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Out of equilibrium, the lack of reciprocity is the rule rather than the exception. Non-reciprocal
interactions occur, for instance, in networks of neurons [1–7], directional growth of interfaces [8], and
synthetic active materials [1, 9–16]. While wave propagation in non-reciprocal media has recently been
under intense study [17–31], less is known about the consequences of non-reciprocity on the collective
behavior of many-body systems. Here, we show that non-reciprocity leads to time-dependent phases
where spontaneously broken symmetries are dynamically restored. The resulting phase transitions are
controlled by spectral singularities called exceptional points [32]. We describe the emergence of these
phases using insights from bifurcation theory [33, 34] and non-Hermitian quantum mechanics [35, 36].
Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization
out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in
these non-reciprocal systems range from active time-(quasi)crystals to exceptional-point enforced
pattern-formation and hysteresis. Our work paves the way towards a general theory of critical
phenomena in non-reciprocal matter.

Non-reciprocity naturally arises in nonequilibrium
many-body systems [37–60] ranging from inhibitory and
excitatory neurons [1–7] to conformist and contrarian
members of social groups [61–63]. Our goal is to explore
how non-reciprocity affects phase transitions. To do so,
we consider multiple species or fields (interacting non-
reciprocally with one another) modeled by a vector order
parameter ~va(t, ~x) for each species a. These can encode,
for instance, the average velocities of self-propelled par-
ticles, the average phases of coupled oscillators such as
biological clocks or firing neurons, or the amplitude and
position of a periodic pattern (Fig. 1a-d). The order pa-
rameters ~va(t, ~x) could either be distinct fields, or different
harmonics of the same physical field such as in directional
interface growth experiments [64–67], see Fig. 1e-f.
All of these systems are described by the evolution

equation

∂t~va = Aab ~vb + Babcd (~vb · ~vc)~vd +O(∇) (1)

where summation over repeated indices is implied. Equa-
tion (1) is (up to third order in ~va) the most general
dynamical system invariant under rotations. In flocking,
rotational symmetry naturally arises from the isotropy of
space, while in synchronization and pattern formation it
emerges from the underlying time or space translation in-
variance. Different symmetries or other representations of
rotations can be similarly enforced [33] leading to variants
of Eq. (1), see Methods and SI Sec. VIII. The quantities
Aab and Babcd are arrays of parameters that couple the
different species of fields. As we shall see, they are also
matrices operating on the vectors ~va that reduce to the
identity for full rotation symmetry, but have more com-
plicated forms when parity (mirror reflection) is broken.

∗ These authors contributed equally to this work.

While our ultimate goal is to model spatially extended
systems, we have temporarily omitted in Eq. (1) terms
with spatial derivatives and only retained nonlineari-
ties essential to discuss transitions between distinct non-
equilibrium steady-states. Here, we allow the macroscopic
coefficients to be asymmetric, e.g. Aab 6= Aba. In the
Landau theory of equilibrium phase transitions, these co-
efficients would be fully symmetric because the dynamics
of the order parameter ∂t~va = −∂~vaF is derived from a
free energy F . Removing this symmetry constraint allows
to extend the theory of critical phenomena [68] to fields
with non-reciprocal interactions.

Dynamical systems described by Eq. (1) arise in various
forms of non-reciprocal matter. Consider, for instance,
a collection of coupled oscillators described by the Ku-
ramoto model [69, 70]

∂tθm = ωm +
∑
n

Jmn sin(θn − θm) + η(t). (2)

The metronome or neuron labeled by m in Eq. (2) ticks
or fires when its phase θm(t) crosses a fixed value (say
zero). The oscillator m has a natural frequency ωm and is
coupled to the other oscillators by Jmn. In the Kuramoto
model, the oscillators are typically all coupled and the
random noise η(t) is usually ignored. Equation (2) with
ωm = 0 and with random noise also captures the Vicsek
model of flocking [71, 72], provided that the oscillators
are replaced by self-propelled particles moving at constant
speed v0 in the plane in the direction θm. Their positions
~rm then follow the equation

∂t~rm = v0

(
cos θm
sin θm

)
. (3)

The couplings Jmn are short-ranged and depend on ~rm.
In both models, the agent m tries to align (be in phase)
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with the agent n when Jmn is positive, and to antialign
with it when Jmn is negative.

Above a critical coupling, both models exhibit a phase
transition from incoherent motion (incoherent oscillations)
to flocking (synchronization) heralded by a non-vanishing
order parameter ~va (Fig. 1a,c). We show in the Methods
and SI Sec. I that coarse-graining these microscopic mod-
els leads to an evolution equation of the form of Eq. (1),
with the addition of rotationally invariant terms with
spatial derivatives [see Eqs. (11) and (30)]. As expected,
the coefficients of the order parameter equations become
asymmetric when the interaction is non-reciprocal (i.e.,
when Jmn 6= Jnm), see also Refs. [44, 57, 61, 62, 73–88] for
situations in which this can occur. Equation (1), viewed
as an amplitude equation, also describes non-reciprocal
pattern formation far from equilibrium [8] (Fig. 1e). For
example, the non-reciprocal Swift-Hohenberg model [89]

∂tua = rabub − (1 +∇2)2ua − gu3
a (4)

with rab 6= rba reduces to Eq. (1) by letting ua(x) =
Aa(x)eikx+ c.c., where k is a wavevector and the complex
amplitude is decomposed as Aa ≡ vxa + ivya (see Methods).
Let us start with only two species A and B and con-

sider models where parity is not explicitly broken. When
the inter-species interactions are reciprocal, we find (be-
sides a disordered phase) two static phases where the
order parameters ~vA and ~vB (red and blue arrows in
Fig. 1g-i) are either aligned or antialigned, in analogy
with (anti)ferromagnetism. When the inter-species inter-
actions are non-reciprocal, the macroscopic coefficients
in Eq. (1) can become asymmetric and we find a time-
dependent chiral phase with no equilibrium analogue that
emerges between the static phases (Fig. 1g-h). In this
intermediate chiral phase, parity is spontaneously broken:
~vA and ~vB rotate either clockwise or counterclockwise at
a constant speed Ωss, while keeping a fixed relative angle.
We stress that this rotation of the order parameters is
different from the precession of spins in a magnetic field,
that can be simply captured with a Hamiltonian.

Figure 1a-f illustrates the aligned and chiral phases in
synchronization, flocking and pattern formation. Panels
e-f show a manifestation of the aligned to chiral transition
in viscous fingering experiments [67, 90–92], see Methods
for a detailed treatment. We have identified additional
examples in naturally occurring phenomena ranging from
directional solidification of liquid-crystals [66, 93–95] and
growth of lamellar eutectics [96–99] to overflowing foun-
tains [100, 101]. Unlike the examples in panels a-d where
two species are present, here the non-reciprocal (asymmet-
ric) couplings in the amplitude equations occur between
two different harmonics A and B of the same physical
field, see Methods.

Intuitively, the chiral phase is caused by the frustration
experienced by species with opposite goals. For concrete-
ness, consider two populations of agents A and B where
A want to align with B but B want to antialign with A.
As the agents are never satisfied, they start running in cir-
cles. This dynamical frustration results macroscopically

in a constant “chase and runaway” motion of the order
parameters ~va: this is the chiral phase.
Less intuitively, but crucially, the chiral phase hinges

on a subtle interplay between noise and many-body ef-
fects. Let us first consider an exactly solvable example:
the Kuramoto model in Eq. (2) with noise set to zero
and identical frequencies within each species. In this case,
the dynamics of the two populations can be mapped to
a system with only two agents (SI Sec. VI). Unless the
interaction is precisely non-reciprocal (i.e., JAB ≡ −JBA),
this system always converges to a static phase as the two
effective agents will eventually align or antialign when
one catches up with the other (SI Sec. V). However, the
presence of microscopic noise or frequency disorder in
Eq. (2) constantly resets and restarts the chase and run-
away motion of A/B pairs. In a many-body system,
the noise-activated motions of individual agents become
macroscopically correlated through their interactions and
the chiral motion is stabilized. We verified this numeri-
cally by computing the standard deviations of the order
parameters in the chiral phase that decrease as 1/

√
N

with the number of agents N , see SI Fig. S6. While not
exactly solvable, the flocking model exhibits the same phe-
nomenon; noise enlarges the size of the region in which
time-dependent phases exist (compare Fig. 2b and Fig. 2c).
This is reminiscent of so-called order-by-disorder transi-
tions in frustrated many-body systems [73, 102].

To elucidate the many-body character of the aligned to
chiral transitions, it is instructive to contrast them to anal-
ogous phenomena occurring for only two coupled nonlinear
ring-resonators in PT-symmetric lasers [20, 103–105] (see
SI Sec. IX). In this case, the state of the system randomly
switches between clockwise and counterclockwise under
the effect of noise [103], destroying the chiral phase. This
noise-activated process would also occur in any of the
systems we consider if too few constituents (e.g. agents
or resonators) were present. We can model it by adding
a hydrodynamic noise to the right-hand side of Eq. (1),
see SI Sec. VII. The average time τ between successive
chirality flips follows an Arrhenius law τ = τ0 exp(∆/σ2)
where ∆ is the height of the effective barrier between
the clockwise and counterclockwise states, σ is the stan-
dard deviation of the hydrodynamic noise, and τ0 is a
constant determined from microscopics. When a large
number N of constituents is considered, the central limit
theorem suggests that σ ∼ σ0/

√
N (σ0 is the strength

of the noise acting on a single element), consistent with
our numerical observations (see SI Secs. V-VII). As a re-
sult, the time τ between chirality flips grows exponentially
with N : the chiral phase is salvaged by many-body effects.
In optics, this scenario could be realized by implement-
ing non-reciprocal couplings [20] in photonic networks of
many coupled lasers [31, 70, 75, 106–110].
Unlike the familiar paramagnet to ferromagnet tran-

sition, the aligned to chiral transition (and the chiral
phase itself) cannot occur in thermodynamic equilibrium.
Here, we develop a general approach to describe this class
of time-dependent phases and transitions unique to non-
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reciprocal matter. Our starting point is a general principle
that applies both in and out of equilibrium: phases of
a many-body system can be identified from the steady-
states of the corresponding dynamical system (such as
Eq. (1)). Phase transitions then occur when one steady-
state becomes unstable, i.e. when perturbations around
it are no longer damped. We therefore linearize Eq. (1),
by separating the order parameters ~V ≡ (~vA, ~vB , . . . ) into
steady-state components ~Vss and fluctuations δ~V around
them. We obtain the equation

∂tδ~V = L δ~V . (5)

Crucial to our approach is the following fact: non-
reciprocity implies that the linear operator L can be
non-Hermitian. Consider first a conservative system de-
riving from a free energy F . In this case, we would have
Lab = −∂~vb∂~vaF = Lba. This implies that L would be
Hermitian, i.e. Lab = Lba, as it is real valued. In contrast,
a non-reciprocal system cannot be described by a free en-
ergy. As a result, L can be and generally is non-Hermitian,
i.e. Lab 6= Lba.
The linear operator L determines the nature of phase

transitions in non-reciprocal matter through the dynamics
of fluctuations. The 2M eigenvectors of L ≡ L(~Vss) (for
M species) describe the time evolution of fluctuations
around the steady-state. They do not have to be orthogo-
nal because L is not Hermitian. The corresponding eigen-
values si = σi+ iωi can be decomposed in growth rates σi
and frequencies ωi where i = 1, . . . , 2M . Here, one of the
eigenmodes of L always has a vanishing eigenvalue s = 0,
because it corresponds to a global rotation of the ~va (i.e.,
the Goldstone mode of broken rotation invariance), green
line in Fig. 1h. In the static (anti)aligned phase, the other
modes are always damped (σi < 0). The aligned-to-chiral
phase transitions occur when the damped mode with the
growth rate σi closest to zero 1 (orange line in Fig. 1h)
coalesces with the Goldstone mode (green line) at special
points labeled in red.

This coalescence of two eigenmodes is known as an ex-
ceptional point (EP) [32]. In addition to having the same
eigenvalues (that crucially vanish in our case), the two
eigenmodes become parallel at the exceptional point [59].
In a many-body system, such a mode coalescence defines
a class of phase transitions that we dub exceptional tran-
sitions. As an illustration, imagine a ball constantly
kicked by noise at the bottom of a potential shaped as
a Mexican hat. In this simplified picture, the ball repre-
sents the order parameter of a many-body system. In a
reciprocal system, the ball rolls back to the bottom when
perturbed in the uphill direction. In a non-reciprocal
system, there are non-conservative forces in addition to

1 Modes that are more damped do not play any role in the transition
mechanism. This allows to immediately generalize our conclusions
to more than two populations provided that two transitions do
not occur at the same time. See SI Sec. X for further discussions.

the potential energy landscape, that lead to transverse re-
sponses. When you kick the ball in the uphill direction, it
also moves perpendicular to it along the bottom of the po-
tential, but not vice-versa. This non-reciprocal response
is described mathematically by the non-orthogonality of
the eigenmodes of L. At the exceptional point, the ball
moves along the bottom of the potential irrespective of
whether it is kicked along or perpendicular to it. This
corresponds to the coalescence between the Goldstone
mode and the damped mode with growth rate σ closest
to zero. After the exceptional transition, the ball starts
running along the bottom of the potential by itself, at a
speed set by the now positive growth rate σ (Fig. 1h).

More generally, exceptional transitions can be viewed as
the dynamical restoration of a spontaneously broken con-
tinuous symmetry: the Goldstone mode is actuated by the
noise, and after the transition the system runs along the
manifold of degenerate ground states. Figure 1i provides
an almost mechanical picture of how non-reciprocal inter-
actions lead to an exceptional point and to the onset of
the chiral phase. From the point of view of non-Hermitian
quantum mechanics [35, 36], these transitions are mani-
festations of the spontaneous PT symmetry breaking (see
Methods). From the point of view of dynamical systems,
they are instances of Bogdanov-Takens bifurcations [111],
with the peculiarity that one of the modes involved is a
Goldstone mode (see Methods).
As a concrete example, let us consider the contin-

uum theory of non-reciprocal flocking [Methods Eq. (11)].
Analogous treatments of synchronization and pattern
formation are detailed in Methods. Figure 2a-c shows
the key result of our analysis based on Eq. (11): the
phase diagrams as a function of the reciprocal and non-
reciprocal parts of the rescaled inter-species interactions
j± = [jAB ± jBA]/2 respectively (see SI Sec. II). These
phase diagrams exhibit a disordered phase (gray), an
aligned phase (blue), an antialigned phase (red), and a
chiral phase (purple, see also Fig. 2d). In the SI Sec. III,
we prove that these phases are linearly stable against ve-
locity fluctuations in the hydrodynamic theory over large
ranges of parameters. This theory further predicts that
the phase boundary between the chiral phase and the
(anti)aligned phase is marked by exceptional points (red
lines in Fig. 2c).

The chiral phase is not the only time-dependent phase
induced by non-reciprocity. We have also identified a
swap phase (green region in Fig. 2b-c), where ~vA and
~vB oscillate between two values along a fixed direction.
In contrast with the chiral phase where a continuous
symmetry is restored on average, the swap phase dynam-
ically restores a discrete symmetry through the loss of
time-translation invariance. We also predict and observe
a mixed chiral+swap phase, where both swap and chi-
ral motions occur at the same time (dark green region).
The dynamical nature of these phases is illustrated in
Fig. 2d-e and SI Movie 2. All these phases break time
translation invariance, in a way reminiscent of time crys-
tals [112–117] and quasicrystals [118, 119], see Fig. 2f-g.
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The existence of all the phases found in non-reciprocal
flocking follows from general symmetry principles [33].
Hence, they transcend specific models. We also observe
them in our non-reciprocal synchronization (Extended
Data Fig. 4) and pattern formation models (Extended
Data Fig. 7), see Methods.
We now show that exceptional transitions must nec-

essarily be accompanied by pattern-forming instabilities
when the non-reciprocally interacting constituents are
moving, i.e. when there is a steady-state flow ~vss. Fig-
ure 3a shows that pattern formation occurs around the
critical lines marking the mean-field phase transition
(bright red and blue regions). This phenomenon can
be captured by the following model

∂t δ~V =
[
LEP +M(~vss · ∇) +D∇2

]
δ~V . (6)

Equation (6) is a minimal extension of Eq. (5) valid
near the exceptional transition where LEP is the singular
matrix accounting for the presence of the exceptional
point. It contains an additional convective term in the
linearized matrix form M(~vss · ∇) that mixes the two
species A and B as well as a diffusive term D∇2. Since
the eigenvalues of a perturbed exceptional point typically
diverge as a square root of the perturbation [32], the
momentum space complex growth rate behaves as s±(k) '
±i
√
ivss k at small wavevector k, and as −Dk2 at large k.

This leads to a positive maximum in the growth rate,
corresponding to a linear instability at finite momentum
(Fig. 3b-c).

Figure 3d-f and SI Movie 4 provide glimpses into the
non-linear regime of pattern formation in which vortices
and antivortices continuously unbind and annihilate. The
density of topological defects is different in ~vA and ~vB
because each density decreases with the self-propulsion
speed of the respective species (Fig. 3d-e). While the sys-
tem does not coarsen towards an ordered state, there is a
clear precursor of the chiral phase within its chaotic dy-
namics: the angular distribution of the order parameters
plotted in Fig. 3f is approximately periodic.
We have seen that parity is spontaneously broken in

the chiral phase. It is also natural to consider systems
in which parity is explicitly broken. Concrete examples
include: (i) the Kuramoto model Eq. (2) with nonvanish-
ing natural frequencies (ii) the Vicsek model Eqs. (2–3)
with external torques or (iii) the Swift-Hohenberg model
Eq. (4) with broken up-down (u → −u) symmetry. All
these systems still fit in the framework of Eq. (1), pro-
vided that the matrices Aµνab and Bµνabcd acting on ~v νa (t, x)
are appropriately chosen (µ and ν denote the vector com-
ponents). By imposing the rotational symmetry con-
straint, we can fully determine the form of these matrices:
Aµνab = αab δ

µν +α?ab ε
µν and Bµνabcd = βabcdδ

µν +β?abcd ε
µν .

