatially  reconstruct  gene  expression, novoSpaRc performs  the  following
steps:
1. Read the gene expression matrix.

1a. Optional: select a random set of cells for the reconstruction.
1b. Optional: select a small set of genes (e.g. highly variable).

2. Construct the target space.
3. Setup the optimal transport reconstruction.

3a. Optional: use existing information of marker genes, if available.
4. Perform the spatial reconstruction including: 

4a. assigning cells a probability distribution over the target space.
4b. derive a virtual in situ hybridization (vISH) for all genes over the target space.

The novoSpaRc package, system requirements, installation guide and demo instructions are provided at
https://github.com/rajewsky-lab/novosparc. 

Evaluation of spatial reconstruction. We evaluate the quality of reconstruction by novoSpaRc by three
different measures: (a) Correlation of expression patterns. The reconstructed spatial gene expression of
all  genes  (vISH)  can  be  compared  to  the  original  expression  patterns  by  computing  the  Pearson
correlation  between them,  averaged over  all  genes,  such as  in  Fig.  3c.  (b)  Alignment  of  single  cell
assignment. For the tissues with 1d symmetry we also compute the fraction of cells correctly assigned to
their  original  spatial  zone.  To  do  this,  we  compare  for  each  cell  its  original  spatial  zone  to  its
reconstructed zone according to novoSpaRc. More specifically, the zone that the cell is assigned to with
highest probability. This notion can be extended to the fraction of cells assigned to a spatial zone that is
found at most at  a certain distance from their  original zone.  We show this evaluation for increasing
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distances for the reconstruction of the intestinal epithelium and the liver (Extended Data Figs. 3a,c). (c)
Probability heatmap. In Fig. 2c,g we quantify the assignment of single cells to their corresponding 1d
spatial zones by a probabilistic version of a confusion matrix (the probability heatmap). For each original
zone (on the x-axis), we average over the reconstructed spatial probability distribution of single cells
originating from that zone and display that on the y-axis.

Generative model for spatial gene expression.  To systematically evaluate novoSpaRc’s performance,
we  generated  synthetic  spatial  expression  data  using  a  simple  generative  model  that  is  based  on
independent Gaussian spatial expression patterns for each gene, for either a 1d (line), 2d (squre) or 3d
(cube) shaped synthetic tissue.
For 1d tissues,  the expression  E of each gene  g over the spatial  zones is proportional to a gaussian

distribution, E (x∨μg , σ g)∝ e

−(x−μg)
2

2σ g
2 , where μg is the mean of the gaussian, sampled uniformly across the

1d grid,  and  σ g is the standard deviation.  For 2d and 3d tissues,  the expression is  proportional  to a

multivariate normal distribution,  E (x∨μg , Σg)∝ e
−1
2

(x−μ g)
T Σ g

−1(x−μg), where μg is the mean vector (sampled

uniformly across the 2d or 3d grid), and Σg  is the covariance matrix.
After generating the synthetic expression matrix, we add gaussian noise to the expression values with 0
mean  and  σ noise σ expression standard  deviation,  where  σ expression is  the  standard  deviation  of  the  entire
expression matrix, and σ noise is a parameter that sets the signal to noise ratio.
The expression of ‘spatially informative’ genes is set according to the model above, while the expression
of ‘spatially non-informative’ genes is randomly permuted across the synthetic tissue. 
The default  parameters for the simulations and novoSpaRc reconstructions are:  1000 single cells  (or
closest approximation for the 2d grid), 100 grid locations (or closest approximation for the 3d grid), 100

genes,  σ=10,  ∑
g

σI  (where  I  is  the  identity  matrix),  α=0.5,  number  of  marker  genes  =  5,  and

σ expression=0.1. 

Generating in silico single cell data for BDTNP and virtual embryo datasets. To test the performance
of novoSpaRc with single-cell resolution ground truth, we generated in silico single cell datasets for two
cases: the BDTNP data [19] and the virtual Drosophila embryo data [18]. In both cases we have access to
expression profiles for different locations across the embryo. We effectively dissociate the embryos by
taking these expression profiles to be the expression profiles of single cells in our in silico set, masking
their true original locations, and use novoSpaRc to reconstruct the original embryos (which may be done
at lower spatial resolution). 

