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The effect of interventions on COVID-19

Kristian Soltesz1 ✉, Fredrik Gustafsson2, Toomas Timpka3,4, Joakim Jaldén5, Carl Jidling6, 
Albin Heimerson1, Thomas B. Schön6, Armin Spreco3,4, Joakim Ekberg3,4, Örjan Dahlström7, 
Fredrik Bagge Carlson8, Anna Jöud9,10 & Bo Bernhardsson1

arising from S. Flaxman et al. Nature https://doi.org/10.1038/s41586-020-2405-7 (2020)

Flaxman et al.1 took on the challenge of estimating the effectiveness 
of five categories of non-pharmaceutical intervention (NPI)—social 
distancing encouraged, self isolation, school closures, public events 
banned, and complete lockdown—on the spread of severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). On the basis of mortality 
data collected between January and early May 2020, they concluded 
that only one of these, the lockdown, had been effective in 10 out of the 
11 European countries that were studied. However, here we use simula-
tions with the original model code to suggest that the conclusions of 
Flaxman et al. with regard to the effectiveness of individual NPIs are not 
justified. Although the NPIs that were considered have indisputably con-
tributed to reducing the spread of the virus, our analysis indicates that 
the individual effectiveness of these NPIs cannot be reliably quantified.

Flaxman et  al.1 presented a method to estimate the effects of 
NPIs on the time-varying reproduction number (Rt) of SARS-CoV-2  
infection. Data from 11 European countries were pooled on the basis of 
the assumption that the effects of NPIs on Rt are not country-specific: 
the factor of relative change in Rt resulting from a particular NPI  
was assumed to be independent of the country in which the NPI was 
implemented.

Some country-specific flexibility was, however, provided through the 
basic reproduction number (R0) being country-specific. More notably, 
additional flexibility was introduced by ascribing a country-specific 
effect to the NPI that was introduced last in each country. This replaced 
the parameterization in a preprint version (Imperial College Report 
13)2, in which a country-specific effect was instead assigned to the 
lockdown NPI.

Our criticism concerns the final published version of the model1,3. 
Previous iterations of the model are not explicitly considered, but we 
reference them for two purposes: (1) to demonstrate the sensitivity of 
the final published model to subtle and realistic alterations in param-
eter values; (2) to illustrate how the modelling choices appear to lack 
motivation other than to introduce flexibility, which masks sensitivity 
issues pertaining to the fundamental structure of the model. As made 
evident below, we believe the core problem is that the death data are not 
descriptive enough to support the conclusions of Flaxman et al., which 
were based on simulation results obtained using an over-flexible model.

Of the 11 modelled countries, Sweden is worthy of particular atten-
tion, given that it was the only country in which no lockdown took 
place. As we have previously shown4, the estimated effects of NPIs 
change markedly when the model is not allowed to give the Swedish 
data the special treatment that the country-specific last NPI parameter  
enables. The country-specific last NPI parameter is needed to explain 
the decrease of Rt supported by the Swedish death data, and to provide 
a good model fit despite the absence of a lockdown in Sweden.

Figure 1 shows the outcome for Sweden when executing the model3,5 
either with (Fig. 1a) or without (Fig. 1b) the last NPI adjustment in place. 
With the last NPI adjustment in place, the public events ban results in a 
mean reduction of Rt of 71% (95% credible interval: 59–81%) in Sweden, 
which contrasts with the negligible effect of the public events ban in 
the other 10 countries (less than 2% mean reduction of Rt and less than 
15% with 95% credibility). Notably, the estimated effectiveness of the 
public events ban in Sweden is comparable to that of lockdown in the 
10 countries in which one was implemented. As lockdown was the last 
intervention in most countries, its estimated effect comprises a pooled 
effect (82% mean reduction of Rt) and a separate country-specific ‘last 
NPI’ effect (mean change in Rt of between −24% and 18% for the coun-
tries considered).

The result above—that is, the public events ban and the lockdown 
being mutually effective in Sweden and 10 other European countries—
was not addressed by Flaxman et al, which is noteworthy as this result 
undermines the conclusion of lockdown being especially effective. 
Furthermore, without the introduction of the last intervention param-
eter after the publication of the preprint2, the inconsistency would have 
been readily visible in reported plots (Fig. 1b).