Here, δµν is the identity and εµν is an antisymmetric
matrix that rotates the vectors by 90°. Using this decom-
position, we can distinguish (I) parity symmetric systems
in which α? and β? vanish and (II) systems in which parity
is explicitly broken, in which α? and β? can be nonzero.
The classes I and II correspond to the symmetry groups

of general rotations O(2) and proper rotations SO(2),
respectively.
In the language of non-Hermitian quantum mechan-

ics [20, 36, 120], class I systems exhibit PT-symmetry,
which may be spontaneously broken in the chiral phase.
In this case, reaching an exceptional transition requires
tuning only one parameter (the transitions have codimen-
sion one, see e.g. Fig. 2 where they are lines in a 2D phase
diagram). In class II, on the other hand, PT symmetry
is explicitly broken: as a result, the equivalent of the
aligned and antialigned phases become time-dependent,
and reaching an exceptional point requires tuning two
parameters (the exceptional points have codimension two,
see e.g. Extended Data Fig. 6 and Fig. 4 where they are
isolated points in 2D).
In the Methods, we present a detailed analysis of the

non-reciprocal Kuramoto model (2) with non-vanishing
ωm that explicitly breaks parity. The combination of
non-reciprocity and explicit PT-symmetry breaking leads
to hysteresis and discontinuous transitions between (i)
regions where the clockwise and counterclockwise states
coexist and (ii) regions where only one state exists (Ex-
tended Data Fig. 6). These results reveal a remarkable
similarity between non-reciprocal synchronization and
driven Bose-Einstein condensates [58, 59].
We conclude with a visual procedure to extend our

approach to other systems (Figure 4). The key ingre-
dients are (i) macroscopic non-reciprocity (manifested
in the asymmetry of macroscopic coefficients) and (ii) a
spontaneously broken continuous symmetry. Although we
have focused mostly on systems with circular symmetry
O(2), exceptional transitions could occur for any continu-
ous group, see SI Sec. VIII for an extension to spherical
symmetry O(3) relevant to three-dimensional vector order
parameters such as in 3D flocks. Our analysis was illus-
trated with vector order parameters whose evolution is not
the expression of a conservation law. This paradigmatic
case is known as “model A” in the Hohenberg-Halperin
classification of dynamical critical phenomena [68] but the
same approach applies also to other order parameters and
classes, see Ref. [21] for a non-reciprocal active elasticity
that conserves linear momentum and Refs. [121, 122] for
non-reciprocal models of phase separation that conserve
mass (both illustrate “model B” in Ref. [68]).
Our work lays the foundation for a general theory of

critical phenomena in non-reciprocal matter from driven
quantum condensates to biological and artificial neural
networks. These systems are marked by the interplay be-
tween the non-reciprocal enhancement of the fluctuations
and the rigidity bestowed by many-body effects. Our field-
theoretical approach inspired by non-Hermitian quantum
mechanics captures these effects and builds new bridges
between many-body physics and bifurcation theory.
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face at the &ont of the apparatus was monitored with a
charge-coupled-device (CCD) video camera and monitor,
and data were recorded on a VCR or stored on a personal
computer using a video kame grabber. Images of the
interface presented in this paper have been contrast en-
hanced, but are otherwise unprocessed. For quantitative
analysis of the interface shape, the interface height as a
function of x was extracted from video images by having
the computer trace along the path of darkest pixels &om
a given starting point.
In the experiments reported here, the minimum width

of the gap between the cylinders was 0.5 mm, set with the
micrometer screws. The stability of the stationary finger-
ing pattern observed when only one cylinder rotated was
very sensitive to the parallelism of the cylinder axes; this
fact was used to optimize the cylinder alignment. From
the way in which the stationary pattern appeared at its
onset, we estimate that the gap between the cylinders
was approximately 5% (i.e., 25 ym) larger in the middle
of the cylinders than at the edges. This nonuniformity in
the gap thickness did not seem to have an inBuence on
the behavior of the broken-parity waves studied here.
The traveling-wave states with which this paper is con-

cerned lie in the areas labeled TW on the phase diagram
shown in Fig. 3. In a typical experimental run, we set the
outer cylinder's velocity, v, to a value above the onset of
the stationary fingering pattern, which for our geometry
occurred at v, = 111.5 + 2.5 mm/s. After allowing this
pattern to stabilize, we then increased the inner cylinder
velocity, v, , in small steps in the opposite direction, i.e.,
such that the cylinders were counter-rotating, allowing
suKcient time between steps for the pattern to reach a
steady state. A video record of the pattern was then
made, and v, further increased. A typical experimental
path is indicated by the dashed horizontal line in Fig. 3.
The measurements reported here were done in a rather

restricted range of v, between v = 1.25v, and v
1.41v, . For smaller values of v, no traveling states were
observed in our apparatus; the pattern was always sta-
tionary. At higher values of v, the traveling patterns
we observed were no longer spatially uniform, and their
behavior was rather more complicated than that of the
uniform traveling waves. Results of measurements in this
regime will be presented elsewhere [37].
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FIG. 5. Patterns observed at the oil-air interface with

v = 139.4 mm/s. (a) Stationary, symmetric fingers at v, = 0;
(b)—(f) asymmetric fingers drifting to the left at successively
higher values of v, : (b) v, = 6.3 mm/s; (c) v, = 7.9 mm/s;
(d) v, = 9.5 mm/s; (e) v, = 11.1 mm/s; (f) v; = 12.7 mm/s;
(g) stationary, symmetric fingers at v, = 15.8 mm/s.

IV. RESULTS

Figure 5 shows a sequence of interface patterns ob-
served for a particular value of the outer cylinder rotation
speed, v, as the inner cylinder's rotation speed, v;, is in-
creased in small steps from zero. Initially, with v; = 0,
the pattern is stationary and symmetric with respect to
reflections, as in Fig. 5(a). Figure 6(a) is a space-time
image of such a stationary pattern. Each horizontal line
of pixels in Fig. 6 is the video image of a single line of
pixels across the interface pattern, recorded at regularly
spaced times.
When v; is increased slightly above zero, the pattern

of fingers at the interface loses its reHection symmetry
and begins to drift. Initially, the drift is spatially dis-

12—
E

24—
FIG. 6. Space-time images of the fingering patterns. (a) A

stationary pattern; (b) a drifting pattern at v = 143.8 mm/s,
v, = 9.5 mm/s.
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onset, we estimate that the gap between the cylinders
was approximately 5% (i.e., 25 ym) larger in the middle
of the cylinders than at the edges. This nonuniformity in
the gap thickness did not seem to have an inBuence on
the behavior of the broken-parity waves studied here.
The traveling-wave states with which this paper is con-

cerned lie in the areas labeled TW on the phase diagram
shown in Fig. 3. In a typical experimental run, we set the
outer cylinder's velocity, v, to a value above the onset of
the stationary fingering pattern, which for our geometry
occurred at v, = 111.5 + 2.5 mm/s. After allowing this
pattern to stabilize, we then increased the inner cylinder
velocity, v, , in small steps in the opposite direction, i.e.,
such that the cylinders were counter-rotating, allowing
suKcient time between steps for the pattern to reach a
steady state. A video record of the pattern was then
made, and v, further increased. A typical experimental
path is indicated by the dashed horizontal line in Fig. 3.
The measurements reported here were done in a rather

restricted range of v, between v = 1.25v, and v
1.41v, . For smaller values of v, no traveling states were
observed in our apparatus; the pattern was always sta-
tionary. At higher values of v, the traveling patterns
we observed were no longer spatially uniform, and their
behavior was rather more complicated than that of the
uniform traveling waves. Results of measurements in this
regime will be presented elsewhere [37].

(b)~M~',~ (c)gi'~~: ' '::"- ': "'::::-,."~"' (d)
I

v
~

j ~, .v ~~~ (e)

0.0 50.0 100.0 150.0

(a) o
position (mm)

70 140
0

:---- f- j

, r 4 y r4

'A ?

e»
v 'P

Jf I'. ' -7.
2

o 120-
E

I

j

g; ' -' r '& l. r ~ a
' ~ .'rr» g

r

fi' N t'

J. - '-g a ~ '. 'g

'1
'))', -, v

'c

.g f.
t'

1"

'i j

+g

r
L l

I~ i

r'r

tp

~ '
r

S c

'E I

jr
i

k 1

position (mm}

70 140

position (mm)
FIG. 5. Patterns observed at the oil-air interface with

v = 139.4 mm/s. (a) Stationary, symmetric fingers at v, = 0;
(b)—(f) asymmetric fingers drifting to the left at successively
higher values of v, : (b) v, = 6.3 mm/s; (c) v, = 7.9 mm/s;
(d) v, = 9.5 mm/s; (e) v, = 11.1 mm/s; (f) v; = 12.7 mm/s;
(g) stationary, symmetric fingers at v, = 15.8 mm/s.

IV. RESULTS

Figure 5 shows a sequence of interface patterns ob-
served for a particular value of the outer cylinder rotation
speed, v, as the inner cylinder's rotation speed, v;, is in-
creased in small steps from zero. Initially, with v; = 0,
the pattern is stationary and symmetric with respect to
reflections, as in Fig. 5(a). Figure 6(a) is a space-time
image of such a stationary pattern. Each horizontal line
of pixels in Fig. 6 is the video image of a single line of
pixels across the interface pattern, recorded at regularly
spaced times.
When v; is increased slightly above zero, the pattern

of fingers at the interface loses its reHection symmetry
and begins to drift. Initially, the drift is spatially dis-

12—
E

24—
FIG. 6. Space-time images of the fingering patterns. (a) A

stationary pattern; (b) a drifting pattern at v = 143.8 mm/s,
v, = 9.5 mm/s.
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We report on a study of asymmetric, traveling patterns which develop at a driven Quid-air
interface in the experimental system known as the printer's instability. We find that the traveling
pattern appears via a supercritical parity-breaking transition, at which the pattern loses its re8ection
symmetry and begins to drift with constant speed. From measurements of the degree of asymmetry of
the drifting pattern as a function of the experimental control parameter, we find that the asymmetry
increases with the square root of the control parameter, and that the drift velocity is linear in the
asymmetry. This behavior is in accord with recent theoretical predictions. Our results do not agree,
however, with the predictions of a model of the parity-breaking transition involving the coupling of
spatial modes with wave numbers q and 2q.
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I. INTRODUCTION

Stationary, one-dimensional patterns occur in many
dynaxnical systems [1]. Typically, an initially spatially
uniform system develops such a pattern, described by
a one-dimensional wave vector, when it is driven suK-
ciently far out of equilibrium by the application of an
appropriate external forcing. An example &om the ex-
periment to be discussed in this paper is shown in Fig. 1.
This figure shows video images of an oil-air interface,
which is initially straight. As the interface is driven out
of equilibrium by changing an experimental control pa-
rameter, a one-dimensional pattern of fingers develops,
as shown in Fig. 1(a). This pattern has certain symme-
try properties. Since it is stationary, it is invariant under
translation in time. It is periodic in space (neglecting
the finite length of the experimental apparatus), and so
is invariant under translation in the direction along the
pattern by an integer number of wavelengths. Finally,
it is symmetric with respect to reQections about lines
perpendicular to the pattern wave vector; this is termed
parity symmetry.
As the interface is driven further &om equilibrium by

adjustment of a second control parameter, the pattern of
Fig. 1(a) itself becomes unstable to a secondary insta-
bility which breaks parity symmetry, leading to patterns
like that shown in Fig. 1(b). This pattern is still spa-
tially periodic, but is now asymmetric. In addition, it

FIG. l. Examples of fingering patterns observed at the
oil-air interface in the printer s instability experiment. (a)
Symmetric, stationary fingers. (b) Asymmetric fingers drift-
ing to the right.

propagates with constant velocity.
The transition &om the stationary, symmetric pattern

of Fig. 1(a) to the traveling, asymmetric pattern of Fig.
l(b) is an example of a parity-breaking bifurcation. Such
a bifurcation was postulated by Coullet et al. [2], as an
explanation for phenomena observed in other experimen-
tal systems, to be discussed below. Parity-breaking was
shown to be one of ten possible generic secondary insta-
bilities of stationary one-dimensional patterns by Coul-
let and Iooss [3]. Parity-breaking bifurcations have re-
cently been the subject of a substantial amount of theo-
retical work [2,4—19]. Experimentally, both localized re-
gions of broken parity, which propagate through a sta-
tionary background pattern, and extended broken-parity
traveling-wave states have been observed in several lab-
oratory systems [20—35]. While the system we study has
two control parameters, the same is not true of all experi-
mental systems where parity breaking has been observed,
nor are two control parameters necessary theoretically.
In this paper we report on a study of a parity-breaking

transition in a fluid dynamical systexn known as the
printer's instability [28]. The system consists of a thin
layer of fluid between two acentrically mounted horizon-
tal cylinders; a cross section of the experimental appara-
tus is shown in Fig. 2. The Quid-air interface is driven
by the rotation of one or both of the cylinders, and pat-
terns such as those shown in Fig. 1 develop at the inter-
face. A phase diagram showing the difFerent dynamical
states observed in this system, in terms of the rotation
speeds of the two cylinders, is shown in Fig. 3. When
only one cylinder rotates, a pattern of stationary fingers
develops at the interface above a critical rotation speed
[36,37]. When the cylinders corotate, the pattern is spa-
tiotemporally chaotic [38], and when they counter-rotate,
traveling-wave states are seen in the regions labeled TW
in Fig. 3. On the edge of the TW regions, localized, prop-
agating inclusions of broken parity are found (labeled SW
in Fig. 3), separating the traveling-wave state from an-
other state of stationary fingers [28].
Variants of this experimental system have been of

longstanding interest, since they model the geometry

1063-651X/94/49(1)/483(11)/$06. 00 49 483 1994 The American Physical Society

PHYSICAL REVIEW E VOLUME 49, NUMBER 1 JANUARY 1994

Spatially uniform traveling cellular patterns at a driven interface

Lihong Pan and John R. de Bruyn
Department of Physics, Memorial University of Neivfoundland, St. John' s, Newfoundland, Canada A1BSX7

(Received 4 August 1993)

We report on a study of asymmetric, traveling patterns which develop at a driven Quid-air
interface in the experimental system known as the printer's instability. We find that the traveling
pattern appears via a supercritical parity-breaking transition, at which the pattern loses its re8ection
symmetry and begins to drift with constant speed. From measurements of the degree of asymmetry of
the drifting pattern as a function of the experimental control parameter, we find that the asymmetry
increases with the square root of the control parameter, and that the drift velocity is linear in the
asymmetry. This behavior is in accord with recent theoretical predictions. Our results do not agree,
however, with the predictions of a model of the parity-breaking transition involving the coupling of
spatial modes with wave numbers q and 2q.

PACS number(s): 47.54.+r, 47.20.Ky, 68.10.Gw

I. INTRODUCTION

Stationary, one-dimensional patterns occur in many
dynaxnical systems [1]. Typically, an initially spatially
uniform system develops such a pattern, described by
a one-dimensional wave vector, when it is driven suK-
ciently far out of equilibrium by the application of an
appropriate external forcing. An example &om the ex-
periment to be discussed in this paper is shown in Fig. 1.
This figure shows video images of an oil-air interface,
which is initially straight. As the interface is driven out
of equilibrium by changing an experimental control pa-
rameter, a one-dimensional pattern of fingers develops,
as shown in Fig. 1(a). This pattern has certain symme-
try properties. Since it is stationary, it is invariant under
translation in time. It is periodic in space (neglecting
the finite length of the experimental apparatus), and so
is invariant under translation in the direction along the
pattern by an integer number of wavelengths. Finally,
it is symmetric with respect to reQections about lines
perpendicular to the pattern wave vector; this is termed
parity symmetry.
As the interface is driven further &om equilibrium by

adjustment of a second control parameter, the pattern of
Fig. 1(a) itself becomes unstable to a secondary insta-
bility which breaks parity symmetry, leading to patterns
like that shown in Fig. 1(b). This pattern is still spa-
tially periodic, but is now asymmetric. In addition, it

FIG. l. Examples of fingering patterns observed at the
oil-air interface in the printer s instability experiment. (a)
Symmetric, stationary fingers. (b) Asymmetric fingers drift-
ing to the right.

propagates with constant velocity.
The transition &om the stationary, symmetric pattern

of Fig. 1(a) to the traveling, asymmetric pattern of Fig.
l(b) is an example of a parity-breaking bifurcation. Such
a bifurcation was postulated by Coullet et al. [2], as an
explanation for phenomena observed in other experimen-
tal systems, to be discussed below. Parity-breaking was
shown to be one of ten possible generic secondary insta-
bilities of stationary one-dimensional patterns by Coul-
let and Iooss [3]. Parity-breaking bifurcations have re-
cently been the subject of a substantial amount of theo-
retical work [2,4—19]. Experimentally, both localized re-
gions of broken parity, which propagate through a sta-
tionary background pattern, and extended broken-parity
traveling-wave states have been observed in several lab-
oratory systems [20—35]. While the system we study has
two control parameters, the same is not true of all experi-
mental systems where parity breaking has been observed,
nor are two control parameters necessary theoretically.
In this paper we report on a study of a parity-breaking

transition in a fluid dynamical systexn known as the
printer's instability [28]. The system consists of a thin
layer of fluid between two acentrically mounted horizon-
tal cylinders; a cross section of the experimental appara-
tus is shown in Fig. 2. The Quid-air interface is driven
by the rotation of one or both of the cylinders, and pat-
terns such as those shown in Fig. 1 develop at the inter-
face. A phase diagram showing the difFerent dynamical
states observed in this system, in terms of the rotation
speeds of the two cylinders, is shown in Fig. 3. When
only one cylinder rotates, a pattern of stationary fingers
develops at the interface above a critical rotation speed
[36,37]. When the cylinders corotate, the pattern is spa-
tiotemporally chaotic [38], and when they counter-rotate,
traveling-wave states are seen in the regions labeled TW
in Fig. 3. On the edge of the TW regions, localized, prop-
agating inclusions of broken parity are found (labeled SW
in Fig. 3), separating the traveling-wave state from an-
other state of stationary fingers [28].
Variants of this experimental system have been of

longstanding interest, since they model the geometry

1063-651X/94/49(1)/483(11)/$06. 00 49 483 1994 The American Physical Society

spacespace

tim
e

flo
ck
in
g

sy
nc
hr
on

iz
at
io
n

pa
tt
er
n
fo
rm

at
io
n

aligned chiral

a b

cc dd

ee ff

j+∝ (JAB + JBA)

(g)

(h)

(i)