Identification of spatial archetypes. The identification of spatial archetypes is performed by clustering
the spatial  expression of a given set  of genes.  The gene expression is  first  clustered by hierarchical
clustering at the vISH level, although in principle different clustering methods can be used. The number
of archetypes is chosen by visually inspecting the resulting dendrogram. The expression values of each
gene of  the  cluster  are  then  averaged per  location  to  produce  the  spatial  archetype  for  that  cluster.
Representative genes for each cluster are identified by computing the Pearson correlation of each gene
within the cluster against the spatial archetype. The derivation of the spatial archetypes strongly depends
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on the set of genes used. We observed that the set of highly variable genes generally resulted in sensible
spatial archetypes. A list of genes corresponding to each archetype is provided as a Supplementary File.

Identification of zonated genes. For tissues with 1d symmetry, we produce a ranking of highly zonated
genes,  both  according to  the  original  spatial  expression patterns  (Extended Data  Figs.  3b,e)  and the
reconstructed patterns (Fig. 6a,b).
The input is a spatial expression matrix (either original or reconstructed), specifying the expression level
of each gene in each of the spatial zones. Then, to find a ranked list of genes that are highly zonated
towards the first or last spatial zones (e.g. crypt in the liver), we first select all genes (i) whose highest
expression occurs in that respective zone, (ii) whose maximum expression value is in the top 1% of all
genes,  (iii)  and  that  are  statistically  significantly  zonated.  To  compute  the  zonation  significance  of
individual genes, we used a non-parametric test based on the kendall’s tau coefficient. The kendall’s tau
coefficient is a measure for the correspondence between two ranked lists, in our case: the expression
values of a given gene over consecutive spatial zones, and a list of the zones numbering. Finally, the
remaining genes are ranked according to their center of mass. 
The list of predicted zonated genes based on novoSpaRc’s reconstruction for the mammalian intestine and
liver are available as Supplementary Files.

Gene ontology enrichment. We used GOrilla for GO enrichment analysis[32], where GO enrichment
was computed based on target and background lists of genes (Supplementary Note). For both the target
and background lists of genes we selected genes whose maximum expression value is in the top 10% of
all genes. The target lists for genes zonated towards the boundaries of the 1d spatial axes (crypt and V6 in
intestine,  layer  1  and  9  in  liver)  were  further  filtered  to  contain  only  genes  that  are  statistically
significantly  zonated,  as  described  in  the  ‘identification  of  zonated  genes’  Methods  subsection.  The
background lists contained the corresponding complements of the target lists.

Identification of spatially informative genes. We use a spatial autocorrelation measure to rank genes as
spatially informative. Specifically, we use Moran’s I as a measure for global spatial autocorrelation. For
each individual gene i, Moran’s I measure for its spatial expression, y i, over n cellular locations is:

