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ARISING FROM S. Flaxman et al. Nature https://doi.org/10.1038/s41586-020-2405-7 (2020)

Flaxman et al.' took on the challenge of estimating the effectiveness
of five categories of non-pharmaceutical intervention (NPI)—social
distancing encouraged, self isolation, school closures, public events
banned, and complete lockdown—on the spread of severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). On the basis of mortality
data collected between January and early May 2020, they concluded
thatonly one of these, the lockdown, had been effective in10 out of the
11European countries that were studied. However, here we use simula-
tions with the original model code to suggest that the conclusions of
Flaxman et al. with regard to the effectiveness of individual NPIs are not
justified. Although the NPIs that were considered have indisputably con-
tributed toreducing the spread of the virus, our analysis indicates that
theindividual effectiveness of these NPIs cannot be reliably quantified.

Flaxman et al.! presented a method to estimate the effects of
NPIs on the time-varying reproduction number (R,) of SARS-CoV-2
infection. Data from 11 European countries were pooled on the basis of
the assumption that the effects of NPIs on R, are not country-specific:
the factor of relative change in R, resulting from a particular NPI
was assumed to be independent of the country in which the NPl was
implemented.

Some country-specific flexibility was, however, provided through the
basicreproduction number (R,) being country-specific. More notably,
additional flexibility was introduced by ascribing a country-specific
effecttothe NPIthat wasintroduced lastineach country. Thisreplaced
the parameterization in a preprint version (Imperial College Report
13)2, in which a country-specific effect was instead assigned to the
lockdown NPI.

Our criticism concerns the final published version of the mode
Previous iterations of the model are not explicitly considered, but we
reference them for two purposes: (1) to demonstrate the sensitivity of
the final published model to subtle and realistic alterations in param-
eter values; (2) toillustrate how the modelling choices appear to lack
motivation other thantointroduce flexibility, which masks sensitivity
issues pertaining to the fundamental structure of the model. As made
evident below, we believe the core problemis that the death dataare not
descriptive enoughto supportthe conclusions of Flaxman et al., which
were based on simulation results obtained using an over-flexible model.

Ofthe 11 modelled countries, Sweden is worthy of particular atten-
tion, given that it was the only country in which no lockdown took
place. As we have previously shown*, the estimated effects of NPIs
change markedly when the model is not allowed to give the Swedish
datathe special treatment that the country-specific last NPl parameter
enables. The country-specific last NPl parameter is needed to explain
the decrease of R,supported by the Swedish death data, and to provide
agood modelfit despite the absence of alockdown in Sweden.

ll,3

Figure 1shows the outcome for Sweden when executing the model®*
either with (Fig.1a) or without (Fig. 1b) the last NPl adjustmentin place.
Withthe last NPladjustmentin place, the public eventsbanresultsina
meanreduction of R,0f 71% (95% credible interval: 59-81%) in Sweden,
which contrasts with the negligible effect of the public events banin
the other10 countries (less than 2% mean reduction of R,and less than
15% with 95% credibility). Notably, the estimated effectiveness of the
public events ban in Sweden is comparable to that of lockdown in the
10 countriesin which one wasimplemented. As lockdown was the last
interventionin most countries, its estimated effect comprises a pooled
effect (82% meanreduction of R,) and a separate country-specific ‘last
NPI’ effect (mean change in R, of between —24% and 18% for the coun-
tries considered).

The result above—that is, the public events ban and the lockdown
being mutually effectivein Sweden and 10 other European countries—
was not addressed by Flaxman et al, which is noteworthy as this result
undermines the conclusion of lockdown being especially effective.
Furthermore, without theintroduction of the lastintervention param-
eter after the publication of the preprint?, the inconsistency would have
beenreadily visible in reported plots (Fig. 1b).