It seems unlikely to be a result of circumstance that lockdown was 
implemented in the 10 countries in which it had a large effect on Rt, and 
omitted in the single country in which the public events ban instead had 
a similar effect (sufficient to drive Rt below 1). An alternative hypothesis 
is that the infection-to-death distribution used by the model, combined 
with the death data that were available by early May, makes the model 
ascribe almost all of the reduction in Rt to the last intervention that 
was implemented in each country. This hypothesis is supported by 
executing the model code3,5 with different interventions being defined 
as having occurred last in the country in which no lockdown occurred 
(Sweden), as shown in Fig. 2.

Exchanging the last intervention for a different one is not merely 
interesting from a theoretical perspective. For example, it is hard to 
judge whether transitioning to online teaching at high school and 
university levels, while keeping elementary schools and preschools 
open, constitutes a school closure or not. Similarly, the crowd-size 
limit associated with the public events ban NPI remains a parameter 
to be decided by the modeller. Early versions of the model defined the 
public events ban to have taken place in Sweden on 12 March 2020, 
when gatherings exceeding 500 persons were prohibited. This was 
later changed to 29 March 2020, when gatherings exceeding 50 per-
sons were prohibited. These subtle alterations of the definitions alter 
which NPI, of school closure, public events ban, or social distancing 
encouraged, was the last to be implemented in Sweden. In each case, 
the model uses the last intervention to explain the majority of the drop 
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of Rt to below 1, which is needed to stay consistent with the decrease 
in reported deaths.

As mentioned above, our analyses were conducted using the original 
model implementation3,5 referenced from the final published paper1, and 
we have considered the definitions of NPIs reported in the preceding ver-
sions of the model1–3 solely to highlight how small and plausible perturba-
tions of these definitions can result in a lack of practical identifiability, 

in the statistical sense. Identifiability issues have to some extent been 
acknowledged by the authors; Flaxman et al. state that “The close spacing 
of interventions in time [...] means that the individual effects of the other 
interventions are not identifiable”1. However, this is overshadowed by 
the subsequent presentation of credible intervals for the effects of the 
different NPIs, and the claim that “Lockdown has an identifiable large 
effect on transmission (81% (75–87%) reduction)”1. We believe that the 
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Fig. 1 | Estimated effectiveness of the public events ban in Sweden. Top, 
posterior credible intervals for the reproduction number Rt in Sweden. Bottom, 
effectiveness of the pooled interventions in the 11 modelled European 
countries. a, Reproduced results from Flaxman et al.1, using the original model 
code3,5, including a country-specific effectiveness parameter for the last NPI to 
be implemented in each country. This corresponds to a country-specific 
effectiveness for the public events ban in Sweden and for lockdown in the other 

10 countries. b, Results using the same code, but with the ‘last NPI’ parameters 
replaced with country-specific parameters for the lockdown NPI, as in the 
preceding report2. This change does not affect the 10 countries for which 
lockdown was the last NPI, but for Sweden it removes the flexibility of a last NPI 
parameter, which is needed to explain the Rt value supported by the Swedish 
death data.
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Fig. 2 | The effects of interventions on virus spread in Sweden, with slightly 
varying definitions of the interventions. a, School closure defined to have 
taken place on 18 March 2020; public events ban defined to have taken place on 
29 March 2020. b, Same as a, but with the public events ban moved back to 12 
March 2020. c, Same as b, but with school closure defined not to have taken 
place. As expected, the visual appearance of the plots is similar, with the last 

intervention contributing most to the reduction of virus spread. This is 
problematic, as the last intervention differs between a, b and c, with each 
relying on equally motivated NPI implementation dates that were introduced 
by Flaxman et al.1,2 in different versions of the model code3. The conclusion is 
that subtle changes in the definitions of NPIs result in a great deal of variation in 
the estimated effectiveness of the NPI categories considered.
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basis of this claim is unclear. As seen in the supplementary videos of the 
Nature article1, the credible intervals narrow as more data become avail-
able, further hiding the identifiability problems of the underlying model 
and potentially giving the results a false sense of reliability.