I=
n
S0

∑
i, j

ziwi , j z j

∑
i

zi
2

Where zi= yi− yi,  yi is the mean expression of gene i,  S0=∑
i , j

wi , j, and w i , j is a spatial weights matrix,

which we base on a k-nearest neighbors graph for each cellular location (k=8). To calculate Moran’s I
measure and respective p-values for different genes, we used the implementation of PySAL, a Python
spatial analysis library [34].
We acknowledge the use of Moran’s I measure for single cell analysis by [35] and the Monocle 3 tutorial
by the Trapnell Lab.
The Moran’s I scores, with their respective p-values, based on novoSpaRc’s reconstruction for all genes 
of the Drosophila embryo, zebrafish embryo, and cerebellum are available as Supplementary Files.
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novoSpaRc’s advantages, limitations, and direct comparison to existing reconstruction methods.
novoSpaRc offers several  features which cannot be exploited as a whole by existing methods: (a) it
enables  incorporation  and  interpolation  of  both  structural  information  (such  as  the  structural
correspondence assumption) and a reference atlas, (b) it naturally provides probabilistic embedding of
single cells onto their original spatial context, which provides a more robust reconstruction, (c) it allows
to incorporate prior structural information regarding the structure of the tissue from which the cells were
dissociated, (d) it does not require any tailored pre-processing steps and can utilize continuous expression
data directly, (e) and finally, it is flexible in terms of its structural assumption (which can be potentially
adjusted in future work) and allows to incorporate marginal information (effectively incorporating prior
knowledge about different aspects such as varying local density of cells across the tissue and varying
quality of sequenced single cells). 
    We directly compare novoSpaRc to two available spatial reconstruction methods that fully rely on a
reference atlas: Seurat  [9] and DistMap  [18]. A comparison of the intrinsic characteristics of the three
approaches is provided in Extended Table 1. The reconstruction results for the BDTNP data [19], as well
as scRNA-seq data of the Drosophila [18] and zebrafish embryos [9] and the cerebellum [29] using the
three different approaches is shown in Extended Data Fig. 18. This comparative analysis is performed for
varying numbers of marker genes and shows how, for the same number of marker genes, novoSpaRc
generally  outperforms other  available  methods.  Both  DistMap and Seurat  require  a  large number of
marker genes to reconstruct the BDTNP dataset, whereas the Pearson correlations for novoSpaRc saturate
at perfect reconstruction with only 2 marker genes. novoSpaRc outperforms Seurat and DistMap in the
case of the  Drosophila embryo and performs comparably to them for the zebrafish embryo, while it
should  be  stressed  that  DistMap  and  Seurat  were  developed  and  tailored  for  these  two  datasets,
respectively. Finally, novoSpaRc substantially outperforms DistMap and Seurat for the reconstruction of
the brain cerebellum, where both DistMap and Seurat struggle to form meaningful reconstructions. It
should  be  noted  that  DistMap  requires  a  threshold  to  produce  the  expression  patterns,  which  is  in
principle unknown. We selected the threshold which maximizes the Pearson correlations, thus giving
DistMap an unfair advantage in these comparisons.
    It is important, however, to keep in mind novoSpaRc’s limitations.  novoSpaRc works by embedding
the single cells into a predefined shape, and so does not allow to learn a latent representation of the data
that was not used as input. In addition, as mentioned in the main text,  do novo  reconstruction can be
achieved up to global transformations relative to symmetries of the shape of the target space. This is not a
limitation specific to novoSpaRc but inherent to the problem of de novo reconstruction without additional
prior  information,  such as  marker  gene  data  (Supplementary Note).  Finally,  novoSpaRc employs an
assumption about  spatial  gene expression (here we use  the  structural  correspondence assumption)  to
reconstruct cellular locations. In general, we found the structural correspondence assumption to hold to a
certain extent in all tissues and organisms we looked into so far, including highly heterogeneous and
challenging  tissues  like  the  brain.  We believe  this  hints  that  spatial  gene  expression  is  much  more
structured and informative than currently believed, and that external signaling gradients and cell-to-cell
communication provide stronger signals for spatial patterning than expected. However, in cases where
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this is a weak assumption, challenged for example by complex tissues with multiple cell types or multiple
domains, novoSpaRc may struggle. However, it is important to stress that novoSpaRc’s flexibility allows