Fig. 1. Exceptional transitions from non-reciprocity and continuous symmetries. Non-reciprocal interactions
between two species A and B (JAB 6= JBA) induce a phase transition from static alignment to a chiral motion that spontaneously
breaks parity. (a-b) Non-reciprocal synchronization. The oscillators represented by robots (programmed as non-reciprocal
spins) spontaneously rotate either clockwise or counterclockwise, despite having no average natural frequency, i.e. ωm = 0 in
Eq. (2). (See SI Movie 3 for a demonstration.) (c-d) Non-reciprocal flocking. The oscillators are replaced by self-propelled
particles. They run in circles, either clockwise or counterclockwise, despite the absence of any external torque. See Fig. 2 for
details and SI Movie 1 for movies of the simulations. (e-f) Non-reciprocal pattern formation. A one-dimensional pattern starts
traveling, either to the left or to the right, see Methods for details. The figure represents an experimental observation of viscous
fingering at an oil-air interface adapted with permission from Ref. [67] (Copyright 1994 by the American Physical Society). In
this case, the species correspond to different harmonics of the same field. (g) Schematic bifurcation diagram of the exceptional
transition showing the frequency of the steady-state Ωss. Between the static phases with alignment and antialignment (in which
Ωss = 0), we find an intermediate chiral phase that spontaneously breaks parity. Two equivalent steady-states (clockwise and
counterclockwise, corresponding to opposite values of Ωss) are present in this time-dependent phase, which can be seen as a
manifestation of spontaneous PT-symmetry breaking. The chiral phase continuously interpolates between the antialigned and
aligned phases, both through |Ωss| and through the angle between the order parameters ~vA and ~vB . (h) The transition between
(anti)aligned and chiral phases occurs through the coalescence of a damped mode (orange) and a Goldstone mode (green) at
an exceptional point (EP, marked by a red circle). (i) Non-reciprocity leads to an exceptional point. In a reciprocal system,
rotating the order parameter ~vA has the same effect on ~vB as rotating ~vB would have on ~vA. By definition, this is not the case
in non-reciprocal systems. Hence, a purely antisymmetric perturbation (for which the velocities ~vA and ~vB are rotated by equal
amounts in opposite directions) does not generate a purely antisymmetric response: ~vA is rotated back by a greater amount
than ~vB (black arrows in middle panel). This response is equivalent to pushing back ~vA and ~vB towards each other by equal
amounts (black arrows in right panel), plus applying a global rotation (purple arrow). The purely symmetric perturbation
(solid-body rotation) is a Goldstone mode, so it does not generate any response. As the non-reciprocal coupling increases, it
reaches a critical value where all perturbations result in a global rotation of ~vA and ~vB . This corresponds to an exceptional
point and marks the onset of the chiral phase.
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Fig. 2. Many-body exceptional points and active time (quasi)crystals. (a-c) Slices of the phase diagram of the
non-reciprocal flocking model Eq. (11) for different values of the noise strength η. The parameters jab (entering αab and
βabcd in Eq. (1)) are coarse-grained versions of the microscopic couplings Jab. The red (resp. black) lines correspond to the
analytically-determined phase transition lines from the (anti)aligned phase to the chiral (resp. disordered) phase. The red lines
correspond to lines of exceptional points. In (b) and (c), the analytical prediction for the (anti)aligned/chiral transition is in
excellent agreement with the numerical phase diagram up to tetracritical points marked by black dots where new phases emerge
(see SI Sec. II). (d) Schematic representation of one period of the chiral phase: ~vA and ~vB rotate in block at a constant angular
velocity Ωss, see SI Movie 2. (e) Schematic representation of one period of the swap phase: ~vA and ~vB oscillate along a fixed
direction, see SI Movie 2. (f,g) Plot of the frequencies present in the steady-state solution as a function of j+, (f) for j− = −0.6
and (g) for j− = −0.25. In the chiral phase, a single frequency is present in the spectrum (at each point), which corresponds to
the solid-body rotation. In the swap phase, a single frequency accompanied by harmonics are present. In contrast, in the mixed
chiral/swap phase, two independent frequencies are present (with their harmonics). These frequencies are not harmonics of
each other, leading to a quasiperiodic phase. The aligned phase is static (Ωss = 0). Similar plots would be observed with the
antialigned phase. In (g), a direct transition between aligned and chiral phases is observed. The phase diagrams are determined
by solving Methods Eq. (11) numerically from random initial conditions, with ρA = ρB = 1, jAA = jBB = 1, and (a) η/ηc = 1.5,
(b) η/ηc = 0.99, (c) η/ηc = 0.5. The parameters in (f,g) are the same as in (c).
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transition lines. (a) Numerical phase diagram including the linear stability analysis of the (anti)aligned and chiral phases in
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exceptional transition and of exceptional-point enforced pattern formation. The coalescence of the Goldstone mode with a
damped mode lead to instabilities at finite momentum. The growth rate of transverse perturbations σ⊥(k) becomes positive,
and has a maximum σ∗ at a finite wavevector k∗. (c) Plot of the normalized growth rate σ(k)/σ∗ as a function of wavevector,
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in the unstable aligned regime. We show snapshots of the angle with a fixed direction (d-e) of the order parameters ~vA and
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The simulations in (c-g) are performed on a 2L× 2L box with periodic boundary conditions, and L = 0.32, j+ = 0.1, j− = 0.2,
v0A = 0.06 and v0B = 0.01 (see Methods for details on the simulation).
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Fig. 4. A visual procedure to identify and analyze exceptional transitions. We start by identifying a system with (i)
non-reciprocal interactions between two or more components and (ii) a continuous symmetry that can be spontaneously broken.
A dynamical system describes the evolution of the relevant order parameter V (an effective hydrodynamic theory), obtained either
purely by symmetry considerations, or from more microscopic considerations. We then look for a time-independent (stationary)
steady-state Vss in which a continuous symmetry is spontaneously broken (SSB, green regions). The dynamical system is then
linearized above this time-independent steady-state. Because of the spontaneously broken symmetry, the corresponding linear
operator (Jacobian matrix) L(V ) always has a vanishing eigenvalue. The exceptional points (EP, red points and continuous red
lines) of L(V ) with zero eigenvalue correspond to exceptional transitions. The parameters of the system are separated in two
classes: (I) those who do not explicitly break parity, collectively labeled by j, and (II) those who explicitly break parity, labeled
by j?. We further split the parameter set j into two subclasses, (a) j− for parameters encoding the non-reciprocity and (b)
j+ for the others. When j? = 0 (left panel), the EP have codimension 1 (they form lines in a 2D parameter space). At the
exceptional transition, the Goldstone mode collides with a damped mode. This leads to a spontaneous dynamical restoration
of symmetry (at the price of losing time-translation invariance) in which the Goldstone mode is actuated by the fluctuations.
In the corresponding chiral phase (in purple), the space of equivalent steady-states (corresponding to the broken symmetry)
is traveled in a direction (clockwise or counterclockwise) chosen at random. When j? 6= 0, this mechanism competes with an
explicit rotation of the order parameter set by j?. This leads to extended regions (in light red) starting at the EP (red point,
now of codimension 2) in which the (counter)clockwise states coexist, marked by first-order transitions and accompanied by
hysteresis: the complex frequencies of the (stable) equilibrium states are organized on a Riemann surface (see Extended Data
Fig. 6 for a numerically computed version in the non-reciprocal Kuramoto model).
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METHODS

I. NON-RECIPROCITY OUT OF EQUILIBRIUM

In this section, we discuss the relations between non-
reciprocity, the non-Hermitian (non-normal) character
of the Jacobian of a dynamical system, which allows it
to exhibit an exceptional point, and the non-equilibrium
character of the system.

A dynamical system

∂tX = f(X) (7)

is said to be conservative when it derives from some po-
tential F (e.g., a free-energy), such that fa(X) = ∂XaF .
(Here, we assume that X is real.) The Jacobian of
the dynamical system is defined as the real matrix
Lab = ∂Xbfa. When the dynamical system is conser-
vative, Lab = −∂Xb∂XaF = Lba is symmetric, and hence
it is a normal operator. When the dynamical system is
not conservative, it is possible to have Lab 6= Lba, i.e.
L is not symmetric. This is our operative definition of
non-reciprocity. In the language of quantum mechanics,
we would say that the operator is non-Hermitian (because
it could be complex-valued). The key point is that L is
not a normal operator (a matrix N is normal when it is
unitarily diagonalizable; equivalently, N†N = NN†, see
Ref. [123]). Deviations from normality allow the eigen-
vectors of L not to be orthogonal, leading to a variety
of physical consequences related to an enhanced sensi-
tivity to fluctuations, in hydrodynamics [50, 124–127],
(general and neural) networks [2, 128–133], ecological
systems [134–139], photonics [20, 140], and quantum sys-
tems [35, 36, 59, 141–145]. In particular, the presence of
exceptional points requires a non-normal operator.

Note that the notion of normality depends on the choice
of the scalar product and the associated norm (this is
also true for symmetry and Hermiticity). Equivalently,
these notions are not invariant under a generic invertible
change of basis. Depending on the context, a certain scalar
product might be selected by physical considerations (such
as the presence of noise, see below). For example, consider
the one-dimensional harmonic oscillator described by the
linear system

∂t

(
x
p

)
=

(
0 1/m
−k 0

)(
x
p

)
(8)

in which x is the position and p the linear momentum
of a particle of mass m in a harmonic well with stiffness
k. The matrix in Eq. (8) is not normal with respect to
the standard scalar product on R2, but it is normal with
respect to the scalar product associated with the energy
(defined such that ‖(x, p)‖2 = kx2/2 + p2/2m). In con-
trast, the notions of spontaneously/explicitly/not-broken
generalized PT-symmetry (see section IX Generalized PT
symmetry and dynamical systems) and the presence of
an exceptional point are independent of the choice of the
basis.

Non-reciprocity is also related to the breaking of de-
tailed balance (i.e., microscopic reversibility). The no-
tion of detailed balance deals with stochastic processes,
hence we have to consider a stochastic dynamical system
∂tX = f(X) + η(t), where η(t) is a noise. This can either
represent a microscopic system or a fluctuating hydrody-
namic equation. Assuming that the noise is scalar, de-
tailed balance implies (i.e., requires) that ∂Xafb = ∂Xbfa
(i.e. Lab = Lba). (See SI Sec. IV and references therein.
When the noise is not scalar, this equality is weighted by
the corresponding diffusion constants.)

The concepts of “non-conservative dynamical systems”
and “non-conserved order parameters” discussed in the
main text are completely unrelated. (Their names are bor-
rowed from conservative forces and conserved quantities.)
Following the classification of Ref. [68], we talk about a
conserved order parameter (“model B” in Ref. [68]) when
its dynamics is the expression of a conservation law (e.g.,
conservation of mass). When this is not the case, we say
that the order parameter is not conserved (“model A” in
Ref. [68]). In parallel, a dynamical system is conserva-
tive when it derives from a potential, as discussed in the
previous paragraph.

Let us now discuss connections between the notions dis-
cussed above and more general notions of non-reciprocity.
Broadly, non-reciprocity occurs when A does not have
the same effect on B than B has on A. This can often
lead to a non-conservative dynamical system as defined
above, but the connection is not systematic.
Newton’s third law [146] states that the force fij that

an object i exerts on an object j is exactly opposite to
the force fji than j exerts on i (i.e., fij = −fji). This
symmetry between action and reaction can be violated
when the interaction between the objects is mediated
by an non-equilibrium environment. Such non-reciprocal
interactions can arise in various contexts: particles in
fluids [48–50, 147, 148], non-equilibrium plasma [53, 54],
chemically and biologically active matter [47, 52, 55, 57],
optical matter [149–151], etc. The symmetry between
action and reaction has no particular reason to occur in
complex systems in which the interactions summarize the
decisions of agents/algorithms: it is explicitly violated
in active matter [38–40, 44, 46], e.g. for biological rea-
sons such as a limited vision cone [41, 45] or hierarchical
relationships [37], as well as in systems with synthetic
physical interactions [21, 52–55] or programmable robotic
interactions [19, 22, 29, 152, 153]. The non-equilibrium
character of such non-conservative forces leads to diverse
but crucial consequences on the behavior of the corre-
sponding systems [46, 53, 154–157].
In condensed matter, in particular in the context

of topological insulators, non-symmetric tight-binding
Hamiltonians H 6= HT with non-symmetric hopping
terms (leading to non-Hermitian Hamiltonians in momen-
tum space) are called non-reciprocal, see Refs. [23, 24, 35,
135, 158–162]. In an elastic network, the Hamiltonian is re-
placed by a dynamical matrix D such that the force Fµi on
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the particle i is Fµi = −Dµν
ij u

ν
j (with uνj the displacement

of the particle j with respect to its equilibrium position).
The overdamped dynamics of such a system is ruled by
an equation of the form γ∂tu

µ
i = Dµν

ij u
ν
j . In this case, the

symmetry of the dynamical matrix indeed corresponds
to reciprocity as we have defined in the first paragraph,
and is associated with a non-conservative dynamical sys-
tem. Non-reciprocity (D 6= DT ) can occur through a
violation of Newton’s third law by which Dij 6= Dji (see
e.g. Ref. [29]), or through “odd springs” with transverse
responses by which Dµν 6= Dνµ (see Ref. [21]). In both
cases, some degree of activity is required (energy is not
conserved), and the noisy overdamped dynamics again
exhibits broken detailed balance.
At the level of responses, reciprocity is captured

by various notions that share many similarities, such
as Maxwell–Betti reciprocity in elasticity and acous-
tics [163, 164], Lorentz reciprocity in optics [165, 166]).
Similar relations appear also in fluid dynamics [167],
etc. For instance, the non-reciprocal elastic networks
(with D 6= DT ) in Refs. [21, 29, 153, 168, 169] vio-
late Maxwell–Betti reciprocity. A similar notion ex-
ists in non-equilibrium thermodynamics: Onsager re-
ciprocal relations are the statement that the matrix of
response coefficients L relating thermodynamic fluxes
Ji and forces Fk through Ji = LikFk is symmetric
(more precisely, the Onsager-Casimir relations state that
Lik(B) = εiεkLki(−B) where εi = ±1 depending on
whether the quantity i is even/odd with respect to time-
reversal, and where B represents all external time-reversal
breaking fields such as magnetic fields and rotations) [170].
This relation is also a consequence of microscopic re-
versibility. Depending on the system, L contains the dif-
fusion coefficients, electric conductivities, viscosities, etc.
For example, Hall conductivity and odd viscosity [170–
175] are instances of antisymmetric components, that
require broken detailed balance.

II. DEMONSTRATION WITH
PROGRAMMABLE ROBOTS

We demonstrate the effect of non-reciprocal interac-
tions using programmable robots evolving according to
a modified version of Eq. (2). The main differences are
that (i) the evolution is discrete in time, (ii) the term
sin(θn − θm) is replaced by sign sin(θn − θm) and (iii) we
do not add artificial noise. Hence, Eq. (2) is replaced by

θm(t+ Tmv) =
∑
n

[Jmn Tmv] sign sin(θn(t)− θm(t)) (9)

In practice, additional differences such as delays and
noises are also present due to imperfections in the im-
plementation. This motivates the lack of artificial noise.
We use two programmable robots (GoPiGo3, Dexter In-
dustries). Each robot is connected to a magnetic sensor
(Bosh BNO055 packaged in Dexter Industries IMU Sen-
sor) as a compass to measure its absolute orientation.

The magnetic sensor is attached to the body of the robot
at a distance from the motors to reduce electromagnetic
interferences. Each robot communicates its respective
orientation to the other via Wi-Fi every Tms = 0.1 s. The
communication is implemented through a central server,
which allows to easily record the angles of each robot
as a function of time (see Fig. 1c). Every Tmv = 0.5 s,
each robot computes the left hand side of the modified
Eq. (2) described above, and actuates its two motors with
opposite angular velocities for a given time in order to
perform a rotation of ±θ0 where θ0 = 15°, depending on
the result of the computation. The change in angle is not
instantaneous, because the rotation speed of the motors
cannot be arbitrarily large. (Orientation measurements
and communication are not instantaneous either, but they
are much faster.) Hence, we have chosen to make new
decisions only at discrete times. Performing rotations
with very small angles (lower than ' 4°) is not effective;
this is compensated by the replacement of sin(θn − θm)
by sign sin(θn − θm) to avoid the presence of arbitrarily
small angle increments. The robots and the server are
implemented in Python, using the GoPiGo3 Python pack-
age (version 1.2.0) to control the robots, the DI_Sensors
package (version 1.0.0) to access the magnetometer data
and ZeroMQ (version 4.3.2) as a messaging library.
We show an example of behavior in SI Movie 3, in

which we observe a rotation of the two populations. This
behavior is reproducible, but not in a systematic way:
depending on the initial conditions, the robots can also
quickly align (or antialign). We observed chiral motions
over relatively long time; however, the robots have a ten-
dency to eventually align as a result of imperfections (not
shown in the movie; this can be qualitatively understood
from the analysis of SI Sec. V and VI).

The movie was modified in postproduction to color half
of the robots in blue, partially hide imperfections in the
substrate, and enhance the color balance.

III. MOLECULAR DYNAMICS SIMULATIONS
OF THE VICSEK MODEL

We perform simple molecular dynamics simulations
of a moderately large number of active agents following
Eqs. (2–3) in order to visually demonstrate the disordered,
flocking, antiflocking, and chiral behaviours, as shown in
Extended Data Fig. 1 and SI Movie 1.

We simulate N agents following Eqs. (2–3) discretized
using the Euler–Maruyama scheme with a timestep δt,
with a ratio NA/NB between populations A and B, in
a L × L box with periodic boundary conditions, for a
duration Tsim. We choose the couplings in Eq. (2) to be
Jmn = Js(m)s(n)H[‖ri − rj‖ −R0] where s(m) represents
the species of particle m (A or B) and H is the Heaviside
step function. We set N = 512, NA/NB = 1, v0 = 0.5
R0 = 2, L = 8, Tsim/δt = 8000 with δt = 0.01. Figure 2a-
d and SI Movie 1 show simulations exhibiting (a) disor-
dered, (b) flocking, (c) antiflocking and (d) chiral behav-
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(a) disordered (b) aligned

(c) antialigned (d) chiral

Methods Fig. 1. Snapshots of simulations of the Vic-
sek model. See text for a description and for the parameters
used.

iors. For these simulations, the noise is (a) η = 200× 10−2

and (b,c,d) η = 2× 10−2 and the coupling matrices
(JAA, JAB; JBA, JBB) are (a) 1× 10−4 × (1, 1; 1, 1); (b)
(1, 1; 1, 1); (c) (1,−1;−1, 1); (d) 0.39× (1,−0.25; 0.25, 1).

IV. HYDRODYNAMIC THEORY FOR
NON-RECIPROCAL FLOCKING

We have derived hydrodynamic equations for the den-
sities ρa(t, r) and polarizations ~Pa(t, r) (or equivalently
the velocities ~va(t, r); in the main text, we denote the po-
larization fields by ~va(t, r) for simplicity) of an arbitrary
number of populations from Eqs. (2–3). Our derivation,
presented in the SI Sec. I, follows the methods described
in Refs. [9, 40, 176–180]. The set of hydrodynamic equa-

tions obtained generalize the Toner-Tu equations [72, 181]
to several populations with non-reciprocal interactions,
and are the basis of the analysis in the main text.
Our results for two populations also generalize the

situation considered in Ref. [40], which considers align-
ers A (standard Vicsek-like self-propelling particles) and
dissenters B that do not align at all with anyone (nei-
ther A or B), but with which the population A aligns.
With our notations, this corresponds to jAA, jAB > 0 but
jBB = jBA = 0.

Several methods of deriving continuum hydrodynamic
equations from microscopics were applied to active matter,
going from (i) approaches based on the Fokker–Planck
(Smoluchowski) equation for the hydrodynamic vari-
ables [9, 176, 179], to (ii) kinetic theory approaches based
on the Boltzmann equation [177, 178, 182], or (iii) directly
from the Chapman-Kolmogorov equation [183] (in increas-
ing order of complexity). Although coarse-graining mi-
croscopic models provides invaluable qualitative insights
on the behaviour of the system, even current state-of-the-
art coarse-graining procedures only provide a qualitative
agreement, at best semi-quantitative, with the microscopic
starting point [180, 184]. With this in mind, we use the
easiest coarse-graining method (i) along with several sim-
plifying approximations (see SI Sec. I). This procedure
has the benefit of simplicity and allows to highlight the
key features of a non-reciprocal multi-component fluid.
However, the correspondence between the resulting hy-
drodynamic equations and the microscopic model is only
qualitative, in the sense that the values of the coefficients
might be inaccurate.
Here, we write the hydrodynamic equations for two

populations a = A,B. We refer to SI Sec. I for the
general case of an arbitrary number of populations and
its derivation from the microscopic equations.

The continuity equation reads

∂tρa + va0 div(~Pa) = 0. (10)

while the equation of motion for the polarizations reads

∂t ~PA =

[
jAAρA − η −

1

2η
‖jAA ~PA + jAB ~PB‖2

]
~PA + jABρA ~PB

−v
A
0

2
∇ρA +DA∇2 ~PA

+λAA

[
5/2∇(~PA · ~PA)− 3(~PA · ∇)~PA − 5~PA div(~PA)

]
+λAB

[
(~PB · ∇)~PA − 2(~PA · ∇)~PB − 2~PB div(~PA) + (~P ∗B · ∇)~P ∗A + 2(~P ∗A · ∇)~P ∗B + 2~P ∗B div(~P ∗A)

]
(11)

Here, jab =
R2

0

2 Jab where R0 is a characteristic length
scale. The equation for B is obtained by exchanging the
indices. In this equation, the notation ~U∗ denotes the
2D vector ~U = (Ux, Uy) rotated by 90 in the clockwise

direction, namely ~U∗ = (Uy,−Ux). The polarizations
denoted by ~PA and ~PB here and in the SI are called ~vA
and ~vB in the main text. The hydrodynamic parameters
in Eq. (11) are related to the microscopic parameters,
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see SI Sec. I. When considering uniform fields, Eq. (11)
reduces to

∂t

(
~PA
~PB

)
=

(
αA[~PA, ~PB ] jABρA
jBAρB αB [~PA, ~PB ]

)(
~PA
~PB

)
(12)

where

αA = jAAρA − η −
1

2η
‖jAA ~PA + jAB ~PB‖2. (13)

Again, the equation for B is obtained by exchanging the
indices. This equation is used to construct the phase dia-
grams of Fig. 2, see SI Sec. II. We find (a) a disordered
regime where the order parameter vanishes, (b) a flocking
regime where the order parameters are parallel, (c) an
antiflocking regime where the order parameters are an-
tiparellel (sharing some similarities with Refs. [185–187]),
(d) a periodic chiral regime where the order parameter
have circular trajectories (sharing similarities with chiral
active matter [172–175, 188, 189]), (e) a periodic swap
regime where the order parameter oscillate along a fixed
direction, (f) a quasiperiodic chiral+swap regime in which
the order parameter oscillates along a rotating direction.
Equation (11) is then linearized above the uniform solu-
tion of Eq. (12) to obtain the stability diagram of Fig. 3
(see SI Sec. III for details on the computations).