Our point here is not to argue whether or not a school closure took 
place in Sweden, or what the most appropriate crowd-size limit is. 
Instead, our findings highlight that the model presented by Flaxman 
et al. is very sensitive to reasonable, minor changes in the input data. 
As indicated by our simulation examples, and further supported by our 
previous analyses4, there is a fundamental problem with the identifi-
ability of the effectiveness of individual NPIs, including the lockdown. 
This problem is caused by the close temporal spacing between the 
implementation of these NPIs throughout Europe. In particular, we 
note in relation to the lockdown NPI that an estimated value that is 
considerably larger than zero should not be confused with statistical 
identifiability of the corresponding parameter.

Although we fully support the ambition of Flaxman et al.1—to esti-
mate the effectiveness of different NPIs from the available data—we 
find the underlying modelling approach problematic. Flexible param-
eterization leads to issues with identifiability, which are masked by 
model assumptions. In particular, we find it questionable to designate 
a country-specific effectiveness parameter to the last NPI that was intro-
duced in each country. Besides the problems illustrated in Fig. 2, with 
large variations in the estimated effectiveness of NPIs, this prohibits pro-
spective use of the model, as it is unknown at any given time whether the 
latest NPI will also be the last to be implemented in a particular country.

We conclude that the model1,3 is in effect too flexible, and therefore 
allows the data to be explained in various ways. This has led the authors 
to go beyond the data in reporting that particular interventions are 
especially effective. This kind of error—mistaking assumptions for 
conclusions—is easy to make, and not especially easy to catch, in Bayes-
ian analysis. As NPIs are revoked, and possibly reintroduced over an 
extended period of time, more data will become available and practical 
identifiability of the separate effects of NPIs may be obtained. Until 
then, we suggest that the model1,3, and its conclusion that all NPIs apart 
from lockdown have been of low effectiveness, should be treated with 
caution with regard to policy-making decisions.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
A fork of the original code and associated data, which was used to gener-
ate the figures presented here, is provided in a separate GitHub reposi-
tory5. This fork is based on the GitHub repository commit 885466d of 
the original code3, in which the README file states that it was “the exact 
code that was used [in the Nature article1]”. We have, however, noticed 
discrepancies between the original code3 and the figures in the article1. 
For example, the code that was used to generate figure 1 in Flaxman 
et al.1 defines the self-isolation NPI as having been implemented as the 
last NPI in Spain on 17 March 2020, whereas the code in the commit 
defines this date as 14 March 2020.
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Reply to: The effect of interventions on 
COVID-19

Seth Flaxman1,3, Swapnil Mishra2,3, James Scott1,3, Neil Ferguson2,3, Axel Gandy1,3 & 
Samir Bhatt2,3 ✉

replying to K. Soltesz et al. Nature https://doi.org/10.1038/s41586-020-3025-y (2020)

The accompanying Comment1 concerns our original paper, Flaxman 
et al.2, in which we introduced a Bayesian hierarchical model to estimate 
the transmission intensity (in terms of the time-varying reproduc-
tion number, Rt) of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) from observed counts of coronavirus disease 2019 
(COVID-19)-related deaths. We parameterized Rt in terms of a binary 
set of government-mandated non-pharmaceutical interventions (NPIs), 
with the motivation of examining how effective NPIs were at controlling 
the transmission of SARS-CoV-2. We concluded that the NPIs that were 
widely used across Europe successfully drove Rt below 1, thus control-
ling the epidemic. However, we were unable to disentangle the effect 
sizes of the NPIs we considered, except for concluding that lockdown 
had a stronger effect than the other NPIs.

We start by giving some background on the evolution of the paper. 
Our first preprint, released as Imperial College Report 133, was based on 
data up to 28 March 2020 and used a simpler model in which the effect 
size of each intervention on transmission is the same across countries 
(here referred to as a full pool model; in our published paper2 we use 
this model for the single-country analyses reported in supplementary 
discussion 8 of the paper). As more data became available (Flaxman 
et al.2 uses data up to 4 May 2020), more heterogeneity between coun-
tries became evident and we therefore extended the full pool model.

This extended model, which is the one used in Flaxman et al.2, 
includes a random effect, with the aim of capturing country-specific 
variation in the effectiveness of the last government-mandated inter-
vention or interventions; for example, lockdown in Italy, lockdown and 
a ban on public events in the UK, and a ban on public events in Sweden 
(see Extended Data Fig. 1). Random effects are common components 
of statistical models to account for heterogeneity not explained by 
covariates4–6.