it  to  employ  alternative  principles  or  assumptions  that  would  fit  different  biological  scenarios  or
incorporate diverse experimental prior information. 
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Extended Data Figure 1 |  Overview of probabilistic optimal matching using novoSpaRc. Based on
the raw data of single cells in expression space and locations along a grid resembling the target tissue,
graph structures  are  computed,  and distance  matrices  are  derived from these  graphs  (Supplementary
Note).  The two branches,  and potentially  a  reference atlas,  are  aligned using novoSpaRc,  under  our
structural  correspondence assumption  (distance  in  expression  space  is  on  average  monotonically
increasing with distance in physical space) and by using probabilistic embedding (Supplementary Note).
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Extended Data Figure 2 | Generative model for spatial gene expression. The generative model and its
default parameters are described in Methods. (a, b) Visualization of noisy expression patterns for three
random genes in models for a 1d (a) and 2d (b) tissues are shown on the left. On the right we show the
original expression pattern for a representative gene, its coarse-grained representation (decreased spatial
resolution),  and  its  reconstruction  using  novoSpaRc.  c, Pearson  correlation  of  the  reconstructed
expression patterns to the original synthetic expression data increases with increasing signal to noise
ratio, with the number of marker genes and with the fraction of informative genes, and exhibits non-
monotonic behavior with the alpha parameter. We note that alpha is an interpolation parameter (defined in
the section ‘Mathematical formulation of novoSpaRc’ in Methods), between using only a reference atlas
(α = 1) and using both structural information (driven by the structural correspondence assumption) and a
reference atlas. Results are averaged over 100 instantiations of the generative model, where center point,
mean; error bars, SD. 
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Extended Data Figure 3 | Evaluation of novoSpaRc reconstruction of the intestinal epithelium and
the liver lobule. a, The fraction of cells in the crypt-to-villus axis (y-axis) that is correctly assigned to its
corresponding original villus zone[16], or is assigned to a zone up to a d-zones-away from the original
zone  (x-axis),  is  substantially  higher  than  that  of  random  assignment. b, novoSpaRc  successfully
reconstructs the spatial expression patterns of the top zonated genes (10 top zonated genes towards the
crypt, and 10 top zonated genes towards V6). c, The fraction of cells in the liver lobule axis (y-axis) that
is correctly assigned to its corresponding original lobule layer[13], or is assigned to a layer up to a d-
layers-away from the original  layer  (x-axis),  is  substantially  higher  than that  of  random assignment.
novoSpaRc  successfully  reconstructs  the  spatial  expression  patterns  of  d, a  group  of  pericentral,
periportal  and non-monotonic  genes  (complementing  Fig.  2h)  and  e,  the  top  zonated  genes  (10  top
zonated genes towards the CV, and 10 top zonated genes towards PV). Selection of top zonated genes is
described in Methods. The expression level of each gene in (b,d,e) is normalized to its maximum value.
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Extended Data Figure 4 | novoSpaRc reconstructs the mammalian liver de novo. Examples of FISH
expression patterns of six zonated genes across the liver lobules, comparing the reconstructed (de novo
vISH data) expression patterns by novoSpaRc to (a) the expression patterns reported in [13], and (b) the
original (FISH) data (adapted from [13]). The visualization in (a) is a heatmap, showing the expression
values of each gene across the lobule layers. The visualization of the reconstructed vISH data in (b) is
meant to be comparable to the FISH images, and therefore the 1d reconstructed coordinates are projected
onto a polar coordinate system (CV – middle, PV – outer circumference). The expression level of each
gene in both (a) and (b) is normalized to its maximum value.
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Extended Data Figure 5 |  novoSpaRc reconstruction of  the  intestinal  epithelium is  robust  and
consistent  with  changing  grid  resolution. The  successful  de  novo reconstruction  of  the  intestinal
epithelium dataset[16] is achieved for varying numbers of layers used for the target space (including both
lower and higher number of layers compared with the seven original number of reference layers). The
expression level of each gene is normalized to its maximum value.
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Extended  Data  Figure  6 |  novoSpaRc  reconstruction  of  the  Drosophila  embryo  based  on  the