V. SIMULATIONS OF THE CONTINUUM
EQUATIONS IN EXCEPTIONAL POINT

INDUCED PATTERN FORMATION

To explore the pattern formation beyond linear sta-
bility, we directly solve the hydrodynamic equation (11)
under periodic boundary conditions using the open-source
pseudospectral solver Dedalus [190]. For simplicity, we
focus on Eq. (11) only and assume that the fluctuations
of the densities ρa are high-frequency modes that can be
ignored and integrated out and set ρa ≈ const., but we do
not enforce the incompressibility constraint div(~va) = 0
that would arise from Eq. (10) in a system where mass
is conserved. In the SI Sec. XI, we show that pattern
formation also occurs when the incompressibility con-
straint div(~va) = 0 is enforced, both through a linear
stability analysis and simulations of the non-linear hy-
drodynamic equations. The simulations in Fig. 3(c-g)
are performed on a box of size 2L × 2L with L = 0.32.
Each dimension is discretized with N = 26 modes. A
random initial condition (in space, with the value at each
point drawn independently from a uniform distribution on
[−1, 1]) is evolved in time with the time-stepper SBDF2
(second-order semi-implicit backwards differentiation for-
mula) implemented in Dedalus [190, 191] with a constant
time step δt = 0.01 for a total time Tsim ≈ 2000.

VI. PHASE TRANSITIONS AND
BIFURCATIONS

In this section, we first review standard relations be-
tween phase transitions and bifurcations of dynamical
systems. We then discuss our results from the point of
view of bifurcation theory [33, 111, 192–195]. The excep-
tional transitions analysed in the main text are closely re-
lated to Bogdanov-Takens bifurcations [111, 196–198]. At
first sight, a striking difference is present: the Bogdanov-
Takens (BT) bifurcation has codimension two (i.e., two
parameters have to be adjusted to get to the bifurcation),
while the exceptional transitions in our work have codi-
mension one (i.e., a single parameter has to be adjusted;
hence, we observe transition lines in a 2D phase diagram).
We argue that this apparent tension is solved because the
Goldstone theorem effectively reduces the codimension of
BT bifurcations from phases with a spontaneously broken
continuous symmetry.

A. Phase transitions and dynamical systems

Equilibrium phase transitions are usually described in
terms of a free energy. The minimum of the free energy
corresponds to the current phase, and a phase transi-
tion occurs when it ceases to be a global minimum, or
a minimum at all. Although this landscape picture is
static, it relies on an underlying dynamics that shep-
herds the system into the global minimum in a way or
another [8, 68, 199]. For instance, it arises naturally
when one considers a Ginzburg-Landau-Wilson Hamilto-
nian obtained from renormalizing a microscopic Hamilto-
nian [200, 201] instead of a phenomenological Ginzburg-
Landau free energy.

The most simple dynamics is relaxational. In this case,
the dynamical system that describes the time evolution of
the order parameter φ near its equilibrium value reads [8,
68, 199, 201, 202]

∂φ

∂t
= −δF

δφ
(14)

for a system described by the Ginzburg-Landau free en-
ergy F [φ]. Phase transitions can be seen as bifurcations
of this dynamical system [203–205].
Let us immediately note that this point of view nat-

urally encompasses out-of-equilibrium systems, for they
have an equivalent of equation (14) even when they
are not described by a free energy (and more gener-
ally, when they do not possess a Lyapunov function).
For instance, this occurs in non-equilibrium pattern for-
mation [8, 201, 206, 207] (we refer to [8, III.A.5] for a
discussion on the difference between bifurcations and ther-
modynamic phase transitions; here, we will use liberally
the term “phase transition” to describe both situations).
As an example, consider the paramagnet/ferromagnet

transition of the Ising model, for which the Ginzburg-
Landau free energy density reads f(φ) = (a/2)φ2 +
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(b/4)φ4 + (c/2)(∇φ)2. This free energy describes any
real-valued scalar order parameter φ with inversion sym-
metry φ→ −φ, which also include other systems such as
incompressible symmetric binary mixtures [208]. Apply-
ing equation (14) gives

∂tφ = −aφ− bφ3 + c∆φ. (15)

For uniform order parameters, the Laplacian ∆φ vanishes
and we recognize the normal form of a supercritical pitch-
fork bifurcation, up to rescaling of the parameters. It
is instructive to analyze the stability of the equilibrium
solutions φ0 = 0 and φ± ≡

√
−a/b of this dynamical

system by linearizing (14) around equilibria φss and com-
puting a Fourier transform to momentum space. Writing
φ = φss + δφ, we find

∂δφ

∂t
=
[
−a− 3bφ2

ss + c∇2
]
δφ+O(δφ2). (16)

In momentum space (where k is the momentum),

∂δφ

∂t
= −

[
a+ 3bφ2

ss + ck2
]
δφ. (17)

Hence, the growth rates of the Fourier modes δφ(k) of the
perturbation are σ0 = −a− ck2 for the trivial equilibrium
φ = 0, and σ± = 2a−ck2 for the two non-trivial equilibria
(when they exist).

At the transition, the growth rate of the long-
wavelength perturbations (i.e., at k = 0) vanishes (in
the ordered phase, it is negative, meaning that the per-
turbations are damped). In the language of high-energy
physics, a massive (i.e, gapped) mode becomes massless
(i.e., gapless). This is a standard mechanism for phase
transitions: global fluctuations (i.e., with arbitrarily large
wavelength) becomes less and less damped in time, until
the transition where they are not damped anymore.

B. Relations with bifurcation theory

In the main text, we show that the phase transition
between the aligned phase (or antialigned) and the chiral
phase are marked by the presence of an exceptional point
(EP) in the linearized dynamical system (hence, we refer
to these as exceptional transitions). From the point of
view of bifurcation theory, this is a Bogdanov-Takens
(BT) bifurcation [196–198], precisely characterized by the
occurrence of an exceptional point (equivalently, a Jordan
block of size two), see Ref. [111]. A direct computation of
the linearized operator at a typical point in the exceptional
transition line (in red in Fig. 2b-c) confirms that its (real)
eigenvalues satisfy λ1 = λ2 = 0 < λ3 < λ4 (in this
section, we order eigenvalues by decreasing real part,
so λ1 is the most unstable), see also SI Sec. II for an
analytical proof on the occurrence of EPs. However, the
BT bifurcation has codimension two (i.e., two parameters
have to be adjusted to get to the bifurcation), so BT
bifurcations are typically points in a two-dimensional

parameter space. In contrast, the exceptional transitions
in our work have codimension one (i.e., a single parameter
has to be adjusted), and we observe transition lines in
the two-dimensional phase diagram Fig. 2b-c. We note
that the phase diagram in Fig. 2b-c is not fine-tuned
(besides the O(2) symmetry of the dynamical system):
the existence of transition lines persists even if we perturb
the dynamical system, see below.
To solve this puzzle, let us analyze the bifurcation

conditions that characterize the BT bifurcation, and how
they usually lead to a codimension two. The codimension
of subspaces with equal eigenvalues is a nontrivial problem,
see Refs. [209–212]. The BT transition occurs at an
equilibrium point where the Jacobian has a vanishing
eigenvalue of algebraic multiplicity two λ1 = λ2 = 0. Such
a degeneracy can occur in two ways: at an exceptional
point (EP) where the eigenvectors become collinear, or at
a diabolic point (DP, also known as Dirac point) where
the eigenvectors stay linearly independent. DPs have a
considerably higher codimension that EPs (so they can
essentially be ignored), see Extended Data Fig. 2; they do
not correspond to the BT bifurcation (see e.g. Refs. [213,
214] for the corresponding codimension 4 bifurcation). For
real matrices, the codimension of EPs is one; combined
with the condition that the degenerate eigenvalues must
vanish, this gives a codimension two to the BT bifurcation.

The reason why the codimension is different here lies
in symmetry. A direct inspection shows that the dy-
namical system Eq. (11) is invariant under the group
O(2) of orthogonal transformations (acting diagonally,
i.e. on all populations at the same time). We first
note that the phase transitions in Fig. 2b-c are not
Takens-Bogdanov bifurcations with O(2) symmetry in
the sense of Ref. [215, 216], because the stable eigen-
values 0 < λ3 6= λ4 are generally different. This is
because we are considering the departure from a (time-
independent) ordered phase that spontaneously breaks
the O(2) symmetry (such as the aligned phase), not from
a fully symmetric steady-state (such as the disordered
phase). (This could be analyzed as a secondary bifurca-
tion through mode interactions [33, 193, 194] or with the
formalism of Refs. [217, 218].) A crucial consequence of
the spontaneous breaking of a continuous symmetry is
the appearance of modes with vanishing frequency and
growth rate at large wavelength called Nambu-Goldstone
modes. This property is known as the Goldstone theo-
rem, see Refs. [219–225], and we note that it applies to
dynamical systems (not only Hamiltonian systems), see
Refs. [223, 226–228]. Because of the Goldstone theorem,
one eigenvalue λ1 = 0 always vanishes in the static phases
with a spontaneously broken continuous symmetry (such
as the aligned and antialigned phases). In this situa-
tion, the codimension of the BT transition is simply the
codimension of EPs, which is one. (More precisely, it is
the codimension of EPs in the space of matrices with at
least one zero eigenvalue.) To summarize, the existence
of a Goldstone mode associated with a spontaneously
broken continuous symmetry effectively reduces the codi-



15

complex
codim EP = 2
codim DP = 6

real
H = H

codim EP = 1
codim DP = 3

symmetric
HT = H

codim EP = 2
codim DP = 4

Hermitian
H† = H

no EP
codim DP = 3

real symmetric
no EP

codim DP = 2

Methods Fig. 2. Codimensions of eigenvalue degen-
eracies. This graph gives the codimension (codim) of two-
fold degeneracies of eigenvalues in different matrix spaces,
see Ref. [212]. These degeneracies can be exceptional points
(EP) or diabolic points (DP, also known as Dirac points). An
identical graph can be drawn by replacing “real symmetric”
with “purely imaginary symmetric”, “Hermitian” with “anti-
Hermitian” and “real” with “imaginary”.

mension of BT bifurcations by one, leading to lines of BT
bifurcations from the phase with broken symmetry in a
two-dimensional phase diagram,

If the existence of Bogdanov-Takens lines is indeed due
to the O(2) symmetry through the Goldstone theorem, BT
lines should persist under any (small) perturbation that
preserves the O(2) symmetry of the dynamical system. A
full analysis using the methods of equivariant bifurcation
theory is outside of the scope of this work; instead, we now
provide numerical evidences that support our hypothesis.
To do so, we consider the dynamical system

∂t ~Pa = αab ~Pb + βabcd 〈~Pb, ~Pc〉 ~Pd (18)

which includes all O(2)-symmetric terms up to order three
in ~Pa (see e.g. Ref [216]; we can choose βabcd = βacbd by
symmetry of the Euclidean scalar product, so there are a
total of n2 +n×n(n+1)/2×n parameters in this dynam-
ical system for n populations [16 for n = 2], two of which
might be removed by rescalings). We start from values of
the parameters corresponding to the dynamical system
Eq. (11), and add (small) perturbations, see Extended
Data Fig. 3. The figure shows that lines of exceptional
points marking (anti)aligned/chiral transitions persist un-
der a (small enough) generic O(2)-preserving perturbation.
This strongly suggests that this phenomenon is not the
result of a fine-tuning of some parameters not accounted
for in our particular model.
Our argument assumes that time-independent steady-

states form a submanifold of codimension zero. This
is not always the case. For instance, this is not true
when the symmetry group is reduced to SO(2) (instead
of O(2)). Correspondingly, the codimension of the BT
bifurcation becomes higher (we find codimension 2 points
in the systems analyzed in the main text, but not all
possible terms are considered). Physically, this is because
there are parameters (e.g., external torques) that drive

the Goldstone mode in a given direction (we interpret
this as an explicit PT-symmetry breaking).

In the main text, we have described the appearance
of time-dependent phases as a dynamical restoration of
(part of) the spontaneously broken symmetries. The main
idea is that a continuous group of symmetries G that is
spontaneously broken to a subgroup H ⊂ G. A time-
independent steady-state can be represented by a point
in G/H (the “manifold of degenerate ground states”),
while a limit cycle corresponds to a loop C in G/H (we
assume that the motion can be made harmonic, e.g. by a
nonlinear change of variables and a reparameterization of
time; in the instances of the chiral phase analyzed in the
main text, the motion is already harmonic and hence the
loop is traveled at constant velocity). With this picture
in mind, the class I defined in the main text corresponds
to situations in which some operation in H exchanges
clockwise and counterclockwise motions on C (like parity
does in the case of O(2)), while class II corresponds to
situations in which there is no such operation. In class
II, there is a predefined sense of rotation on the loop
C (corresponding to an explicitly broken PT symmetry),
while there is not in class I (in which the onset of a rotation
either clockwise or counterclockwise along C would be a
manifestation of a spontaneous PT symmetry breaking).
The partial restoration of spontaneously broken sym-

metries through the appearance of time-dependent phases
also occurs for discrete groups (though not through an
exceptional point). For instance, the swap phase corre-
sponds to a Z2 symmetry. Near the transition, the order
parameters approach square functions corresponding to
discrete jumps between the two states related by the bro-
ken Z2 symmetry (orthogonal to the common direction
of the order parameters in the (anti)aligned phase), lead-
ing to the rich harmonic content in Fig. 2g. In contrast,
the continuous SO(2) symmetry restored by the chiral
phase corresponds to a harmonic motion (i.e., there is
a fundamental frequency without higher harmonics), by
which the continuous manifold of degenerate ground state
is continuously traveled, with all points equivalent.

VII. NON-RECIPROCAL KURAMOTO MODEL

In this section, we provide details on the analysis of the
non-reciprocal Kuramoto model [57, 61, 62, 69, 70, 73,
74, 76–83, 229–231]. Depending on whether the system
is in class I or in class II (PT-symmetric or not), we find
codimension 2 or codimension 1 exceptional points around
which the phase diagram is organized. In class I, the
exceptional line (in a 2D phase diagram) separate static
(aligned or antialigned) phases from a chiral phase where
parity (equivalent here to PT-symmetry) is spontaneously
broken. In class II, an exceptional point structures the
phase diagram: the stable steady-states are organized on
a truncated version of the Riemann surface of the square
root. This leads to discontinuous transitions marked by
hysteresis between regions where two stable states coexist



16

−0.1

0.0

0.1

j+

(a) phases
(no perturbation)

(c) |det(UL)|
(no perturbation)

10−4

10−3

10−2

10−1

0.1 0.2 0.3
j−

−0.1

0.0

0.1

j+

(b) phases
(with perturbation)

0.1 0.2 0.3
j−

(d) |det(UL)|
(with perturbation)

10−4

10−3

10−2

10−1

Methods Fig. 3. Effect of generic symmetry-
preserving perturbations. We compare (a,c) a portion
of the phase diagram from Fig. 2 to (b,d) the same portion of
the phase diagram, after a generic O(2)-symmetric perturba-
tion. We plot (a,b) the phase diagrams and (c,d) the absolute
value of the determinant of the matrix UL of eigenvectors of
L(k = 0). The vanishing of the determinant in (c,d) marks
exceptional points (EPs). The phase boundaries are modified,
but the topology of the diagram is not modified by small
perturbations, and lines of EPs still mark the transition be-
tween (anti)aligned and chiral phases. Direct inspection of the
spectrum of L shows that the EPs indeed correspond to the
coalescence of the two most unstable eigenvalues λ1 and λ2.
We also note the existence of additional lines of EPs inside the
chiral phase in the perturbed case. These are not the subject
of the present analysis. We have used the same parameters
as in figure 2 with η/ηc = 0.5. For the perturbed case (b,d),
the deviations ∆p of the parameters p from the unperturbed
case are ∆βAAAA = −0.015, ∆βAABA = −0.035, ∆βABBA
= −0.045, ∆βBAAB = −0.025, ∆βBABB = −0.045, ∆βBBBB
= −0.065, ∆βAAAB = −0.01, ∆βAABB = −0.03, ∆βABAB
= −0.05, ∆βABBB = −0.07, ∆βBAAA = −0.02, ∆βBABA =
−0.04, ∆βBBAA = −0.06, ∆βBBBA = −0.08, ∆jAA = 0.05,
∆jBB = 0.01, ∆ρA = −0.05, ∆ρB = 0.04.

and regions where only one state exists, in a similar
manner to driven-dissipative quantum fluids [58, 59]. We
first present analytic self-consistency arguments where the
existence of static or harmonic steady-state is assumed.
We then resort to numerical simulations of a reduced
dynamical system to confirm our analytic predictions and
explore the full phase diagram, including non-harmonic
time-dependent phases.

A. General considerations

We start from Eq. (2) of the main text. Following the
standard Kuramoto model, we consider globally coupled
(all-to-all) oscillators, and neglected the noise η(t) ≡ 0.
The oscillators are separated into two communities A and
B, and the dynamics of the oscillators separated into two
populations reads

∂tθ
a
m = ωam +

∑
b

Nb∑
n=1

Jab sin(θbn − θam) (19)

where a, b = A,B represent the two species (or commu-
nities), and where we neglected the noise for simplicity.
Hence, the coupling constants Jmn can be JAA, JAB , JBA,
JBB depending on which populations m and n belong to.
The distribution of the natural frequencies ωam in different
groups may be different in general. The conventional Ku-
ramoto model [69, 70] is recovered by setting the coupling
strength to be identical, i.e. JAA = JAB = JBA = JBB .

Note that the similarity between Fig. 4 and the Fig. 2
of the main text can already be anticipated from the
equations of motion. The Kuramoto model with the
Vicsek model are very similar besides the obvious dif-
ferences summarized in Table I, when all the oscillators
are identical (i.e., they have the same natural frequencies
ωAm = ωBm ≡ ω0), as the common frequency ω0 can be
absorbed by a transformation of the degrees of freedom
(where the oscillators are observed in a rotating frame).
As a result, we can expect similar phases as those found
in Fig. 2 (such as the flocking and chiral phases) to arise.
Indeed, from numerical simulation the dynamics using
the methods introduced in the next section, we indeed
find a surprisingly similar phase diagram to the flocking
model (Fig. 4). In terms of synchronization, the disor-
dered phase corresponds to a desynchronized phase, while
the flocking, antiflocking, and chiral phases all correspond
to synchronized oscillators, respectively in phase, com-
pletely out of phase, and with an arbitrary phase delay.
They are respectively named incoherent state, coherent
state, π-state, and traveling wave state in Refs. [61, 82],
see also Table I.

B. Self-consistency equation for the steady-states

Following Kuramoto [69], we introduce an order param-
eter that characterizes synchronization for each species

za(t) ≡ ra(t)eiφa(t) =
1

Na

Na∑
m=1

eiθ
a
m(t) (20)

which becomes finite when the oscillators synchronize.
Here, ra ≥ 0 and φa respectively characterize the phase
coherence and the average phase of the component a.

Introducing jab = JabNb and

Raeiαa =
∑
b

jabzb (21)
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allows to express Eq. (19) as

∂tθ
a
m = ωam +Ra sin(αa − θam). (22)

In order to obtain a continuum equation for a large num-
ber of oscillators Na →∞, we introduce the distribution
of natural frequencies ga(ω) = 1

Na

∑Na
m=1 δ(ω − ωam) and

the density of angles ρa(θ;ω, t) = δ(θ − θa(ω, t)) where
θa(ω, t) is a solution of Eq. (22) in which ωam is replaced
by ω and θam by θa(ω), with an initial condition specified
by ρa(θ;ω, t = 0). The order parameter then becomes

za(t) =

∫ ∞
−∞

dω

∫ π

−π
dθeiθga(ω)ρa(θ;ω, t) (23)

This equation provides a self-consistency condition for
the order parameter.