The focus of Soltesz et al.1 is the size of the random effect assigned 
by our model to the last intervention in Sweden. Specifically, a large 
random effect is needed to explain the Swedish data, and this could 
have been more explicitly stated in our original paper. Soltesz et al.1 
claim that the difference between effect sizes in a full pool model and 
in Flaxman et al.2 points to our model having little practical statistical 
identifiability. On this basis, Soltesz et al.1 question whether the effec-
tiveness of lockdown can be resolved to the degree our paper stated.

The main goal of our paper was to examine multiple countries to 
see what worked in most places, not to explain the trajectory of the 
epidemic in each individual country. Although we feel that Soltesz 
et al.1 raise an interesting point, we stand by our assessment that the 
effectiveness of NPIs can in principle be identified when looking at 
what worked in most countries, subject of course to the available data.

Here we present further analyses that support our finding reported 
in Flaxman et al.2 that lockdown was an identifiable intervention with 
a major effect. We accept that additional covariates beyond the tim-
ing of mandatory measures are likely to be needed to provide a fully 
satisfactory explanation of the trajectory of the epidemic in Sweden, 
as that country relied on voluntary social distancing measures rather 
than government-mandated interventions.

Because our goal was to estimate which NPIs worked consistently 
in most countries, we argue that an analysis of the effectiveness of 
NPIs should be robust to leaving any one country out. In Extended 
Data Fig. 1 of this Reply we compare results from the full pool model 
(used by Soltesz et al.1), the model used in Flaxman et al.2, and a partial 
pool model, removing one country at a time from the input data. In the 
partial pool model4,6,7, all NPIs have both a random effect component 
shared between all countries and a country-specific random effect (via 
a Gaussian shrinkage prior).

In the full pool model, results for effect sizes are dependent on 
whether Sweden is included, hence Sweden has a very high statistical 
influence8. As seen in Extended Data Fig. 1, when Sweden is left out of 
the full pool model, we recover the results from Flaxman et al.2, but 
when Sweden is included the estimates change markedly. This happens 
because the full pool model attributes a large effect size to the ban on 
public events to explain the Swedish death data.

However, both the model we considered in Flaxman et al.2 and the 
partial pool model discussed here show consistent effect sizes across 
all ‘held-out’ (that is, excluding a given country from fitting) countries. 
(For space, only the UK, Italy and Sweden are shown in Extended Data 
Fig. 1.) This explains our choice to move from a full pool model, which 
is the one used by Soltesz et al.1, to the model used in Flaxman et al.2

The partial pool model is what we recommend (and are currently 
adopting) for such analyses in future. Partial pooling allows all inter-
ventions to have a shared effect and an effect specific to each country 
for each intervention. Thus, it stands somewhere between a full pool 
model and 11 separate models, with the data informing this location. 
These choices mean the partial pool model has no specific affinity 
towards a country or a specific intervention.

To further explore issues around identifiability at an individual 
country level versus across countries, in Fig. 1 we present the effects 
of NPIs for each country from separate country-specific models, a 
meta-analysis of these effects, and the estimates from our various joint 
models. In summary, we see that although the overall mean effect for 
lockdown is lower in the meta-analysis, it is still the only NPI with an 
identifiable effect size. The individual country fits provide insight into 
why this occurs; the only intervention that is consistently significant 
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is lockdown (and the banning of public events in Sweden, as discussed 
in the legend of Extended Data Fig. 1).

Considering the single-country models, we see that the effectiveness 
of lockdown is not merely the result of a modelling choice on our part. In 
countries such as Italy, no intervention is estimated to be significantly 
more effective than any other. The lack of identifiability is not a feature 
inherent to our model, but a limitation of the data available at the time, 
as we noted in our paper2. In particular, although we noted the close 
spacing of interventions in time, in a few countries lockdowns and the 
banning of public events coincided exactly (for example, in the UK). 
The result is that in the separate country analyses and full pooling (Sol-
tesz et al.1), there is a strong posterior correlation between the effects 
of these two NPIs (Pearson correlation of −0.59 in separate country 
analyses; −0.67 in full pooling analysis): when one has a large effect, 
the other by necessity has a small effect.