BDTNP dataset is robust. a, Pearson correlation of the reconstructed expression patterns to the original
FISH expression data  [19] increases with the number of genes used to construct the structural cellular
graph in expression space, and b, with the fraction of those genes that are spatially-informative, where
spatially non-informative genes in this case were simulated as random Gaussian variables with mean and
standard deviation comparable to that of the original gene set. Pearson correlation of the reconstructed
expression patterns to the original FISH expression data  [19] increases with the percentage of sampled
single  cells  (without  (c)  and with  (d)  replacement),  and steadily  decreases  with  noise  level  (e)  and
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percentage of dropouts in the data (f).  g,  The mean value and variance of the optimization objective
function (which we aim to minimize) increases with noise level.  h, Pearson correlation of the de novo
reconstructed  expression  patterns  to  the  original  FISH  data  varies  gradually  with the  entropic
regularization parameter ϵ . Results for subplots (a-g) are averaged over 100 random choices of 2 marker
genes, where center point, mean; error bars, SD. 
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Extended Data Figure 7 |  novoSpaRc predicts spatial positions of individual cells. a,  Examples of
mapping probabilities of single cells produced by novoSpaRc for the Drosophila embryo, based on the
BDTNP dataset[19]. The predicted spatial positions of cells are distributed in a localized fashion over
relatively many locations when reconstruction is done de novo (top panel), and are sharply localized when
marker genes are used (1 and 2 marker genes, middle and bottom panel).  b, Histogram of Euclidean
distances between the original cellular location of single cells and the most likely location predicted by
novoSpaRc using 1 and 2 marker genes, and compared to a histogram for random predictions.  c,  The
expression patterns of the 2 and 1 marker genes used for the results presented in panels a,b.
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Extended Data Figure 8 | novoSpaRc accurately reconstructs the Drosophila embryo based on the
BDTNP dataset[19]. Visualization of reconstruction results for 4 transcription factors. The original FISH
data  (a)  is  compared to  reconstruction  by  novoSpaRc that  exploits  both  structural  and marker  gene
information (using 2 and 1 marker genes, b) and reconstruction without any marker gene information (de
novo,  c).  Reconstruction  using  both  structural  and  marker  gene  information  (or  a  reference  atlas)
outperforms reconstruction based solely on a reference atlas (d).  
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Extended Data Figure 9 |  novoSpaRc reconstructs the  Drosophila embryo de novo. Reconstruction
based  on  the  BDTNP dataset[19].  Examples  of  marker  gene  expression  patterns  across  the  embryo
comparing the original (FISH) data and the reconstructed (de novo) data.
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Extended Data Figure 10 |  Self-consistency analysis of de novo reconstruction with novoSpaRc. a,
Pearson correlation of embedded  de novo expression patterns of the BDTNP dataset  [19] for different
values of the entropic regularization parameter (ϵ ) with the expression pattern for  ϵ=5∗10−5 (vertical
dotted line).  b,  The spatial  standard deviation of embedded cells over the  Drosophila embryo of the
BDTNP dataset via de novo novoSpaRc is statistically significantly lower than the standard deviation of
randomized embedding (two-sample K-S p < 10-200). 
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Extended Data Figure 11 |  novoSpaRc reconstructs the Drosophila virtual embryo. a, Overview of
the process of the spatial reconstruction of the Drosophila virtual embryo. b, The Pearson correlation of
the reconstructed expression patterns of the virtual embryo with the corresponding original data increases
with the number of marker genes used for the reconstruction. c, The self-consistency of reconstruction of
the virtual embryo increases with the number of marker genes. The consistency score was calculated as
the average pairwise Pearson correlation within reconstructed expression patterns for different sets of
marker genes. Results are averaged over 100 random choices of 4 marker genes. For subplots b,c: center
point, mean; error bars, SD.
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Extended Data Figure 12 |  novoSpaRc accurately reconstructs the Drosophila embryo based on
single  cell  data. Original  spatial  expression  (a)  compared  to  visualization  of  novoSpaRc–based
reconstruction  results  (b)  for  4  transcription  factors  that  exploits  both  structural  and  marker  gene
information (using 10-80 marker genes). 