It seems unlikely to be a result of circumstance that lockdown was
implementedinthe10 countriesinwhichithad alarge effectonR, and
omittedinthe single countryinwhich the public events baninstead had
asimilar effect (sufficient todrive R,below1). Analternative hypothesis
isthattheinfection-to-death distribution used by the model, combined
with the death data that were available by early May, makes the model
ascribe almost all of the reductionin R, to the last intervention that
was implemented in each country. This hypothesis is supported by
executing the model code*’ with differentinterventions being defined
ashavingoccurred lastin the country in which nolockdownoccurred
(Sweden), as shown in Fig. 2.

Exchanging the last intervention for a different one is not merely
interesting from a theoretical perspective. For example, it is hard to
judge whether transitioning to online teaching at high school and
university levels, while keeping elementary schools and preschools
open, constitutes a school closure or not. Similarly, the crowd-size
limit associated with the public events ban NPl remains a parameter
tobedecided by the modeller. Early versions of the model defined the
public events ban to have taken place in Sweden on 12 March 2020,
when gatherings exceeding 500 persons were prohibited. This was
later changed to 29 March 2020, when gatherings exceeding 50 per-
sons were prohibited. These subtle alterations of the definitions alter
which NPI, of school closure, public events ban, or social distancing
encouraged, was the last to be implemented in Sweden. In each case,
the modeluses the last intervention to explain the majority of the drop
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Fig.1|Estimated effectiveness of the publiceventsbanin Sweden. Top,
posterior credibleintervals for the reproduction number R,in Sweden. Bottom,
effectiveness of the pooled interventionsin the 11 modelled European
countries. a, Reproduced results from Flaxman et al.', using the original model
code®’, includinga country-specific effectiveness parameter for the last NPl to
beimplementedineach country. This correspondsto acountry-specific
effectiveness for the public events banin Sweden and for lockdownin the other

of R,to below 1, which is needed to stay consistent with the decrease
inreported deaths.

Asmentioned above, our analyses were conducted using the original
modelimplementation®’ referenced from the final published paper', and
we have considered the definitions of NPIs reportedin the preceding ver-
sions of the model'?solely to highlight how small and plausible perturba-
tions of these definitions can result in a lack of practical identifiability,

(No effect on transmissibility) (Ends transmissibility)

ty)
Relative reduction in R, (%)

10 countries. b, Results using the same code, but with the ‘last NPI’ parameters
replaced with country-specific parameters for the lockdown NP, asin the
preceding report?. This change does not affect the 10 countries for which
lockdownwas the last NPI, but for Sweden it removes the flexibility of alast NPI
parameter, whichis needed to explain the R,value supported by the Swedish
deathdata.

in the statistical sense. Identifiability issues have to some extent been
acknowledged by the authors; Flaxman et al. state that “The close spacing
ofinterventionsintime[...]meansthat theindividual effects of the other
interventions are not identifiable”™. However, this is overshadowed by
the subsequent presentation of credible intervals for the effects of the
different NPIs, and the claim that “Lockdown has an identifiable large
effect on transmission (81% (75-87%) reduction)”’. We believe that the
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Fig.2| The effects ofinterventions on virusspread in Sweden, with slightly
varying definitions of theinterventions. a, School closure defined to have
taken place on18 March 2020; public events ban defined to have taken place on
29 March2020.b,Same asa, but with the public events ban moved back to12
March2020. ¢, Same as b, but with school closure defined not to have taken
place. Asexpected, the visual appearance of the plots is similar, with the last

intervention contributing most to the reduction of virusspread. Thisis
problematic, as thelastintervention differs betweena, b and ¢, witheach
relying on equally motivated NPlimplementation dates that were introduced
by Flaxman et al."?in different versions of the model code®. The conclusion is
that subtle changes in the definitions of NPIsresultin agreat deal of variationin
the estimated effectiveness of the NPl categories considered.
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basis of this claimis unclear. Asseen in the supplementary videos of the
Naturearticle', the credible intervals narrow as more databecome avail-
able, further hiding the identifiability problems of the underlying model
and potentially giving the results a false sense of reliability.