We focus on steady-states of the form

za(t) = zaeiΩt with za = raeφ
0
a . (24)

Those must satisfy the self-consistency equation [70]

za = Rae
iαaFa[zA, zB ], (25)

where we have introduced the functions

Fa[zA, zB ] =

∫ π/2

−π/2
dθ cos θ eiθga(Ra sin θ + Ω)

+

∫ π

−π
dθ
∫
|x|>1

dx eiθga(Rax+ Ω)

√
x2 − 1

|x− sin θ| .
(26)

The first (second) term in Eq. (26) is the contribution
from the synchronized (unsynchronized) oscillators. Using
Eq. (21), this condition can be written in the form,

M̂ [zA, zB ,Ω]

(
zA
zB

)
= 0, (27)

with

M̂ [zA, zB ,Ω] =

(
F−1
A − jAA −jAB
−jBA F−1

B − jBB

)
. (28)

The structure of Eq. (27) is similar to Eq. (12) (ob-
tained for non-reciprocal flocking), in the sense that the
steady state condition is controlled by a nonlinear non-
Hermitian 2 × 2 matrix. This is more easily illustrated
in the particular case in which gA(ω) = gB(ω) is a sym-
metric distribution centered at ω0. When |za| is small,
we can expand F−1

a = η + βR2
a + iζΩ +O(Ω2,ΩRa, R

2
a)

where η, β, ζ are real numbers and set ω0 = 0 without
loss of generality. We then find

iΩζ
(
zA
zB

)
=

(
α̃A[zA, zB ] jAB

jBA α̃B [zA, zB ]

)(
zA
zB

)
(29)

where α̃a = −η + jaa − βR2
a. This equation has a re-

markable resemblance to Eq. (12) (with ∂t → iΩ). This
suggests that in this particular case, the transition from

the phase corresponding to the flocking/antiflocking phase
(Ω = 0) to one corresponding to the chiral phase (Ω 6= 0)
takes place at an exceptional point of M̂ .
However, an important difference arises in the gen-

eral case where gA(ω) 6= gB(ω): as the (generalized) PT
symmetry is explicitly broken by the presence of natural
frequencies, the matrix M̂ in Eq. (27) is complex -valued,
in contrast with the matrix in Eq. (12) that is real-valued.
As a consequence, exceptional points should occur at
points in a two-dimensional parameter space, rather than
along lines such as in Figs. 2b-c (i.e., their codimension
is two; see also the discussion in the section VI Phase
transitions and bifurcations). This is consistent with the
occurrence of Bogdanov-Takens points in generalized Ku-
ramoto models [77, 82, 83, 231–233], in which hysteresis
can be present [232, 233]. This situation is similar to the
case of quantum fluids analyzed in Refs. [58, 59], where a
first-order-like phase transition associated with a jump in
physical quantities may arise with an exceptional point
marking the endpoint of the phase boundary. To further
investigate it, we now analyze the mean-field dynamics of
the non-reciprocal Kuramoto model.

C. Mean-field dynamics in the Ott-Antonsen
manifold

The dynamics of the generalized Kuramoto model in
Eq. (2) can exactly be captured by a small number of cou-
pled differential equations in the limit of a large number of
oscillators, see Refs. [61, 62, 78, 79, 81, 234–240] and the
review Ref. [241]. In SI Sec. VI, we have demonstrated
that this mean-field dynamics is quantitatively consistent
with direct simulation of microscopic model Eq. (2).

Through this mean-field reduction, the evolution of the
complex order parameter za(t) for each community a is
described by [79]

∂tza = (iωa −∆a)za +
1

2

∑
b

jab
[
zb − z2

a zb
]
. (30)

where zb is the complex conjugate of zb. We assumed that
the natural frequencies of the oscillators in the community
a follow a Lorentzian distribution ga(ω) = π−1 [(ω−ωa)2+
∆2
a]
−1. The term iωaza in Eq. (30) explicitly breaks the

mirror symmetry za → za (and hence, breaks parity), but
is invariant under rotations za → eiθza.
When ωa = 0 for all the communities, the system

has a full O(2) symmetry, and one observes phases with
spontaneously broken parity. In this paragraph, we focus
on this situation. To mirror the analysis in the main text,
we define j± = [jAB ± jBA]/2 and determine a numerical
phase diagram of the system in the (j−, j+) plane, see
Extended Data Fig. 4. This phase diagram shares several
qualitative features with the flocking phase diagram in
Fig. 2 in the main text. In particular, we find that the
phase boundaries between the (anti)synchronized state
(labeled coherent and π-state in Extended Data Fig. 4)
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and the chiral state (labeled traveling wave in Extended
Data Fig. 4) are marked by exceptional points in the
Jacobian L of the dynamical system Eq. (30). Writing
the right-hand side of Eq. (30) as fa(zb), the 4×4 Jacobian
matrix L has blocks

Lab =

(
∂fb/∂za ∂fb/∂za
∂fb/∂za ∂fb/∂za

)
(31)

for a, b = A,B, where the derivatives are evaluated at
the steady-state. A direct numerical evaluation of this
matrix shows that the two most unstable eigenvalues
indeed coalesce (i.e., form an exceptional point) at the
transition, see Extended Data Fig. 5 for an example.
To analyze the situation with explicitly broken PT

symmetry (class II), we introduce a finite detuning
∆ω = ωA−ωB between the natural frequencies of the two
communities (we keep ωA + ωB = 0 for simplicity). The
numerical simulation of Eq.(30) show that there are re-
gions of the phase diagram in which two states (clockwise
and counterclockwise) coexist, as well as regions in which
a single state is present. This can be understood as the
result between the spontaneous PT-symmetry breaking
at ∆ω = 0 (in which the two states are equivalent, and
mapped to each other by PT symmetry) and the detuning
that explicitly breaks PT symmetry. At the boundary
between these regions, the properties of the steady-states
(such as their frequency Ωss ≡ Ω) change in a discontin-
uous way (like in a first-order phase transition). This is
illustrated in Extended Data Fig. 6. In Extended Data
Fig. 6a, we show the manifold of stable steady-states
obtained from numerical simulations, which is a trun-
cated version of the Riemann surface of the square root
characteristic of exceptional points. There is coexistence
between two states (blue and red dots) in the red region
in parameter space. In Extended Data Fig. 6b, we show
hysteresis curved corresponding to slices of the manifold
represented Extended Data Fig. 6a.

This behavior shares some features with the dynamical
encircling of an exceptional point in a linear system [242–
245]. However, a crucial difference is that here, we are
dealing with the steady-state (i.e., many-body phase) of
the system, which is possible only because of the non-
linearity (similar situations occur in Refs. [58, 246–252]).
In addition, the breakdown of the adiabatic theorem plays
a crucial role in the situations analyzed in Refs. [242–245],
but it is not the case in the first-order-like transitions
and hysteretic behavior described here. In particular, the
hysteresis observed in Extended Data Fig. 6 does not
depend on the speed at which the parameters are changed
(∆ω in Extended Data Fig. 6b), provided that the change
is slow enough (so that the system is always in a steady-
state). The hysteresis curve is then independent of the
arbitrarily small rate of change. This is in sharp contrast
with the situations analyzed in Refs. [242–245], ruled by a
linear dynamical system, in which the most unstable state
(i.e., the one with the largest positive growth rate) always
eventually dominates given enough time: in this situation,

flocking synchronization

active agents oscillators
typically short-range typically all-to-all

external torque natural frequency
self-propulsion n/a

disordered incoherent
flocking coherent

antiflocking π-state
chiral traveling wave state (TW)
swap periodic synchronization (PS)

swap+chiral PS+TW

Methods Table I. A flocking-synchronization Rosetta
stone. We compare the ingredients in the generalized Vicsek
(flocking) and Kuramoto (synchronization) models, as well as
some of their states. For synchronization, we mostly followed
the nomenclature of Refs. [61, 62, 70, 78, 82, 253, 254]. The
literature is not entirely consistent in the choice of names and
definitions of the states; our definitions are summarized in
Table II.

state ra φB − φA
incoherent 0 n/a
coherent constant 6= 0 0
π-state constant 6= 0 π

traveling wave state constant 6= 0 constant 6= 0, π
periodic synchronization time-dependent constant

PS+TW time-dependent time-dependent

Methods Table II.Definition of the states. The complex
order parameters za = raeiφ are decomposed in amplitude
ra = |za| and phase eiφa = za/|za|. The label “PS+TW”
corresponds to “periodic synchronization + traveling wave”.
Here, we make the following choices: (i) the system is observed
in the lab frame (not in the rotating frame); (ii) we do not
distinguish fully coherent states (r = 1) from partially coherent
ones (0 6= r < 1), both are called “coherent”.

there is no hysteresis in the limit of an arbitrarily small
rate of change.

VIII. NON-RECIPROCAL PATTERN-FORMING
INSTABILITIES

In this section, we apply our general strategy to pattern-
forming instabilities within the formalism of amplitude
equations [8, 206, 207, 255–257]. These describe a va-
riety of physical systems ranging from fluid convection
and lasers to ecological and chemical reaction-diffusion
systems.

To clear any misunderstanding, let us warn the reader:
this section is not about the exceptional-point enforced
pattern formation in Fig. 3! Instead, we consider a toy
model of pattern formation with two fields that are cou-
pled in a non-reciprocal way. Here, the pattern formation
is the spontaneous symmetry breaking (the Euclidean
group E(d) of isometries of space is broken by the appear-
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Methods Fig. 4. Phase diagram of the PT-symmetric
non-reciprocal Kuramoto model. The states are defined
in Table II. We have set jAA = jBB = 1, ∆A = ∆B = 0.25
and ωA = ωB = 0.
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Methods Fig. 5. Exceptional point in the spectrum
of the Jacobian in the Kuramoto model. The two most
unstable eigenvalues λi = σi + iωi of L coalesce at j+ ≈ 0.007.
This value coincides with the transition from traveling waves
(TW) to coherent states, marked by a red dashed line. Note
that this coalescence occurs at λ = 0 (not at finite frequency
and/or growth rate). The corresponding eigenvectors become
collinear (this can be verified, for instance, by computing the
determinant of the matrix of eigenvectors, that vanishes at
the EP). The imaginary parts ωi (not shown) are all zero.
We used the same parameters as in Extended Data Fig. 4
with j− = 0.1. A similar behavior is observed for neighboring
values of j−.

ance of the pattern).
In addition to the formalism of amplitude equations

which allows for a direct parallel with the discussion in the
main text, we perform direct simulations of two coupled
copies of the Swift-Hohenberg equation [89], a simple
model of pattern formation.

We then review a slightly more complicated situation, in
which a single field is present, but two Fourier modes with
non-reciprocal couplings are relevant (the non-reciprocity
occurs between the harmonics), in which patterns with
spontaneously broken parity also occur [64, 65, 258–262]
(see also Refs. [263–266]). This situation has several exper-

imental realizations in directional solidification of liquid
crystals [66, 93–95], directional solidification of lamellar
eutectics [96–99], directional viscous fingering [67, 90–
92], and in overflowing fountains [100, 101]. We show
that in this situation too, the transition is marked by an
exceptional point where the Goldstone mode of the spon-
taneously broken translation symmetry coalesces with a
damped mode.

Without any attempt at completeness, we also refer to
Refs. [267–280] on binary convection and to Refs. [281–
288] on the visual cortex, and to Refs. [289–297] on Taylor-
Couette/Dean flows.

A. Coupled amplitude equations

Let us first consider the one-dimensional Ginzburg-
Landau/amplitude equation

∂tA = εA− g|A|2A+D∂2
xA (32)

where A is a complex amplitude. This equation describes,
for instance, rolls in Rayleigh-Bénard convection. The
physical field u (such as velocity or temperature) reads
u(t, x) = A(t, x)ei(qcx−ωt) + c.c., where qc is the wavenum-
ber of the convection rolls, and A(t, x) is a slowly varying
envelope. The apparition of a pattern is marked by A 6= 0,
and corresponds to the spontaneous breaking of trans-
lation symmetry. The amplitude equation (32) satisfies
translation symmetry by which A→ Aeiφ, corresponding
to a translation of the pattern by a distance φ/qc in the x
direction; as well as inversion symmetry x→ −x by which
A→ A (overbar is complex conjugation). The reflection
does not commute with the translations, so overall we do
not have the direct product of these groups, but instead
the semidirect product U(1) o Z2 ' O(2). This symme-
try prohibits terms such as A2 in the right-hand side of
Eq. (32), and guarantees that the coefficients are real.
Let us now introduce non-reciprocity: to do so, we

consider two coupled amplitudes A1 and A2 (describing
two different coupled fields), and write the most general
equation of motion compatible with the symmetry, up to
third order (like in Eq. (32)). The only terms allowed are
first order terms, as well as third order terms of the form
(AbAc + AcAb)Ad, in both cases with real coefficients.
Hence, our amplitude equation reads

∂tAa = εabAb− gabcd(AbAc +AcAb)Ad +Dab∂
2
xAb (33)

where all the coefficients are real. In the following, we will
focus on spatially uniform fields and ignore the diffusive
term in Eq. (33). In hindsight, we recognize Eq. (18)
upon representing the complex amplitude Aa as a two-
dimensional Pa = (ReAa, ImAa), owing to the fact that
the symmetry groups are isomorphic. We note, however,
that the physical interpretation of the symmetries are
quite different in both case. Having identified Eq. (33)
with Eq. (18) (in the uniform case), we can immediately
predict that all the phases described in the main text
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Methods Fig. 6. Hysteresis in the chiral Kuramoto model. When chirality is explicitly broken, exceptional points have
codimension two, i.e. they are typically points in a two-dimensional parameter space. We plot the frequency Ω of the steady-state
of the Kuramoto model with explicitly broken PT symmetry as a function of the difference ∆ω = ωA − ωB between the two
communities (also called detuning) and the deviation δj− = j− − jEP

− of the non-reciprocal part j− of the coupling between
the communities from its value jEP

− at the exceptional point. The system exhibits a region where two possible steady-states
with different properties coexist (the two steady-states are the continuation of the clockwise and counterclockwise chiral phases
present in the PT-symmetric case ∆ω = 0). This region (red triangle) starts at the EP (red point) and its size increases with
the amount of non-reciprocity (here jEP

− ' 0.2915 > 0). The system exhibits hysteresis in the coexistence region (red points). In
(b-e), we show slices at fixed δj− (marked by blue dotted lines in (a). After the EP, there is hysteresis/first-order (discontinuous)
behavior. In (d), the hysteresis curve bends outwards near the transition. This is due to the oscillation of the norm of the order
parameter (that we refer to swap or periodic synchronization elsewhere) for large enough δj−. This additional complication does
not occur for moderate values of δj−, such as in (c). The solution of the dynamical system Eq. (30) were computed along lines
at fixed δj−, starting at large |δω| (in a region without phase coexistence) from a random initial condition. The solution (after
convergence) was used as an initial value for the next point in the line with fixed δj−. This procedure was carried out two times,
starting from positive and negative large |δω|. We have set j+ = 0.08, jAA = jBB = 1, ∆A = ∆B = 0.25, ωA = −ωB = ∆ω/2.

should appear in the current context. Our last task is
then to provide a physical interpretation for each of them:

(a) disordered: there is no pattern, the amplitude de-
cays to zero

(b) aligned: a pattern is present (and spontaneously
breaks translational invariance, leading to a Gold-
stone mode often known as phase diffusion), here,
the patterns for both fields are superimposed (they
are in-phase)

(c) antialigned: same as flocking, except that the max-
ima of a field now coincide with the minima of the
other (they are completely out-of-phase)

(d) chiral: the patterns move along x (with a sponta-
neously chosen direction and at constant velocity),
and they are partially out-of-phase (neither in-phase
nor completely out-of-phase)

(e) swap: the amplitude of the patterns oscillates (usu-
ally not sinusoidally)

(f) chiral/swap: the patterns move along x while their
amplitudes fluctuate.

B. Coupled Swift-Hohenberg equations

To further support our claims and illustrate the
phases described above, we consider two coupled Swift-
Hohenberg equations (4) [89] describing the dynamics
of the real fields ua(t, x), with a = 1, 2 (we also define
r± = [r12 ± r21]/2). An explicit version of the amplitude
equations (33) (obtained from symmetry considerations)
could be derived from Eq. (4), following e.g. Ref. [206].
Instead, we solve Eq. (4) numerically on a one-dimensional
domain of size 2L with periodic boundary conditions using
the open-source pseudospectral solver Dedalus [190], start-
ing from random initial conditions. The results confirm
our predictions based on the coupled amplitude equa-
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tions (33). In Extended Data Fig. 7, we show snapshots
of the numerical results, in which all the phases described
above appear. In this case, Eq. (4) have the full Euclidean
group E(1) as a symmetry group, that is broken by pat-
tern formation. (The O(2) symmetry of Eq. (33) pertains
to the amplitude equation description, in which additional
knowledge about the pattern is taken into account.)

C. Discussion

As we have emphasized in the introduction of this sec-
tion, the pattern formation appears at different levels here
compared to the main text. Here, pattern formation (as a
spontaneous breaking of the Euclidean symmetry) is our
starting point; we couple two pattern-forming systems in a
non-reciprocal way, and observe exceptional transitions as
a consequence. In particular, there is no convective term
in the amplitude equation (32). Only diffusive terms are
present. This is in contrast with the situation presented
in Fig. 3 in the main text, where the interplay between
convective terms and exceptional transitions is the origin
of pattern-forming instabilities. Besides, we emphasize
that we did not assume non-reciprocal cross-diffusion, in
contrast with Refs. [121, 122] (another difference with
these references is that we consider a non-conserved order
parameter in the language of Ref. [68]). Our analysis
focuses on the mean-field transitions, and our conclusions
remain valid as long as the growth rates are negative at
finite k (this is in particular the case where Dab = Dδab,
so the growth rates are of the form σi(k) = σi(0)−Dk2;
but this is especially not guaranteed when Dab is not
symmetric).
We also mention that upon lifting the constraint put

upon Eq. (33) by reflection symmetry, one is left with an
U(1)-equivariant system with explicitly broken PT sym-
metry, as Eq. (33) becomes a complex Ginzburg-Landau
equation, in which we expect the analysis of the section
VII Non-reciprocal Kuramoto model to hold.

D. Directional interface growth

Following Refs. [64, 65, 258–260], we now consider a
single scalar field decomposed as

u(t, x) = A1(t, x)ei(qcx−ωt) +A2(t, x)ei(2qcx−ωt) + c.c.
(34)

As in the previous case, the transition and reflection sym-
metry of the underlying system endows the amplitude
equation with O(2) symmetry. However, note that while
A1 transforms as A1 → A1eiθ when the field u is trans-
lated in space, A2 transforms as A2 → A2e2iθ. This is a
different representation of the SO(2) group compared to
the previous paragraph. (The Z2 part is unchanged, and
still corresponds to A1 → A1 and A2 → A2.) Because
the representation is different, the general form of the
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Methods Fig. 7. Non-reciprocal pattern formation We
show a space-time density plot of the field u1(x, t) in different
phases, as well as snapshots of the fields u1(x, t) and u2(x, t)
at time t = 200. We observe (a) a disordered phase where both
field vanish, (b) an aligned phase where both patterns are static
and in phase, (c) an antialigned phase where the patterns are
static and completely out-of-phase, (d) a chiral phase where
the patterns move at constant velocity, either to the left or to
the right, and in which the fields have a finite phase difference,
usually neither zero nor π, (e) a swap phase where the patterns
essentially jump by a phase π every period and (f) a mix of
the chiral and swap behaviors (as in the chiral phase (d), there
is a spontaneously broken symmetry between left and right
movers). The fields are obtained by direct numerical simulation
of the coupled Swift-Hohenberg equations on a one-dimensional
domain of size 2L with periodic boundary conditions, starting
from random initial conditions. The simulations are performed
using the open-source pseudospectral solver Dedalus [190]. We
have used g = 0.25 in all cases. In (a) r11 = r22 = −0.5
and r+ = r− = 0.00. In the other cases (b-f), we have set
r11 = r22 = 0.5 and (b) r+ = 0.50, r− = 0.00 (c) r+ = −0.50,
r− = 0.00 (d) r+ = 0.00, r− = 0.25 (e) r+ = 0.87, r− = 1.00
(f) r+ = 0.85, r− = 1.00.

amplitude is different, and reads [64, 65, 258–260]

∂tA1 = µ1A1 −A1A2 − α|A1|2A1 − β|A2|2A1

∂tA2 = µ2A2 + εA2
1 − γ|A1|2A2 − δ|A2|2A2

(35)

The coefficients α, β, γ and δ are usually assumed to be
positive to ensure stability, and the coefficient of A1A2

is set to −1 by rescaling. The non-reciprocity is then
captured by the coefficient ε being positive, which is
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Methods Fig. 8. Exceptional point in directional inter-
face growth. The spectrum of the Jacobian L corresponding
to Eq. (35) exhibits an exceptional point at the transition be-
tween static patterns and traveling patterns with spontaneous
parity breaking (i.e., the patterns travel with equal probability
to the left or to the right). The two most unstable eigenvalues
λi = σi + iωi of L coalesce at µ1 ≈ 0.064 (red circle). This
value coincides with the transition from a constant solution to
traveling waves (TW), marked by a red dashed line. The coa-
lescence occurs at λ = 0 (not at finite frequency and/or growth
rate), and the corresponding eigenvectors become collinear.
Note that another exceptional point occurs near µ1 ≈ 0.014
(green circle), but with a strictly negative growth rate: this
does not correspond to a bifurcation. We also show the dephas-
ing ∆φ = 2φ1 − φ2 between the amplitudes, which undergoes
a pitchfork bifurcation; the direction of motion of the pattern
is set by ∆φ. We have set α = β = γ = δ = 1, ε = 1 and
µ2 = −0.1.

necessary for the apparition of traveling patterns [258]. As
the amplitudes A1 = r1eiφ1 and A2 = r2eiφ2 correspond to
different Fourier components, the relevant phase difference
between them is ∆φ = 2φ1 − φ2.