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Extended Data Figure 13 | novoSpaRc identifies spatially informative archetypes by using scRNA-
seq data for the Drosophila embryo. The archetypes shown complement those of Fig. 4c,d in the main
text. Preferred spatial positioning is denoted by coloring ranging from blue (low) to yellow (high). FISH
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images  were  taken from the  BDGP database[36].  For  genes  for  which  an  image was  not  available,
DVEX[18] was used instead. Two representative genes are shown for each spatial archetype. novoSpaRc
accurately  groups  genes  expressed  in  a  particular  domain,  such as  the  subdomain  of  the  mesoderm
characterized by the transcription factor  gcm (Archetype 5), while it does not capture the details of the
fine expression patterns of pair-rule genes (Archetype 8).
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Extended Data Figure 14 |  novoSpaRc reconstruction of the zebrafish embryo improves with the
number  of  marker  genes. a,  Histograms  assessing  the  increase  in  the  accuracy  of  novoSpaRc
reconstruction, measured by the Pearson correlation with FISH data[9], with increasing number of marker
genes. b, Top row: FISH data[9]; following rows: novoSpaRc predictions by using 15, 30 and 47 marker
genes. Genes shown were not used for any of the reconstructions.
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Extended Data Figure 15 | novoSpaRc successfully reconstructs a whole-kidney dataset de novo. a,
Sketch of the major cell types reconstructed with novoSpaRc. b, Representative marker genes for each of
the cell types shown in (a). Top rows depict a rough positioning for each cell type in yellow/green and
bottom  rows  show  the  novoSpaRc  predicted  gene  expression  in  the  reconstructed  tissue.  Nphs1:
podocytes,  Nrp1: endothelial cells,  Slc27a2: proximal tubule cells,  Umod: Loop of Henle,  Pvalb: distal
convoluted tubules, Aqp2: collecting duct cells. Expression ranges from low (blue) to high (yellow).
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Extended Data Figure 16  |  NovoSpaRc successfully reconstructs single  Drosophila embryos.  The
averaged original expression of four gap genes (a) and four pair-rule genes (e) is shown for 101 and 177
individual Drosophila embryos, respectively. Solid line: mean; dark shadow: std; light shadow: minimum
and  maximum values  over  all  embryos.  (b,f)  Demonstration  of  the  monotonic  relationship  between
cellular pairwise distances in expression and physical space, consistent with the structural correspondence
assumption. Center point, mean; error bars, SD. (c,g) Pearson correlation increases with the number of
marker genes used by novoSpaRc for the reconstruction of the remaining genes (α=0.5) for both gap (c)
and  pair-rule  genes  (g).  Using  a  reference  atlas  corresponding  to  the  individual  embryo  being
reconstructed  (‘individual  atlas’)  achieves  consistently  higher  reconstruction  quality  than  using  an
averaged  reference  atlas  over  all  embryos  (‘averaged  atlas’).  Example  of  the  reconstruction  of  the
expression patterns across a single random embryo, where the reconstruction of each of the four genes is
performed using the three complement genes as a reference (α=0.5), for both gap (d) and pair-rule genes
(h).  Notice  that  the  reconstructed  expression  patterns  presented  in  (d,h)  were  computed  while  the
corresponding gene in each case was not used for the reconstruction. The expression level of each gene in
(a,c,e,g) is normalized to the maximum value over the mean expression of all embryos.
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Extended Data Figure 17|  Reconstruction quality varies with alpha parameter.  Reconstructions of
the BDTNP dataset, the Drosophila and zebrafish embryos and the brain cerebellum with varying number
of  marker  genes  used  for  the  reconstruction  and  different  values  of  the  alpha  parameter.  The
reconstruction quality is quantified by calculating Pearson correlations between the predicted and the
original  gene expression patterns for all  genes that  were not  used as markers for  the reconstruction.
Reconstruction quality decreases for α=1 in the BDTNP and brain cerebellum cases, which corresponds
to reconstructing based only on reference marker genes, without taking the structural correspondence
assumption  into  account.  We  note  that  alpha  is  an  interpolation  parameter  (defined  in  the  section
‘Mathematical formulation of novoSpaRc’ in Methods), between using only a reference atlas (α = 1) and
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using both structural information (driven by the structural correspondence assumption) and a reference
atlas. Center line: median; whiskers: +/-2.698SD.
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Seurat DistMap novoSpaRc