Our point here is not to argue whether or not a school closure took
place in Sweden, or what the most appropriate crowd-size limit is.
Instead, our findings highlight that the model presented by Flaxman
etal. is very sensitive to reasonable, minor changes in the input data.
Asindicated by our simulation examples, and further supported by our
previous analyses*, there is a fundamental problem with the identifi-
ability of the effectiveness of individual NPIs, including the lockdown.
This problem is caused by the close temporal spacing between the
implementation of these NPIs throughout Europe. In particular, we
note in relation to the lockdown NPI that an estimated value that is
considerably larger than zero should not be confused with statistical
identifiability of the corresponding parameter.

Although we fully support the ambition of Flaxman et al.'—to esti-
mate the effectiveness of different NPIs from the available data—we
find the underlying modelling approach problematic. Flexible param-
eterization leads to issues with identifiability, which are masked by
model assumptions. In particular, we find it questionable to designate
acountry-specific effectiveness parameter to the last NPl that was intro-
duced in each country. Besides the problems illustrated in Fig. 2, with
large variationsinthe estimated effectiveness of NPIs, this prohibits pro-
spective use of the model, asitisunknown atany given time whether the
latest NPIwill also be the last to beimplemented ina particular country.

We conclude that the model*?isin effect too flexible, and therefore
allows the datato be explained in various ways. This hasled the authors
to go beyond the data in reporting that particular interventions are
especially effective. This kind of error—mistaking assumptions for
conclusions—is easy to make, and not especially easy to catch, in Bayes-
ian analysis. As NPIs are revoked, and possibly reintroduced over an
extended period of time, more data willbecome available and practical
identifiability of the separate effects of NPIs may be obtained. Until
then, we suggest that the model'?, and its conclusion that all NPIs apart
fromlockdown have been of low effectiveness, should be treated with
caution with regard to policy-making decisions.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Data availability

Afork of the original code and associated data, which was used to gener-
atethefigures presented here, is provided inaseparate GitHub reposi-
tory®. This fork is based on the GitHub repository commit 885466d of
the original code?, in which the README file states that it was “the exact
code that was used [in the Naturearticle']”. We have, however, noticed
discrepancies between the original code® and the figuresin the article’.
For example, the code that was used to generate figure 1in Flaxman
etal.!defines the self-isolation NPl as having been implemented as the
last NPIin Spain on 17 March 2020, whereas the code in the commit
defines this date as 14 March 2020.
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The accompanying Comment’ concerns our original paper, Flaxman
etal.?,inwhichweintroduced aBayesian hierarchical model to estimate
the transmission intensity (in terms of the time-varying reproduc-
tion number, R,) of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) from observed counts of coronavirus disease 2019
(COVID-19)-related deaths. We parameterized R, in terms of a binary
set of government-mandated non-pharmaceutical interventions (NPIs),
with the motivation of examining how effective NPIs were at controlling
the transmission of SARS-CoV-2. We concluded that the NPIs that were
widely used across Europe successfully drove R,below 1, thus control-
ling the epidemic. However, we were unable to disentangle the effect
sizes of the NPIs we considered, except for concluding that lockdown
had a stronger effect than the other NPIs.

We start by giving some background on the evolution of the paper.
Our first preprint, released as Imperial College Report 13, was based on
dataupto28March 2020 and used asimpler model inwhich the effect
size of eachinterventionon transmission is the same across countries
(here referred to as a full pool model; in our published paper? we use
thismodel for the single-country analyses reported insupplementary
discussion 8 of the paper). As more data became available (Flaxman
etal.?uses dataup to4 May 2020), more heterogeneity between coun-
tries became evident and we therefore extended the full pool model.

This extended model, which is the one used in Flaxman et al.?,
includes a random effect, with the aim of capturing country-specific
variation in the effectiveness of the last government-mandated inter-
vention or interventions; for example, lockdowninItaly, lockdown and
abanonpubliceventsinthe UK, and aban on public eventsin Sweden
(see Extended Data Fig. 1). Random effects are common components
of statistical models to account for heterogeneity not explained by
covariates*®,

The focus of Soltesz et al.!' is the size of the random effect assigned
by our model to the last intervention in Sweden. Specifically, alarge
random effect is needed to explain the Swedish data, and this could
have been more explicitly stated in our original paper. Soltesz et al.!
claimthat the difference between effect sizes in a full pool model and
in Flaxman et al.> points to our model having little practical statistical
identifiability. On this basis, Soltesz et al.! question whether the effec-
tiveness of lockdown can be resolved to the degree our paper stated.