In Extended Data Fig. 8, we show the spectrum of
the operator L obtained by linearizing (35) around its
steady-state (see Eq. (31) for the definition of L, with
the replacement za → Aa). At the transition between
a static solution (representing a static pattern) and a
traveling wave solution (representing a traveling pattern),
we observe the coalescence of the Goldstone mode with a
damped mode at an exceptional point (red circle in the
figure). We also note that the presence of exceptional
points away from zero in the spectrum of L does not mark
a phase transition (bifurcation).

IX. GENERALIZED PT SYMMETRY AND
DYNAMICAL SYSTEMS

In this section, we show how the transition from the
aligned (or antialigned) phase to the chiral phase can be
seen as a spontaneous PT-symmetry breaking.
Let us first review (generalized) PT-symmetry in the

context of linear operators. We refer the reader to
Ref. [120, 298–302] for details and proofs, and for a trans-
lation of the same concepts in the language of pseudo-
Hermitian operators. Consider an antiunitary operator X
(i.e., there is a linear operatorMX such that Xψ = MXψ)
such as X2 = Id (where Id is the identity matrix). The
operator X can be seen as a generalization of the product
PT of parity P and time-reversal T (as it has the same
properties), and is therefore called a (generalized) PT
symmetry. This generalized PT symmetry might have
nothing to do with the physical parity and time-reversal
operations: only the relevant algebraic structure is kept.
As X2 = Id, it is always possible to find a basis in which
the antiunitary X is represented by complex conjugation
alone, by a reduction to Wigner normal form [303, 304].
Following Ref. [302], we say that a complex square

matrix H is X-symmetric when [H,X] = 0. The X-
symmetry is called exact (or unbroken) when in addition,
there is a complete set of eigenvectors ψn of H satisfying
Xψn = ψn. Else, it is called inexact (or spontaneously
broken). It can be shown that the spectrum of H is real
if and only if there is an antiunitary X such as H has
an exact X-symmetry. In contrast with the case where
PT symmetry is spontaneously broken (H has an inexact
X-symmetry), we say that PT symmetry is explicitly
broken when H is not X-symmetric.
In a non-linear dynamical system ∂tψ = f(ψ), the

condition of PT-symmetry reads Xf(ψ) = f(Xψ), see
e.g. Ref. [305].

Consider a harmonic solution of the form ψ(t) = estψ0

where s = σ+ iΩ is a complex growth rate (we are mostly
interested in the case where s = iΩ is purely imaginary).
It satisfies ∂tψ(t) = sψ(t) (whether the system is PT-
symmetric or not; this crucial property hinges on the
fact that the motion is harmonic, and that (at least the
relevant part of) the order parameter is written as a
complex number, see Refs. [306–308]). Further assuming
that f is U(1)-equivariant (with f(eiθψ) = eiθf(ψ)), we
find f(ψ(t)) = estf(ψ0), leading to sψ0 = f(ψ0). Using
PT-symmetry, we deduce sXψ0 = Xf(ψ0) = f(Xψ0).
Hence, Xψ0 = ψ0 implies that s is real. Conversely, given
a solution ψ0 with a complex growth rate s 6∈ R that
is not purely real, we find that Xψ0 is another solution
with complex growth rate s. (When f(ψ) = H(ψ)ψ
where H(eiθψ) = H(ψ) is U(1)-invariant, the properties
above can be reformulated in terms of the non-linear
eigenvalue problem sψ0 = H(ψ0)ψ0, in which the analogy
with standard PT-symmetry is more obvious. This is
however not required.)
The procedure described above can be carried out for

the systems in the main text, provided that we consider
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the complex order parameters za = vxa + ivya. In this
representation, a SO(2) ' U(1) rotation corresponds to
the multiplication by a phase za → eiθza while mirror
symmetry corresponds to complex conjugation za → za.
Hence, systems in both class I and II correspond to U(1)-
equivariant dynamical systems. Besides, systems in class
I are PT-symmetric (with X being complex conjugation),
while systems in class II are not PT-symmetric (the pa-
rameters in α∗ and β∗ explicitly break PT-symmetry).
Note that here, the physical parity (mirror symmetry)
corresponds to the PT-symmetry.
The same strategy should allow for multiple frequen-

cies, provided that they correspond to independent compo-
nents of the order parameter, by generalizing the equation
f(ψ0) = sψ0 to f(ψ0) = diag(s1, s2, . . . )ψ0. As an exam-
ple, consider the case of directional interface growth pre-
sented in the section VIII Non-reciprocal pattern-forming
instabilities. The two complex amplitudes A1 and A2

do not transform in the same way under U(1) (because
they correspond to different wavevectors). Hence, har-
monic solutions now satisfy f(ψ0) = diag(s1, s2)ψ0 where
ψ0 = (A1, A2) and sa = σa + iΩa are the corresponding
complex growth rates. With this change, the parity-
breaking transition from static patterns to traveling pat-
terns can again be seen as a spontaneous PT-symmetry
breaking. Similarly, in the O(3)-symmetric system dis-
cussed in the SI Sec. VIII, one would need to decompose
the 3D vectors ~va into in-plane and out-of-plane compo-
nents.

X. LIST OF SUPPLEMENTARY MOVIES

• SI Movie 1: See Methods section III Molecular dy-
namics simulations of the Vicsek model.

• SI Movie 2: Evolution of the order parameter in the
time-dependent phases (chiral, swap, chiral+swap) com-
puted from the dynamical system Eq. (1).

• SI Movie 3: See Methods section II Demonstration
with programmable robots.

• SI Movie 4: This shows the pattern formation at fixed
density when the incompressibility constraint is not en-
forced. See Methods section V Simulations of the con-
tinuum equations in exceptional point induced pattern
formation.

• SI Movie 5: This shows the pattern formation with
the incompressibility constraint enforced. See SI Sec. XI.
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SUPPLEMENTARY INFORMATION

In this Supplemental Information (SI), we provide details of the various analyses performed in this work. It is
organized as follows: In Secs. I–III, we analyze a non-reciprocal flocking model. Section I (page 24) provides details of
the coarse-graining procedure of a microsopic model of non-reciprocally interacting self-propelled particles (Eq. (2) in
the main text), to derive hydrodynamic equations. Sections II (page 32) and III (page 40) analyze the mean-field
theory of the derived hydrodynamics and their excitation spectrum. Key features such as an exceptional transition
from a (anti)flocking to time-dependent chiral phase, as well as the exceptional-point enforced pattern formation, are
explicitly shown to arise analytically.

In Sec. IV (page 49), we point out that the non-reciprocity directly implies the breaking of detailed balance.
In Sec. V (page 50), we show analytically that the time-dependent chiral phase is absent for the case of two (partially)

non-reciprocal agents, hence demonstrating that the many-body character of non-reciprocal matter is a key ingredient
of time-dependent phases.
In Sec. VI (page 50), we provide details of non-reciprocal synchronization. We show how the mean-field dynamics

performed in Methods reproduces direct simulation of microscopic model. We give numerical evidences that the
interplay between noise (or disorder) and many-body interaction are responsible for the emergence of time-dependent
ordered phases, reminiscent of an ordered-to-disordered transition in frustrated many-body systems.

In Sec. VII (page 55), we show that noise can destroy the chiral phase by randomly flipping the chirality over time,
but that this process is exponentially suppressed by many-body effects when the number of agents increases.
In Sec. VIII (page 56), we perform an analysis on a non-reciprocal O(3)-symmetric system, providing another

example of an exceptional transition.
In Sec. IX (page 56), we discuss an example of single-body exceptional transition in laser physics and its destabilisation

by the noise.
In Sec. X (page 58), we discuss systems with multiple populations.
Finally, in Sec. XI (page 59), we analyze the effect of the incompressibility condition on pattern formation in the

non-linear dynamics of the fluid.

I. MICROSCOPIC AND HYDRODYNAMIC DESCRIPTIONS OF NON-RECIPROCAL
MULTI-COMPONENTS ACTIVE FLUIDS

In this section, we describe a microscopic model of active self-propelled particles inspired by the Vicsek model [71],
in which several populations of aligning self-propelled particles interact. The coupling between individuals belonging
to different populations is not necessarily reciprocal. This model is defined by Eq. (S1). Using the methods described
in references [40, 176–179] and summarized in the reviews [9, 180], we perform a coarse-graining of this microscopic
model to obtain a set of hydrodynamic equations generalizing the Toner-Tu equations [72, 181], which is the basis of
the analysis in the main text. The main results are Eq. (S42) and Eq. (S51), which are respectively the hydrodynamic
equations for the densities of the active particles and for their polarization fields. These equations describe an arbitrary
number of species. In the main text, we focus on the case of two species described by Eq. (S62). In this SI, we denote
the polarization field ~P a, which is called ~va in the main text.

Several methods of deriving continuum hydrodynamic equations from microscopics have been applied to active
matter, going from (i) approaches based on the Fokker–Planck (Smoluchowski) equation for the hydrodynamic
variables [9, 176, 179], to (ii) kinetic theory approaches based on the Boltzmann equation [177, 178, 182], or (iii)
directly from the Chapman-Kolmogorov equation [183] (in increasing order of complexity). Although coarse-graining
microscopic models provides invaluable qualitative insights on the behaviour of the system, even current state-of-the-art
coarse-graining procedures only provide a qualitative agreement, at best semi-quantitative, with the microscopic
starting point [180, 184]. With this in mind, we use the easiest coarse-graining method (i) along with several simplifying
approximations (see section I B). This procedure has the benefit of simplicity and allows to highlight the key features of
a non-reciprocal multi-component fluid. However, the correspondence between the resulting hydrodynamic equations
and the microscopic model is only qualitative, in the sense that the values of the coefficients might be approximate.

A. Microscopic particle-based model

Let us consider Npop populations a = 1, . . . , Npop of Na active particles moving in a plane. Each particle is described
by a position rai and an angle θai , with i = 1, . . . , Na. The dynamics of the population is described by the set of
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equations

ṙai (t) = va0 n̂[θai (t)] (S1a)

θ̇ai (t) = ηai (t) +
∑
b

Nb∑
j=1

Jabij sin[θbj(t)− θai (t)] (S1b)

where we have defined

n̂(θ) =

(
cos(θ)
sin(θ)

)
(S2)

and where ηai (t) are Gaussian white noises with 〈ηai (t)〉 = 0 and

〈ηai (t)ηbj(t
′)〉 = 2ηδijδ

a,bδ(t− t′). (S3)

(This means that ηai (t) scales as √η, contrary to what the notation might suggest.) We set

Jabij = JabH(R0 − ‖r − r′‖). (S4)

where H is the Heaviside step function. In the derivation of the hydrodynamic model, we will simplify the analysis by
replacing the Heaviside step functions by Dirac distributions.

B. Coarse-graining of the microscopic model to hydrodynamic equations

It will be convenient to write the equations of motion of section IA in a slightly more general form as

ṙai = Aar(rai , θ
a
i ) +

∑
b

Nb∑
j=1

Babr (rai , θ
a
i , r

b
j , θ

b
j) (S5a)

θ̇ai = Aaθ(rai , θ
a
i ) +

∑
b

Nb∑
j=1

Babθ (rai , θ
a
i , r

b
j , θ

b
j) + ηai (t). (S5b)

For our equations (S1), we have

Aar(r, θ) = va0n(θ) and Aaθ(r, θ) = 0 (S6)

while

Babr (r, θ, r′, θ′) = 0 and Babθ (r, θ, r′, θ′) = JabH(R0 − ‖ri − rj‖) sin(θ′ − θ). (S7)

In order to obtain hydrodynamic equations, we first define the (stochastic) single-particle distributions

ca(r, θ, t) =
1

Na

Na∑
i=1

δ(r − rai (t))δ(θ − θai (t)). (S8)

They are the sum of the individual densities

cai (r, θ, t) = δ(r − rai (t)) δ(θ − θai (t)). (S9)

We follow the procedure of Ref. [176] to obtain a Langevin equation for this quantity. To do so, let us first compute
the time derivative of the individual densities

∂

∂t
[cai (r, θ, t)] =

∂

∂t
[δ(r − rai (t))] δ(θ − θai (t)) + δ(r − rai (t))

∂

∂t
[δ(θ − θai (t))] (S10)

so using Itô lemma,

∂

∂t
[cai (r, θ, t)] =[−(∇rδ)(r − rai (t)) · ṙai (t)] δ(θ − θai (t))

+ δ(r − rai (t)) [−(∇θδ)(θ − θai (t)) · θ̇ai (t) + η(∇2
θδ)(θ − θai (t))].

(S11)
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There is no diffusive term in the position equation, because there is no noise in the corresponding equation of
motion (S1a).

Let us now consider an arbitrary function (r, θ) 7→ f(r, θ). We indeed have

f(rai (t), θai (t)) =

∫
drdθ cai (r, θ, t)f(r, θ). (S12)

Hence,

d
dt

[f(rai (t), θai (t))] =

∫
drdθ

∂

∂t
[cai (r, θ, t)] f(r, θ) (S13)

so we also have

d
dt

[f(rai (t), θai (t))] =

∫
drdθ [−(∇rδ)(r − rai (t)) · ṙai (t)] δ(θ − θai (t))

+ δ(r − rai (t)) [−(∇θδ)(θ − θai (t)) · θ̇ai (t) + η(∇2
θδ)(θ − θai (t))]f(r, θ).

(S14)

By integration by part and replacing the Dirac distributions with cai (r, θ, t), we obtain

d
dt

[f(rai (t), θai (t))] =

∫
drdθ

[
(∇rf) · ṙai (t) + (∇θf)(r, θ) · θ̇ai (t) + η(∇2

θf)(r, θ)
]
cai (r, θ, t). (S15)

Replacing the time derivatives with their values given by the equations of motion (S5) yields

d
dt

[f(rai (t), θai (t))] =

∫
drdθ (∇rf) ·

Aar(rai , θ
a
i ) +

∑
b

Nb∑
j=1

Babr (rai , θ
a
i , r

b
j , θ

b
j)

 cai (r, θ, t)

+(∇θf)(r, θ) ·

Aaθ(rai , θ
a
i ) +

∑
b

Nb∑
j=1

Babθ (rai , θ
a
i , r

b
j , θ

b
j) + ηai (t)

 cai (r, θ, t)

+η(∇2
θf)(r, θ)cai (r, θ, t).

(S16)

After integration by parts,

d
dt

[f(rai (t), θai (t))] =

∫
drdθ f(r, θ)

(
−∇r ·

Aar(rai , θ
a
i ) +

∑
b

Nb∑
j=1

Babr (rai , θ
a
i , r

b
j , θ

b
j)

 cai (r, θ, t)


−∇θ ·

Aaθ(rai , θ
a
i ) +

∑
b

Nb∑
j=1

Babθ (rai , θ
a
i , r

b
j , θ

b
j)

 cai (r, θ, t)


−∇θ · [ηai (t)cai (r, θ, t)] + η∇2

θc
a
i (r, θ, t)

)
.

(S17)

Comparing with (S13), we obtain

∂

∂t
[cai (r, θ, t)] = −∇r ·

Aar(rai , θ
a
i ) +

∑
b

Nb∑
j=1

Babr (rai , θ
a
i , r

b
j , θ

b
j)

 cai (r, θ, t)


−∇θ ·

Aaθ(rai , θ
a
i ) +

∑
b

Nb∑
j=1

Babθ (rai , θ
a
i , r

b
j , θ

b
j)

 cai (r, θ, t)


−∇θ · [ηai (t)cai (r, θ, t)] + η∇2

θc
a
i (r, θ, t)

(S18)
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Summing over i = 1, . . . , Na and replacing rai → r and θai → θ as allowed by the Dirac distributions gives

∂

∂t
[ca(r, θ, t)] = −∇r ·

Aar(r, θ) +
∑
b

Nb∑
j=1

Babr (r, θ, rbj , θ
b
j)

 ca(r, θ, t)


−∇θ ·

Aaθ(r, θ) +
∑
b

Nb∑
j=1

Babθ (r, θ, rbj , θ
b
j)

 ca(r, θ, t)


−∇θ ·

[∑
i

ηai (t)cai (r, θ, t)

]
+ η∇2

θc
a(r, θ, t)

(S19)

Using again that for an arbitrary function f∫
dr′dθ′f(r′, θ′, z)cbj(r

′, θ′) = f(rbj , θ
b
j , z) (S20)

∂

∂t
[ca(r, θ, t)] = −∇r ·

[(
Aar(r, θ) +

∑
b

∫
dr′dθ′Babr (r, θ, r′, θ′)cb(r′, θ′, t)

)
ca(r, θ, t)

]

−∇θ ·
[(

Aaθ(r, θ) +
∑
b

∫
dr′dθ′Babθ (r, θ, r′, θ′)cb(r′, θ′, t)

)
ca(r, θ, t)

]

−∇θ ·
[∑

i

ηai (t)cai (r, θ, t)

]
+ η∇2

θc
a(r, θ, t).

(S21)

The random contribution can then be handled to obtain a Markovian stochastic equation of motion following Ref. [176].
This derivation suggests that noise η(t) entering the equation of motion ∂

∂t [ca(r, θ, t)] = (deterministic part) + η(t) (i)
is multiplicative in the density and (ii) has a correlation function of the form 〈η(t, r)η(0, 0)〉 ∝ δ(t)∇2δ(r), similar to
fluids at thermal equilibrium (like model A in Ref. [309, 310]). In the Toner-Tu model [72, 181, 311], this correlation
function is usually assumed to be (i) not multiplicative in the density and (ii) with a correlation function of the form
〈η(t, r)η(0, 0)〉 ∝ δ(t)δ(r) (without Laplacian); in Ref. [312], it is argued that this form is chosen because of the lack of
linear momentum conservation. We refer to Refs. [9, 184, 313] for discussions.
Its noise-averaged version (where we use the same symbols for simplicity) is obtained by removing the noise and

reads

∂

∂t
[ca(r, θ, t)] = −∇r ·

[(
Aar(r, θ) +

∑
b

∫
dr′dθ′Babr (r, θ, r′, θ′)cb(r′, θ′, t)

)
ca(r, θ, t)

]

−∇θ ·
[(

Aaθ(r, θ) +
∑
b

∫
dr′dθ′Babθ (r, θ, r′, θ′)cb(r′, θ′, t)

)
ca(r, θ, t)

]
+η∇2

θc
a(r, θ, t).

(S22)

We now replace the A and B’s with equations (S6) and (S7) to get

∂

∂t
[ca(r, θ, t)] =−∇r · [va0n(θ)ca(r, θ, t)]

−∇θ ·
[∑

b

∫
dr′dθ′JabH(R0 − ‖r − r′‖) sin(θ′ − θ)ca(r, θ, t)cb(r′, θ′, t)

]
+ η∇2

θc
a(r, θ, t).