It is crucial to note here that Soltesz et al.1 are correct that the relative 
effect of different interventions cannot be disentangled for a single 
country treated in isolation. This probably reflects the limitation of 
using time series of deaths to infer transmission changes, given the 
high mean and variance of the distribution of the delay from infec-
tions to deaths. However, when looking across multiple countries, 
all aggregate models suggest that the lockdown intervention has an 
identifiable effect. This is true for all models considered, including 
the full pool model of Soltesz et al.1, in which the posterior probability 
that lockdown is the most effective intervention is 76%, as compared 
with 96% in the meta-analysis and 100% in both partial pooling models. 
Therefore, by simultaneously analysing trends in multiple countries, 
our model has the ability to resolve an identifiable signal of the effect 
of lockdown.

To further reinforce this point, we also undertook a simulation study 
examining the extent to which the timing and ordering of the interven-
tions used fundamentally limit the ability to infer effect sizes reliably.

We used our model to simulate synthetic epidemics for all 11 coun-
tries, keeping the original timing and ordering of interventions and 
the same initialization priors, but assigning hypothetical effect sizes to 
each intervention. We assigned small effect sizes (5% with a tight prior) 
to all but one NPI, giving the remaining one an effect size with a mean 
of 59%, also with a tight prior, across countries. In addition, to better 
reflect reality, we simulate another, country-varying NPI, at a random 
time, which we treat as unobserved in our model. This unknown and 
unobserved NPI has a diffuse prior bounded between 0% and 100%, with 
a mean of 27%, and it is included to assess whether an omitted variable 
(for example, representing spontaneous behaviour change in response 
to government messaging) could bias the effect-size estimates of our 
modelled NPIs. We keep the dates for NPIs the same as the ones in the 
real data to account for concerns raised about the possible effects of 
coincident timing on the identifiability of effect sizes.

Next, we fitted the Flaxman et al. model2 to these simulated datasets 
(20 different simulations for each setting). As shown in Fig. 2, the esti-
mates from the Flaxman et al. fitted model2 (without any information 
about the unobserved NPI) are in agreement with the NPI effect sizes 
that were used to generate the data. This analysis provides further 
evidence that the results we found were not merely artefacts of the 
modelling approach; if there is a strong signal in the data for a specific 
NPI, our model can recover it.

However, this does not on its own show that the converse is necessar-
ily true. To evaluate competing explanations for the observed dynamics 
of transmission, additional empirical evidence—such as NPI efficacy 
or alternative epidemiological explanations—is needed.

In summary, we believe that the additional evidence we present here 
confirms that the key conclusion from our paper is robust: within our 
model we can conclude that all NPIs together brought the epidemic 
under control; lockdown had the strongest effect and was identifi-
able; and the precise effect of the other NPIs was not identifiable.  
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Fig. 1 | Inferred intervention 
effect sizes. The x axis shows the 
relative reduction in transmission. 
Rows show model predictions for 
our published model (Flaxman 
et al.2), the model from Soltesz 
et al.1 (full pool), a generalized 
version of our published model 
(partial pool) and fits to individual 
countries (reported in 
supplementary discussion 8 of our 
original paper2; the model is the 
same one considered by Soltesz 
et al.1). We also include the mean 
effect size derived from a 
meta-analysis (mean across 
countries for each individual 
sample) of the individual country 
effects.
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Although our work shows that lockdowns had the largest effect size, 
we did not and do not claim that they were the only path to controlling 
the virus; merely that among the NPIs we considered, lockdown was 
the most effective single measure. We of course acknowledge that 
improvements could be made to our model, such as including random 
processes, partial pooling (see above) or more prior analysis. Improved 
models and more granular information on NPIs and population behav-
iour will in future hopefully give a more nuanced understanding of 
which measures—whether mandatory or voluntary—contributed most 
to reductions in transmission.

Data availability
No new data are used in this response; all data are available in the origi-
nal publication.
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Extended Data Fig. 1 | Effect-size plot for each intervention for a partial 
pool model, the Flaxman et at. model and the Soltesz et al. full pool model. 
Data are mean and 95% credible intervals. The blue lines show the fits with all  
11 countries; additional lines are from holding countries out and refitting.  

For example, the red line for shows a fit in which the UK data are not used, and 
the model is fitted to the 10 remaining countries. These results show that the 
full pool model is not robust to outliers.
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