The main goal of our paper was to examine multiple countries to
see what worked in most places, not to explain the trajectory of the
epidemicin each individual country. Although we feel that Soltesz
et al." raise an interesting point, we stand by our assessment that the
effectiveness of NPIs can in principle be identified when looking at
what worked in most countries, subject of course to the available data.

Here we present further analyses that support our finding reported
in Flaxman et al.? that lockdown was an identifiable intervention with
amajor effect. We accept that additional covariates beyond the tim-
ing of mandatory measures are likely to be needed to provide a fully
satisfactory explanation of the trajectory of the epidemic in Sweden,
asthat countryrelied on voluntary social distancing measures rather
than government-mandated interventions.

Because our goal was to estimate which NPIs worked consistently
in most countries, we argue that an analysis of the effectiveness of
NPIs should be robust to leaving any one country out. In Extended
Data Fig. 1 of this Reply we compare results from the full pool model
(used by Soltesz etal.’), the model used in Flaxman et al.?, and a partial
pool model, removing one country atatime from the input data. Inthe
partial pool model*%’, all NPIs have both a random effect component
shared betweenall countries and a country-specific random effect (via
a Gaussian shrinkage prior).

In the full pool model, results for effect sizes are dependent on
whether Swedenisincluded, hence Sweden has a very high statistical
influence®. As seen in Extended Data Fig. 1, when Sweden is left out of
the full pool model, we recover the results from Flaxman et al.?, but
when Swedenisincluded the estimates change markedly. This happens
because the full pool model attributes a large effect size to the ban on
public events to explain the Swedish death data.

However, both the model we considered in Flaxman et al.? and the
partial pool model discussed here show consistent effect sizes across
all‘held-out’ (thatis, excluding agiven country from fitting) countries.
(For space, only the UK, Italy and Sweden are shown in Extended Data
Fig.1.) This explains our choice to move from a full pool model, which
is the one used by Soltesz et al.}, to the model used in Flaxman et al.?

The partial pool model is what we recommend (and are currently
adopting) for such analyses in future. Partial pooling allows all inter-
ventions to have ashared effect and an effect specific to each country
for each intervention. Thus, it stands somewhere between a full pool
model and 11 separate models, with the data informing this location.
These choices mean the partial pool model has no specific affinity
towards a country or a specific intervention.

To further explore issues around identifiability at an individual
country level versus across countries, in Fig. 1 we present the effects
of NPIs for each country from separate country-specific models, a
meta-analysis of these effects, and the estimates from our various joint
models. Insummary, we see that although the overall mean effect for
lockdown is lower in the meta-analysis, it is still the only NPl with an
identifiable effect size. The individual country fits provide insightinto
why this occurs; the only intervention that is consistently significant
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islockdown (and the banning of public eventsin Sweden, as discussed
inthelegend of Extended Data Fig. 1).

Consideringthe single-country models, we see that the effectiveness
oflockdownis not merely the result of amodelling choice onour part.In
countriessuch asltaly, nointerventionis estimated to be significantly
more effective than any other. The lack of identifiability is not afeature
inherent to our model, butalimitation of the dataavailable at the time,
as we noted in our paper?. In particular, although we noted the close
spacingof interventions intime, in afew countries lockdowns and the
banning of public events coincided exactly (for example, in the UK).
Theresultis thatin the separate country analyses and full pooling (Sol-
teszetal.'), thereis a strong posterior correlation between the effects
of these two NPIs (Pearson correlation of —0.59 in separate country
analyses; —0.67 in full pooling analysis): when one has a large effect,
the other by necessity has a small effect.