(S23)

that can be reorganized as

(∂t + va0n(θ) · ∇r)ca(r, θ, t) = η∇2
θc
a(r, θ, t)

−
∑
b

Jab∇θ ·
[∫

dr′dθ′H(R0 − ‖r − r′‖) sin(θ′ − θ)ca(r, θ, t)cb(r′, θ′, t)

]
.

(S24)
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To simplify this equation, we replace H(R0 − ‖r − r′‖) by 2πR2
0δ(r − r′), see e.g. Refs. [9, 40] (the 2π is here to

simplify notations later), so that we obtain

(∂t + va0n(θ) · ∇r)ca(r, θ, t) = η∇2
θc
a(r, θ, t)−

∑
b

2πR2
0J

ab∇θ ·
[∫

dθ′ sin(θ′ − θ)ca(r, θ, t)cb(r, θ′, t)

]
. (S25)

Let us now define the angular moments

fan(r, t) =

∫
dθ einθca(r, θ, t). (S26)

so that

ca(r, θ, t) =
1

2π

∑
n

e−inθfan(r, t) (S27)

Note that by reality

fa−n(r, t) = fan(r, t) (S28)

where the overline represents complex conjugation.
We also define

∂z = ∂x − i∂y and ∂z̄ = ∂x + i∂y. (S29)

Then

n(θ) · ∇r = cos(θ)∂x + sin(θ)∂y =
1

2

[
e−iθ∂z + eiθ∂z̄

]
. (S30)

Using the expansion (S27) into the equation (S25), we get∑
n

e−inθ∂tfan(r, t) +
va0
2

∑
n

e−inθe−iθ∂zfan(r, t) +
va0
2

∑
n

e−inθeiθ∂z̄fan(r, t) = η
∑
n

∇2
θe
−inθfan(r, t)

−
∑
b

R2
0J

ab∇θ ·
[∫

dθ′
1

2i

[
ei(θ

′−θ) − e−i(θ
′−θ)

]∑
n

e−inθfan(r, t)

′∑
n

e−in
′θ′f bn′(r, t)

]
.

(S31)

i.e. ∑
n

e−inθ∂tfan(r, t) +
va0
2

∑
n

e−i(n+1)θ∂zf
a
n(r, t) +

va0
2

∑
n

e−i(n−1)θ∂z̄f
a
n(r, t) = η

∑
n

(−in)2e−inθfan(r, t)

−
∑
b

R2
0J

ab∇θ ·

∫ dθ′
1

2i

∑
n,n′

e−i(n+1)θe−i(n
′−1)θ′fan(r, t)f bn′(r, t)−

∑
n,n′

e−i(n−1)θe−i(n
′+1)θ′fan(r, t)f bn′(r, t)

 .
(S32)

After reindexation,∑
n

e−inθ∂tfan(r, t) +
va0
2

∑
n

e−inθ∂zfan−1(r, t) +
va0
2

∑
n

e−inθ∂z̄fan+1(r, t) = η
∑
n

(−in)2e−inθfan(r, t)

−
∑
b

R2
0J

ab∇θ ·

∫ dθ′
1

2i

∑
n,n′

e−inθe−in
′θ′fan−1(r, t)f bn′+1(r, t)−

∑
n,n′

e−inθe−in
′θ′fan+1(r, t)f bn′−1(r, t)

 . (S33)

Integrating over θ′ gives δn′,0 which removes the corresponding sum, and after applying the last derivative we obtain∑
n

e−inθ∂tfan(r, t) +
va0
2

∑
n

e−inθ∂zfan−1(r, t) +
va0
2

∑
n

e−inθ∂z̄fan+1(r, t) = η
∑
n

(−in)2e−inθfan(r, t)

−
∑
b

R2
0J

ab

[
1

2i

∑
n

(−in)e−inθ
[
fan−1(r, t)f b1(r, t)− fan+1(r, t)f b−1(r, t)

]]
.

(S34)
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Finally, division by
∑
n e
−inθ produces

∂tf
a
n(r, t) +

va0
2
∂zf

a
n−1(r, t) +

va0
2
∂z̄f

a
n+1(r, t) = η(−in)2fan(r, t)

−
∑
b

R2
0J

ab 1

2i
(−in)

[
fan−1(r, t)f b1(r, t)− fan+1(r, t)f b−1(r, t)

] (S35)

and

∂tf
a
n(r, t) +

va0
2

[
∂zf

a
n−1(r, t) + ∂z̄f

a
n+1(r, t)

]
= −ηn2fan(r, t)

+
∑
b

R2
0J

ab

2
n
[
fan−1(r, t)f b1(r, t)− fan+1(r, t)f b−1(r, t)

] (S36)

Hence, using the expansion (S27) into the equation (S25) finally yields

∂tf
a
n +

va0
2

(
∂zf

a
n−1 + ∂z̄f

a
n+1

)
= −n2ηfan +

1

2

∑
b

JabR
2
0n
[
fan−1f

b
1 − fan+1f

b
−1

]
. (S37)

For n = 0, 1, 2 we get

∂tf
a
0 +

va0
2

(
∂zfa1 + ∂z̄f

a
1

)
= 0 (S38a)

∂tf
a
1 +

va0
2

(∂zf
a
0 + ∂z̄f

a
2 ) = −ηfa1 +

1

2

∑
b

JabR
2
0

[
fa0 f

b
1 − fa2 f b1

]
(S38b)

∂tf
a
2 +

va0
2

(∂zf
a
1 + ∂z̄f

a
3 ) = −4ηfa2 +

∑
b

JabR
2
0

[
fa1 f

b
1 − fa3 f b1

]
(S38c)

Following [9, 177, 178, 180], we close the hierarchy of moment equations by considering the last equation with the
assumptions fa3 = 0 and ∂tfa2 = 0, giving

fa2 =
1

4η

[
−v

a
0

2
(∂zf

a
1 ) +

∑
b

JabR
2
0f
a
1 f

b
1

]
(S39)

The replacement (S39) used in equation (S38b) gives

∂tf
a
1 +

va0
2
∂zf

a
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(va0 )2

16η
(∂z̄∂zf

a
1 ) +
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JabR
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a
0

8η
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a
1 f

b
1)

= −ηfa1 +
∑
b

JabR
2
0

2
fa0 f

b
1 +

∑
b

JabR
2
0v
a
0

16η
f b1(∂zf

a
1 )−

∑
b,c

JabJacR
4
0

8η
fa1 f

b
1f

c
1

(S40)

We identify the density ρa and polarization ~P a = (P ax , P
a
y )T as

fa0 = ρa and fa1 = P ax − iP ay . (S41)

We note that the polarization ~Pa is called ~va in the main text.
Equation (S38a) gives

∂tρ
a + va0 div(~P a) = 0. (S42)

Neglecting spatial derivative terms ∂z and ∂z̄ for now, equation (S40) yields

∂t

(
P ax
P ay

)
=− η

(
P ax
P ay

)
+
∑
b

JabR
2
0

2
ρa
(
P bx
P by

)
− R4

0

8η

∑
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JabJac

(
P axP

b
xP

c
x + P ay P

b
yP

c
x − P ay P bxP cy + P axP

b
yP

c
y

P ay P
b
yP

c
y + P axP

b
xP

c
y − P axP byP cx + P ay P

b
xP

c
x

)
+O(∇)

(S43)
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Let us define the notation (~x∗)µ = εµν(~x)ν where εµν is the Levi-Civita symbol so we can rewrite the sum in the last
term in Eq. (S43) as ~P a 〈~P b, ~P c〉+ ~P a∗ 〈~P b∗, ~P c〉 where 〈·, ·〉 is the standard Euclidean scalar product and write

∂t ~P
a = −η ~P a +

∑
b

JabR
2
0

2
ρa ~P b − R4

0

8η

∑
b,c

JabJac

[
~P a 〈~P b, ~P c〉+ ~P a∗ 〈~P b∗, ~P c〉

]
+O(∇). (S44)

As 〈~P ∗, ~Q〉 = −〈~P , ~Q∗〉, the term 〈~P b∗, ~P c〉 is antisymmetric in the exchange b↔ c while JabJac is symmetric, so
after the sum is applied this term is removed and we get

∂t ~P
a = −η ~P a +

∑
b

JabR
2
0

2
ρa ~P b − R4

0

8η

∑
b,c

~P a 〈Jab ~P b, Jac ~P c〉+O(∇). (S45)

We now explore the gradient contributions to ∂tfa1 , namely

−v
a
0

2
∂zf

a
0 +

(va0 )2

16η
(∂z̄∂zf

a
1 ) +

∑
b

JabR
2
0v
a
0

16η

[
f b1(∂zf

a
1 )− 2∂z̄(f

a
1 f

b
1)
]
. (S46)

The simple terms are

∂zf
a
0 → ~gradρa (S47)

(∂z̄∂zf
a
1 )→ ∇2 ~P a. (S48)

The last term is a mess, but the following should hold

f b1(∂zf
a
1 )→ (~P b · ~grad)~P a + (~P b∗ · ~grad)~P a∗ (S49)

∂z̄(f
a
1 f

b
1)→ (~P a · ~grad)~P b + ~P b div(~P a)− (~P a∗ · ~grad)~P b∗ − ~P b∗ div(~P a∗) (S50)

where the grad are written in letters for clarity, but will soon be replaced by ∇.
Hence, the hydrodynamic equation finally reads

∂t ~P
a = −η ~P a +

∑
b

jabρ
a ~P b − 1

2η

∑
b,c

~P a(jab ~P
b · jac ~P c)−

va0
2
∇ρa +Da∇2 ~P a

+
∑
b

λab

[
(~P b · ∇)~P a + (~P b∗ · ∇)~P a∗ − 2

[
(~P a · ∇)~P b + ~P b div(~P a)− (~P a∗ · ∇)~P b∗ − ~P b∗ div(~P a∗)

]]
.

(S51)

where we have defined

jab =
R2

0

2
Jab Da =

(va0 )2

16η
λab =

va0jab
8η

(S52)

In the stability analysis of section III, we will set λab = va0v
b
0. We refer the reader to Ref. [9] for a discussion on this

point in the case of a single population.
We also note that the relations between the numerous terms in Eq. (S51) are merely a consequence of the particular

derivation used here. In generic non-reciprocal binary fluids, these terms might have unrelated coefficients. Nonetheless,
we will focus on Eq. (S62) for simplicity.

In some cases (such as when there is only one kind of active particle), Eq. (S51) will be simplified by using the
following identities for two vectors fields u and v

(u∗ · ∇)v∗ + (v∗ · ∇)u∗ = grad(u · v)− udiv(v)− v div(u) (S53a)
u∗ div(v∗) + v∗ div(u∗) = grad(u · v)− (u · ∇)v − (v · ∇)u. (S53b)

They can also be written into a more symmetric but less useful way as

grad(u · v) = (u∗ · ∇)v∗ + (v∗ · ∇)u∗ + udiv(v) + v div(u) (S54a)
grad(u · v) = (u · ∇)v + (v · ∇)u+ u∗ div(v∗) + v∗ div(u∗). (S54b)
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1. Hydrodynamic equations for a single population

In this subsection, we first specialize equation (S51) to the case of a single population to recover the standard
Toner-Tu equations.

Starting from (S51), we use ~P ∗ · ~P = 0 and the identity

(~P ∗ · ∇)~P ∗ + 2
[
(~P ∗ · ∇)~P ∗ + ~P ∗(∇ · ~P ∗)

]
= 5∇(~P 2/2)− 3~P (∇ · ~P )− 2(~P · ∇)~P . (S55)

obtained from (S53) to get

∂t ~P + λ1(~P · ∇)~P + λ2
~P div(~P ) + λ3∇(~P 2) = −

[
α(ρ) + β ‖~P‖2

]
~P − v0

2
∇ρ+D∇2 ~P (S56)

where

α(ρ) = η − jρ β =
j2

2η
D =

(v0)2

16η
λ0 =

jv0

8η
j =

JR2
0

2
(S57)

and λ1 = 3λ0, λ2 = 5λ0, λ3 = −5/2λ0.

2. Hydrodynamic equations for two population

We now specialize to the case where there are only two populations a, b, c = A,B (here the capital letters A and B
refer to the two populations and are not abstract indices), which is the situation analyzed in the main text.

A special case of this situation was derived and analyzed in Ref. [40], with which our results agree.
We set a = A for simplicity, and remove all spatial derivatives. In this case, the hideous sum in equation (S43) reads
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x P

B
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y P
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PAy P
B
y P

B
y + PAy P

B
x P

B
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)
(S58)

Factoring out the polarization, one recognizes[
JAAJAA‖~PA‖2 + 2JAAJAB 〈~PA, ~PB〉+ JABJAB‖~PB‖2

](PAx
PAy

)
(S59)

i.e. (all quantities are real)[
‖JAA ~PA‖2 + 2 〈JAA ~PA, JAB ~PB〉+ ‖JAB ~PB‖2

]
~PA = ‖JAA ~PA + JAB ~P

B‖2 ~PA (S60)

Using again jab = (R2
0/2)Jab, we obtain

∂t ~P
A = −η ~PA + jAAρ

A ~PA + jABρ
A ~PB − 1

2η
‖jAA ~PA + jAB ~P

B‖2 ~PA +O(∇) (S61)

and a similar equation for ~PB is obtained by permuting the indices.
Including the gradient terms, (S51) becomes for a = A

∂t ~P
A =

[
jAAρ

A − η − 1

2η
‖jAAPA + jAB ~P

B‖2
]
~PA + jABρ

A ~PB

−v
A
0

2
∇ρA +DA∇2 ~PA

+λAA

[
5/2∇(~PA · ~PA)− 3(~PA · ∇)~PA − 5~PA div(~PA)

]
+λAB

[
(~PB · ∇)~PA − 2(~PA · ∇)~PB − 2~PB div(~PA) + (~PB∗ · ∇)~PA∗ + 2(~PA∗ · ∇)~PB∗ + 2~PB∗ div(~PA∗)

]
(S62)

where we already have used equation (S55) to simplify the AA terms, and where we have defined

jab =
R2

0

2
Jab Da =

(va0 )2

16η
λab =

va0jab
8η

(S63)

In the stability analysis of section III, we will set λab = va0v
b
0, see discussion above.

The equation for a = B is obtained in the same way.
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II. MEAN-FIELD PHASE DIAGRAM IN THE STEADY STATE

In this section, to grasp the influence of non-reciprocal interaction to the many-body state, we perform a mean-field
approximation to the hydrodynamic theory derived in section I, thereby neglecting the gradient terms in Eq. (S62):

∂t

(
~PA

~PB

)
= −Ŵ [~PA, ~PB ]

(
~PA

~PB

)
(S64)

where

Ŵ [~PA, ~PB ] =

(
WAA[~PA, ~PB ] WAB

WBA WBB [~PA, ~PB ]

)
=

(
η − jAAρA + 1

2η

∥∥ ~QA(t)
∥∥2 −jABρA

−jBAρB η − jBBρB + 1
2η

∥∥ ~QB(t)
∥∥2

)
(S65)

and

~QA(t) = jAA ~P
A(t) + jAB ~P

B(t), (S66a)
~QB(t) = jBA ~P

A(t) + jBB ~P
B(t). (S66b)

The matrix Ŵ is in general non-Hermitian, i.e. Ŵ 6= Ŵ †. We are especially interested in cases where the non-
reciprocal interaction is pronounced enough that the inter-species couplings have opposite signs (jABjBA < 0). In
such a situation, there are no configuration that can make both species satisfied. This situation shares conceptual
similarities with the geometrical frustration present in systems ranging from (spin) glasses [314–320] to ice, liquid
crystals and colloidal systems [321–323], which occurs when the interactions between different entities, such as spins or
atoms, have competing effects (like for three spins with antiferromagnetic couplings on the vertices on a triangle). The
dynamical frustration present here has a different origin: instead of coming from multiple competing interactions, it
arises from each individual non-reciprocal interaction. It gives rise to a time-dependent phase where the direction of
flocking continuously changes over time, see Fig. S1a. We call this the “chiral phase”.
In this section, we first give an analytic argument that illustrates how a spontaneous symmetry breaking from a

flocking or anti-flocking phase (similar to the antiferromagnetic phase) to the chiral phase may occur by increasing
the non-reciprocity of the coupling strength. We show that this phase transition is marked by a so-called exceptional
points [32] of the matrix Ŵ , which are the points where two of the eigenvectors of Ŵ coalesce, and discuss its relation
to PT symmetry breaking. This mechanism, unique to out-of-equilibrium systems, originates from the non-Hermitian
structure of the matrix Ŵ that controls the dynamics. As such, it is a generic feature of non-reciprocal fluids, as
we have illustrated from a general theory in the main text. Using the relation between the phase transition and the
exceptional points of Ŵ , we determine the phase boundaries in terms of the microscopic coupling strength jab and
compare them with numerics. We also show how chiral phase interpolates the flocking and the antiflocking phase (see
Fig. S1b).
In addition, we also find from direct numerical simulations of the mean-field equation (Eq. (S64)) that another

time-dependent phase appears in the phase diagram, which we call the "swap phase", see Fig. S1c and SI Movie 2.
The swap phase exhibits a time oscillation in the amplitude of the macroscopic polarization (in contrast to the chiral
phase exhibiting oscillations in their direction of the orientation), which is again triggered by the dynamical frustration.
Further, we find an interesting regime where these two oscillations coexist with different frequencies, which its time
dependence of the polarization field, as a result, becomes quasiperiodic, see Figs. 2f and 2g in the main text and
SI Movie 2. Discussions on the origin of these phases from the point of view of fluctuation modes are provided in
section III.
We note that the mean-field approximation employed in this section assumes that the system reaches a uniform

state. This is not always true; we discuss finite momentum instabilities and pattern formation [8] in section. III.

A. Emergence of the chiral phase by PT symmetry breaking

Before attempting to directly solve the full nonlinear equation (S64), here we provide an argument based on the
non-Hermiticity and the symmetry of the matrix Ŵ , that explains how a spontaneous breaking of time translation
symmetry may emerge in this system. In particular, we show that, in addition to the uniform flocking and the
antiflocking phase, the chiral phase, where the direction of the orientation continuously changes over time, can emerge
as a steady state solution as a result of the non-Hermitian nature of the matrix Ŵ (see also Fig. S1). We also discuss
its relation to the spontaneous PT symmetry breaking (with a generalized PT operator), often discussed in the context
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Methods Fig. S1. Bifurcation and phases. (a) Temporal diagram of the chiral phase. (b) Schematic bifurcation diagram
of the system along a line at fixed j−, for different values of j+. (c) Temporal diagram of the swap phase. In the chiral phase
(panel a), both populations rotate in the same direction, with the same angular velocity. The direction of rotation is chosen at
random. The angle ∆φAB between the velocities of the two populations continuously interpolates between the flocking (where it
vanishes) and antiflocking phases (where it is maximal, i.e. equal to 180°) along a line connecting them (panel b). In the swap
phase (panel c), the velocities oscillate along a fixed direction.

of open quantum mechanics [30, 36, 120, 300, 305]. Since the details of the ~PA(t), ~PB(t) dependence on the matrix Ŵ
is essentially irrelevant to this discussion, the emergence of the chiral phase is a generic feature of non-reciprocally
interacting fluids, as we have shown by the general formalism presented in the main text.

1. Flocking and antiflocking phase

Let us first look for the conventional, time-independent solutions, by assuming that the polarization eventually
converges to a constant, i.e., ~PA(B)(t) = ~P

A(B)
0 = const. Although, at a glance, it seems possible for the relative angle

between ~PA0 and ~PB0 to take any value, we shall see in the following that it is only possible to be parallel or antiparallel
to each other under this assumption, which we call the flocking and antiflocking phase, respectively.