Spatial mapping with reference atlas ✔ ✔ ✔

Reference atlas can have continuous values X X ✔

Spatial mapping de novo X X ✔

Does not require predetermined shape ✔ ✔ X

Can exploit structural information X X ✔

Can use continuous expression data X X ✔

Can be applied to complex tissues X ✔ ✔

Does not require data imputation X ✔ ✔

Does not require a threshold ✔ X ✔

Extended Table 1 |  Comparison of spatial reconstruction with novoSpaRc with available methods
that fully rely on a reference atlas. The intrinsic characteristics of novoSpaRc are compared against
Seurat [9] and DistMap [18].
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Extended Data Figure 18  |  Comparison of spatial reconstruction with novoSpaRc with available
methods that  fully  rely on a  reference atlas. The  Pearson correlation  of  the predicted against  the
original spatial  gene expression is  shown as a function of the top 100 highly variable genes for the
intestinal epithelium and liver datasets, or the number of marker genes used for the reconstruction for the
BDTNP,  the  Drosophila and  zebrafish  embryos,  and  the  brain  cerebellum.  For  the  1D datasets,  the
reconstructions  are  done  de  novo (with  no  reference  atlas)  and  the  existing  baseline  methods  are
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inapplicable. For the liver, the last lobule layer was removed from the analysis since only five cells were
associated with it. For the 2D datasets correlations are computed only for genes that were not used for the
reconstructions. Note that for the Drosophila embryo novoSpaRc outperforms DistMap[18], and for the
zebrafish embryo novoSpaRc performs comparably to or better than Seurat[9], although those methods
were  developed  and  tailored  for  the  Drosophila and  zebrafish  embryos,  respectively,  and  the  best-
performing threshold was chosen for DistMap. Center line: median; whiskers: +/-2.698SD.
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Intestine: predicted by NovoSpaRc to be zonated towards the crypt
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Reconstructed as zonated 
towards the crypt [16]

X X X X X X X X X X

Reported to be expressed in 
the crypt

[37]

Reported to be 
overexpressed in the crypt 
vs the villus (in human)

[38, 39]

Reported to be functionally 
associated with crypt

[b] [c] [d] [e]

Additional support [a] [a]

[a] Was found to be expressed similarly to Top2a in single cells [40].
[b] Associated with cell division
[c] Reported to regulate cell proliferation, apoptosis and migration in bladder [41].
[d] Inferred to be involved in regenerative process, proliferation, or stem cell identity [42].
[e] Gene ontology process: cell cycle and cell division [43].

Intestine: predicted by NovoSpaRc to be zonated towards the tip of the villus
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Reconstructed as zonated 
towards V6 [16]
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Protein abundance was 
associated with V6 [16]
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Reported to be 
overexpressed in the villus 
vs the crypt (in human)

[38, 39]

Extended Table 2 |.  Literature-based support for highly zonated genes in the intestinal epithelium
revealed by novoSpaRc. All 20 genes recovered by novoSpaRc to rank highest among zonated genes (10
top zonated genes towards the crypt, and 10 top zonated genes towards V6), were either independently
reconstructed (based on a reference atlas) to be zonated, and/or have direct experimental support for their
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zonation  profiles,  and/or  were  shown  to  be  functionally  related  to  processes  associated  with  their
respective zonation profiles. Selection of top zonated genes is described in Methods.
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Liver: predicted by NovoSpaRc to be pericentral (zonated towards layer 1)
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Reconstructed as zonated 
towards CV [13]
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Reported as zonated towards 
CV

[44-47] [48, 49]
[47]

[50, 51]
[47, 49]

Differentially methylated 
towards CV [47]

X X X X

Higher expression in Axin2+ 
pericentral hepatocytes [52]

X X X X X

Additional support [a]

[a] A gene found to increase  in liver of mice exposed to chronic hypoxia [53].

Liver: predicted by NovoSpaRc to be periportal (zonated towards layer 9)
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Reconstructed as zonated 
towards PV [13]

X X X X X X X X X X

Reported as zonated towards PV [47]
Differentially methylated [47] X X X X X X
Lower expression in Axin2+ 
pericentral hepatocytes [52]

X X

Additional support [c] [a] [b] [c]

[a] A gene found to increase  in liver of mice exposed to chronic hypoxia [53].
[b] secretory antioxidase that protects against oxidative damage, whose overexpression reduced local and 
systemic oxidative stress generated by BDL [54].
[c] Reported as differentially expressed genes between PV and CV zone that were associated with 
differentially methylated regions featuring hypomethylation coinciding with a transcriptional 
upregulation in the respective zone [47].

Extended Table 3 |.  Literature-based support for highly zonated genes in the liver lobule revealed
by novoSpaRc. All 20 genes recovered by novoSpaRc to rank highest among zonated genes (10 top
zonated  genes  towards  the  CV,  and  10  top  zonated  genes  towards  PV),  were  either  independently
reconstructed (based on a reference atlas) to be zonated, and/or have direct experimental support for their
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zonation  profiles,  and/or  were  shown  to  be  functionally  related  to  processes  associated  with  their
respective zonation profiles. Selection of top zonated genes is described in Methods.
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