Itis crucial to note here that Soltesz et al.' are correct that the relative
effect of different interventions cannot be disentangled for a single
country treated inisolation. This probably reflects the limitation of
using time series of deaths to infer transmission changes, given the
high mean and variance of the distribution of the delay from infec-
tions to deaths. However, when looking across multiple countries,
all aggregate models suggest that the lockdown intervention has an
identifiable effect. This is true for all models considered, including
the full pool model of Soltesz et al.!, in which the posterior probability
thatlockdown is the most effective intervention is 76%, as compared
with96% in the meta-analysis and 100% in both partial pooling models.
Therefore, by simultaneously analysing trends in multiple countries,
our model has the ability to resolve anidentifiable signal of the effect
of lockdown.

Tofurther reinforce this point, we also undertook asimulation study
examining the extent to which the timing and ordering of the interven-
tions used fundamentally limit the ability to infer effect sizes reliably.
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We used our model to simulate synthetic epidemics for all 11 coun-
tries, keeping the original timing and ordering of interventions and
the sameinitialization priors, but assigning hypothetical effect sizes to
eachintervention. We assigned small effect sizes (5% with a tight prior)
to all but one NPI, giving the remaining one an effect size with amean
of 59%, also with a tight prior, across countries. In addition, to better
reflect reality, we simulate another, country-varying NPI, atarandom
time, which we treat as unobserved in our model. This unknown and
unobserved NPl has adiffuse prior bounded between 0% and100%, with
ameanof27%,anditisincluded to assess whether an omitted variable
(forexample, representing spontaneous behaviour change inresponse
to government messaging) could bias the effect-size estimates of our
modelled NPIs. We keep the dates for NPIs the same as the ones in the
real data to account for concerns raised about the possible effects of
coincident timing on the identifiability of effect sizes.

Next, we fitted the Flaxman et al. model* to these simulated datasets
(20 different simulations for each setting). As shownin Fig. 2, the esti-
mates from the Flaxman et al. fitted model® (without any information
about the unobserved NPI) are in agreement with the NPI effect sizes
that were used to generate the data. This analysis provides further
evidence that the results we found were not merely artefacts of the
modelling approach; ifthere is astrong signalin the data for aspecific
NPI, our model can recover it.

However, this does not onits own show that the converseis necessar-
ily true. To evaluate competing explanations for the observed dynamics
of transmission, additional empirical evidence—such as NPI efficacy
or alternative epidemiological explanations—is needed.

Insummary, we believe that the additional evidence we present here
confirms that the key conclusion from our paper is robust: within our
model we can conclude that all NPIs together brought the epidemic
under control; lockdown had the strongest effect and was identifi-
able; and the precise effect of the other NPIs was not identifiable.
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Fig.2|Estimated effect sizes from simulated
data. Top tobottom, three separate simulations
forlockdown, school closure and selfisolation,
withamean of59% effect size (grey lines), were
repeated 20 times each. In each panel, effect sizes
from the Flaxman et al. model*fitted to the

20 simulations are plotted as the mean point
estimate with 95% intervals fromthe 20 runs.
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Although our work shows that lockdowns had the largest effect size,
we did notand do not claim that they were the only pathto controlling
the virus; merely that among the NPIs we considered, lockdown was
the most effective single measure. We of course acknowledge that
improvements could be made to our model, such asincludingrandom
processes, partial pooling (see above) or more prior analysis. Improved
models and more granular information on NPIsand population behav-
iour will in future hopefully give a more nuanced understanding of
which measures—whether mandatory or voluntary—contributed most
toreductions in transmission.

Data availability

Nonewdataareused in this response; all data are available in the origi-
nal publication.
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Extended DataFig.1|Effect-size plot for eachintervention for a partial Forexample, theredline for showsafitin which the UK dataare not used, and
poolmodel, the Flaxman et at. model and the Soltesz et al. full pool model. themodelisfitted to the 10 remaining countries. These results show that the
Dataaremeanand 95% credibleintervals. The blue lines show the fits with all full pool modelis not robust to outliers.

11countries; additional lines are from holding countries out and refitting.
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