In the time-independent steady state, the mean-field equation (S64) gives

0 = Ŵ0

(
~PA0
~PB0

)
=

(
WAA

0 WAB
0

WBA
0 WBB

0

)(
~PA0
~PB0

)
=

(
η − jAAρA + 1

2η

∥∥ ~QA0 ∥∥2 −jABρA
−jBAρB η − jBBρB + 1

2η

∥∥ ~QB0 ∥∥2

)(
~PA0
~PB0

)
, (S67)

with
~QA0 = jAA ~P

A
0 + jAB ~P

B
0 , (S68a)

~QB0 = jBA ~P
A
0 + jBB ~P

B
0 . (S68b)

Diagonalizing this matrix Ŵ0 in Eq. (S67) gives

0 =

(
Γ− 0
0 Γ+

)(
~P−0
~P+

0

)
. (S69)

Here, the eigenvalues Γ± roughly correspond to the decay rate of the eigenmodes, where their explicit expressions are
given by

Γ± =
1

2
[WAA

0 +WBB
0 ±

√
Λ0], (S70)

Λ0 = (WAA
0 −WBB

0 )2 + 4WAB
0 WBA

0 , (S71)
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with the corresponding eigenmodes,

u− =

( √
Λ0−(WAA

0 −WBB
0 )

2
−WBA

0

)
, (S72a)

u+ =

(
WAB

0√
Λ0−(WAA

0 −WBB
0 )

2

)
. (S72b)

The order parameter of the flocking phase is transformed accordingly into(
~P−0
~P+

0

)
= Û0

(
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~PB0

)
=

1

detÛ−1
0

( √
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0
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0
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2
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)
, (S73)

where Û−1
0 = (u−,u+), or inversely,

(
~PA0
~PB0

)
=

(
[U−1

0 ]A− [U−1
0 ]A+

[U−1
0 ]B− [U−1

0 ]B+

)(
~P−0
~P+

0

)
=

( √
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2 WAB
0
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0
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0 )

2

)(
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. (S74)

It can be shown from Eq. (S69) that in addition to a trivial solution ~P−0 = ~P+
0 = 0 that corresponds to a disordered

phase, nontrivial solutions with (~P−0 , ~P
+
0 )T 6= 0 can always be classified into two types [58]: solutions that satisfy

(~P−0 6= 0, ~P+
0 = 0) and (~P−0 = 0, ~P+

0 6= 0), which we call "−" and "+" solutions, respectively. This is readily seen as
follows. Let us assume that ~P−(+)

0 6= 0. Then, it is necessary for the eigenvalue Γ−(+) to vanish in order to satisfy the
first (second) line of Eq. (S69). In such case, since the eigenvalue of "+(−)" is finite Γ+(−) 6= 0 as long as Γ− 6= Γ+,
~P

+(−)
0 necessarily vanishes because of the second (first) line of Eq. (S69). Thus, ~P−0 and ~P+

0 cannot be nonzero
simultaneously, letting us classify the solutions into two types.

The above property has a direct consequence that the polarization field of A and B agents can only be either parallel
or antiparallel in the uniform steady state, which we call the flocking and antiflocking phase, respectively. For example,
for the "−" solution, polarization fields are given by

~PA0 = [U−1
0 ]A− ~P−0 =

√
Λ0 − (WAA

0 −WBB
0 )

2
~P−0 , (S75)

~PB0 = [U−1
0 ]B− ~P−0 = −WBA

0
~P−0 , (S76)

explicitly showing that ~PA0 and ~PB0 are either parallel or antiparallel to each other, depending on the relative sign
between [U−1

0 ]A− and [U−1
0 ]B−.

As mentioned earlier, the eigenvalues Γ± roughly corresponds to the decay rate of the corresponding modes. The
condition Γ−(+) = 0 for the "−(+)" solution can be regarded as the defining property of a steady state. Assuming
Λ0 > 0 (that assures Γ± to be real), the "−(+)" solution is likely to be (un)stable since 0 < Γ+(Γ− < 0), implying a
positive (negative) decay rate of the "+(−)" mode, where we have used the relation Γ− < Γ+. This strongly suggest
that the "−" solution is the solution that would be realized. Indeed, as shown in section III B 2 from a stability analysis,
it can proven that "+" solution is always unstable, limiting the possible stable solution to the "−" solution.
It is important to emphasize that, for the flocking or antiflocking phase to be realized, it is necessary for Λ0 to be

positive since it requires
√

Λ0 to be real such that the state can satisfy the relation Γ− = 0 (Γ+ = 0) for "−(+)" solution.
This condition is assured to be satisfied when the sign of the inter-species coupling is the same, i.e., jABjBA > 0 (or
equivalently WAB

0 WBA
0 > 0), which includes the reciprocal case, since the first term of Eq. (S71), (WAA

0 −WBB
0 )2, is

non-negative.
However, when the inter-species couplings have opposite sign (i.e. jABjBA < 0 or WAB

0 WBA
0 < 0), Λ0 may become

negative, hence the eigenvalues can turn imaginary implying the existence of a phase transition to a time-oscillating
phase. As we show in the following section, the system indeed exhibits a phase transition to an phase where the
direction of the orientation continuously oscillates in time, which we call the chiral phase. The phase transition is
driven by the non-Hermitian nature of the matrix Ŵ , which can be seen from the observation that the phase transition
point, Λ0 = 0 is the point where the two eigenvectors u± (see Eq. (S72)) coalesce; This is the so-called exceptional
point [32]. We will further show in section IIA 3 that this transition can be regarded as a spontaneous PT symmetry
breaking discussed in the field of non-Hermitian quantum mechanics.
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2. Chiral phase

Below, we look for solutions with an oscillating polarization field, described by the ansatz,

~PA(t) = RA
(

cos(Ωt+ φA)
sin(Ωt+ φA)

)
, (S77a)

~PB(t) = RB
(

cos(Ωt+ φB)
sin(Ωt+ φB)

)
, (S77b)

with Ω being the frequency of the oscillation and RA, RB(> 0) the amplitude of the polarization fields of A and
B species, respectively. This solution exhibits a "chiral" motion, in the sense that the direction of the orientation
continuously evolves in time (while the amplitude of the polarization remains fixed) implying a collective chiral motion
of agents, which is exactly what is observed in our microscopic Vicsek model simulation (Fig. 2d in the main text and
SI Movie 1).

We note that, for solutions of the form (S77), the O(2) symmetry of the mean-field system assures that Ŵ = Ŵ0 does
not depend on time. This can be directly checked from the observation that the amplitudes of the vectors ~QA(t), ~QB(t)
given by Eq. (S66) which shows that the magnitude of the nonlinearity in WAA

0 and WBB
0 are time-independent.

We show below that the ansatz (S77) satisfies,

Ω = Ω± = ±1

2

√
|Λ0|, (S78)

∆φAB = φA − φB =
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[
−
√∣∣∣ W 2

0

WAB
0 WBA

0

∣∣∣] = arccos

[
−
√∣∣∣1− |Λ0|

|WAB
0 WBA

0 |

∣∣∣] (W0W
AB
0 > 0)

(S79)

with

WAA
0 = −WBB

0 ≡W0, RB =

√∣∣∣∣WBA
0

WAB
0

∣∣∣∣RA, (S80)

and importantly, Λ0 < 0. The last condition is satisfied only if WAB
0 WBA

0 < 0, i.e. non-reciprocal coupling with
opposite signs.

Two comments are in order. Firstly, the fact that we find two solutions, Ω = Ω+ > 0 and Ω = Ω− < 0, indicates the
occurrence of a spontaneous chiral (Z2) symmetry breaking to a left and right-handed phase, respectively. Secondly,
the exceptional point Λ0 = 0 with W0 > 0(< 0) is a continuous transition point to the (anti)flocking phase, with
∆φAB = 0(= π). Noting that W0 may switch its sign inside the chiral phase, this implies that the chiral flocking phase
lies in between the flocking and antiflocking phase (See Fig. S1b.), which is indeed the case (see also Figs. 2f and g).

The mean-field equation (S64) we wish to solve with the ansatz (S77) takes the form

−ΩRA sin(Ωt+ φA) = −WAA
0 RA cos(Ωt+ φA)−WAB

0 RB cos(Ωt+ φB), (S81)

ΩRA cos(Ωt+ φA) = −WAA
0 RA sin(Ωt+ φA)−WAB

0 RB sin(Ωt+ φB), (S82)

−ΩRB sin(Ωt+ φB) = −WBA
0 RA cos(Ωt+ φA)−WBB

0 RB cos(Ωt+ φB), (S83)

ΩRB cos(Ωt+ φB) = −WBA
0 RA sin(Ωt+ φA)−WBB

0 RB sin(Ωt+ φB). (S84)

Note that Eqs. (S81) and (S82) (Eqs. (S83) and (S84)) are equivalent. These can be factorized as

R̃a cos(Ωt+ φ̃a) = 0, (S85)

R̃a sin(Ωt+ φ̃a) = 0, (S86)

where a = A,B,

(R̃A)2 = (−WAA
0 RA cosφA −WAB

0 RB cosφB + ΩRA sinφA)2 + (WAA
0 RA sinφA +WAB

0 RB sinφB + ΩRA cosφA)2

(R̃B)2 = (−WBA
0 RA cosφA −WBB

0 RB cosφB + ΩRB sinφB)2 + (WBA
0 RA sinφA +WBB

0 RB sinφB + ΩRB cosφB)2

and φ̃A, φ̃B are real constant numbers determined from the parameters W ab
0 , Ra, φa. Equations (S85) and (S86) are

satisfied at arbitrary t when R̃A = R̃B = 0.
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Let us first determine Ω by solving R̃A = 0. This gives,

Ω =
RB

RA
WAB

0 sin ∆φAB ± i(WAA
0 +WAB

0

RB

RA
cos ∆φAB). (S87)

Since we require the frequency Ω to be real, we demand the imaginary part of Eq. (S87) to vanish,

∆φAB = arccos
[
− WAA

0

WAB
0

RA

RB

]
. (S88)

Plugging this back into Eq. (S87), we get

Ω = Ω± =
RB

RA
WAB

0 sin ∆φAB = ±R
B

RA
WAB

0

√
1−

(
RA

RB
WAA

0

WAB
0

)2

. (S89)

We can similarly compute for Ω and ∆φAB by solving R̃B = 0, where we get

∆φAB = arccos
[
− WBB

0

WBA
0

RB

RA

]
, (S90)

Ω = Ω± = −R
A

RB
WBA

0 sin ∆φAB = ∓R
A

RB
WBA

0

√
1−

(
RB

RA
WBB

0

WBA
0

)2

. (S91)

The solution sets given by Eqs. (S88), (S89) and by Eqs. (S90), (S91) should be identical. Noting that WAB
0 WBA

0 < 0
and thus Ω± in Eqs. (S89) and (S91) have the same sign, we get the relation

WAA
0

WAB
0

RA

RB
=
WBB

0

WBA
0

RB

RA
, (S92)

RB

RA
WAB

0

√
1−

(
RA

RB
WAA

0

WAB
0

)2

= −R
A

RB
WBA

0

√
1−

(
RB

RA
WBB

0

WBA
0

)2

. (S93)

Solving the above yields,

WAA
0 = −WBB

0 ≡W0, (S94)

RA =

√
−W

AB
0

WBA
0

RB =

√∣∣∣∣WAB
0

WBA
0

∣∣∣∣RB , (S95)

giving,

Ω± = ±
√
|WAB

0 WBA
0 | −W 2

0 = ±
√
|Λ0|
2

, (S96)

and

∆φAB = arccos

[√
W 2

0

|WAB
0 WBA

0 |

]
, (S97)

for W0W
AB
0 < 0, and for W0W

AB
0 > 0,

∆φAB = arccos

[
−
√

W 2
0

|WAB
0 WBA

0 |

]
. (S98)

Hence, we arrive at the relations (S77)-(S79).
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3. The (anti)flocking to chiral phase transition as spontaneous PT symmetry breaking

In this subsection, we show that our system is PT symmetric (in the sense defined below) and the (anti)flocking-to-
chiral phase transition can be regarded as an instance of spontaneous PT symmetry breaking, often discussed in the
context of non-Hermitian quantum mechanics [30, 36, 120, 298–302, 305]. In the following, we consider the operations
executed by the operators P and T , which are the generalized parity and time-reversal operator, respectively (i.e.,
they are not necessarily related to the physical parity and time-reversal operations). Here, P is defined to be a generic
Hermitian and unitary operator and T is a generic antiunitary operator, expressible as K times a unitary matrix
(where K is a complex conjugation) that satisfy

P2 = T 2 = 1, [P, T ] = 0, (S99)

as would the conventional parity and time-reversal operators.
The system is said to be PT symmetric if we can find a PT operator that commutes with the matrix Ŵ0 that

controls the dynamics:

[PT , Ŵ0] = 0. (S100)

The PT symmetry of a PT symmetric system is said to be unbroken if any eigenstate of the matrix Ŵ0 is simultaneously
an eigenstate of the PT operator. Otherwise, the PT symmetry is said to be spontaneously broken [305].

We argue below that (i) our system is PT symmetric, (ii) the (anti)flocking phase is a PT unbroken phase, and (iii)
the chiral phase is a PT broken phase. Hence, the (anti)flocking-to-chiral phase transition is an instance of spontaneous
PT symmetry breaking.
Our system is PT symmetric since we can find operators P and T that satisfy Eq. (S100). To see this explicitly,

following Ref. [120], we express the matrix Ŵ0 and the operators P and T in terms of Pauli matrices,

Ŵ0 = w0
01 +w0 · σ (S101)

P = p01 + p · σ, (S102)
T = Kσ2(t01 + t · σ), (S103)

where σ = (σ1, σ2, σ3)T is a vector composed of Pauli matrices. From their definitions introduced above, the vectors p
and t need to be real with

p0 = t0 = 0,p · p = t · t = 1,p · t = 0. (S104)

Further decomposing the vector w0 into real and imaginary part as w0 = wR
0 + iwI

0 , we find [120]

PT Ŵ0(PT )−1 − Ŵ0 = 2σ · F − 2iσ ·G (S105)

where

F = (wR
0 · p)p+ (wR

0 · t)t−wR
0 , (S106)

G = (wI
0 · p)p+ (wI

0 · t)t. (S107)

The existence of p and t that makes the right-hand side of Eq. (S105) vanish means that the system is PT symmetric.
We can indeed find such p and t for our system, by using the property that Ŵ0 is a real matrix that restrict w0

0 to
be real and the real vectors wR

0 ,w
I
0 to take the form wR

0 = (w1
0, 0, w

3
0)T and wI

0 = (0, w2
0, 0)T. Thus,

wR
0 ·wI

0 = 0. (S108)

By choosing

p =
wR

0

|wR
0 |
, (S109)

since p · t = 0, we get wR
0 · t = 0. Plugging these into Eq. (S106) yields F = 0. Further, since p ∝ wR

0 , Eq. (S108) gives

p ·wI
0 = 0, (S110)

leading to G = (wI
0 · t)t. Since wI

0 and t are in a plane orthogonal to p, we can always find t that are also orthogonal
to wI

0 . Choosing such a vector t, i.e.,

t =
wR

0 ×wI
0

|wR
0 ×wI

0 |
, (S111)
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we get G = 0 and therefore the right-hand side of Eq. (S105) vanishes. Thus, our system is PT symmetric.
Now we argue that the flocking and antiflocking phases are in a PT unbroken phase while the chiral phase is in a

PT broken phase. In a PT symmetric system, the eigenstates u±, defined as states that satisfies

Ŵ0u± = Γ±u±, (S112)

also satisfies

Ŵ0(PT u±) = Γ∗±(PT u±), (S113)

showing that PT u± is also an eigenstate of this system. Here, we have operated PT from the left and used Eq. (S100).
In a PT unbroken phase, since PT u± ∝ u± and thus satisfies

Ŵ0u± = Γ∗±u±, (S114)

the eigenvalues of PT unbroken phase is real (Γ± = Γ∗±). On the other hand, in a PT broken phase, PT u+(−) is a
distinct vector from u+(−). Thus, the eigenstate with the eigenvalue Γ∗+(−) is a different state from that with Γ+(−).
Since there are at most two eigenvalues in our two component system, the two eigenvalues are complex conjugate of
each other,

Γ+ = Γ∗−. (S115)

While the flocking and antiflocking phase corresponds to real eigenvalues, the chiral phase corresponds to complex
eigenvalues that are complex conjugate of each other, resulting in an oscillation in time. Hence, the former is in a
PT unbroken phase while the latter is in a PT broken phase, marking the phase transition point as a PT symmetry
breaking point.

B. Mean-field phase diagram

So far, we have observed how the flocking/antiflocking phase may be destabilized into a chiral phase, without paying
too much attention to the concrete form of the matrix Ŵ0. Here, we directly compute analytically the mean-field
equation (S64) to show that the flocking, antiflocking, and the chiral phase predicted from the above analysis indeed
arise. We determine the phase diagram in terms of the microscopic coupling strengths jab(a, b = A,B).

Below, we parameterize

j± =
1

2
(jAB ± jBA), (S116)

for our convenience, where j+ and j− characterize the reciprocal and non-reciprocal component of the coupling,
respectively.

1. Ordered-to-disordered phase transition

Firstly, we analyze the ordered-to-disordered phase transition point within mean-field approximation. Starting from
the ordered phase (i.e. flocking and antiflocking phase), the order parameter ~P a0 approaches zero as moving towards
the phase boundary. Thus, the ordered-to-disordered phase transition point should satisfy,

detŴ0(~PA0 → 0, ~PB0 → 0) = Γ−(~PA0 → 0, ~PB0 → 0)Γ+(~PA0 → 0, ~PB0 → 0) = 0. (S117)

This can be solved analytically with the result (For simplicity, we assume below ρA = ρB = ρ.),

jc+ = ±

√
η2 − η(jAA + jBB)ρ+ (jAAjBB + j2

−)ρ2

ρ
. (S118)

Note that, as discussed earlier, the ordered phase should be described as the stable "−" solution and not the unstable
"+" solution. While the "−" solution satisfies Γ− = 0,Γ+ > 0, the "+" solution satisfies Γ− < 0,Γ+ = 0. Thus, the
sign of the average (Γ+ + Γ−)/2 indicates which type the obtained solution is. Since

Γ±(~PA0 → 0, ~PB0 → 0) = −1

2
[(jAA + jBB)ρ− 2η ±

√
Λ0], (S119)
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the average of the two eigenvalues are given by

Γ+ + Γ−
2

= −1

2

[
(jAA + jBB)ρ− 2η

]
. (S120)

Thus, Eq. (S118) is valid only when

η > (jAA + jBB)ρ (S121)

is satisfied such that it describes the destabilization towards the stable "−" solution. We have drawn this ordered-to-
disordered phase boundary in Fig. 2a in the main text (black line), giving an excellent agreement with the numerical
result.

2. Exceptional point

We next determine the exceptional point that marks the exceptional transition point from the (anti)flocking to a
chiral phase for a given parameter set (ρA, ρB , jAA, jBB). At the transition point, the following relations are satisfied:

Γ− = W̄0 −
√

Λ0

2
= 0, (S122)

Λ0 = (∆W0)2 + 4WAB
0 WBA

0 = 0, (S123)

RA =

∣∣∣∣∣
√

Λ0 −∆W0

2WBA
0

∣∣∣∣∣RB , (S124)

where Ra =
∥∥~P a0 ∥∥(> 0),

W̄0 =
WAA

0 +WBB
0

2
= −1

2

[
(jAA + jBB)ρ− 2η − 1

2η
(
∥∥ ~QA0 ∥∥2

+
∥∥ ~QB0 ∥∥2

)
]
, (S125)

∆W0 =
WAA

0 −WBB
0

2
= −1

2

[
(jAA − jBB)ρ− 2η − 1

2η
(
∥∥ ~QA0 ∥∥2 −

∥∥ ~QB0 ∥∥2
)
]
, (S126)

with ∥∥ ~QA0 ∥∥2
=
∥∥jAA ~PA0 + jAB ~P

B
0

∥∥2
, (S127)∥∥ ~QB0 ∥∥2

=
∥∥jBA ~PA0 + jBB ~P

B
0

∥∥2
. (S128)

Here, Eq. (S122) is the steady state condition, Eq. (S123) is condition for the exceptional point, and Eq. (S124) is
derived from Eqs. (S75) and (S76). Eq. (S123) shows that non-reciprocal interaction with WAB

0 WBA
0 < 0 (hence

jABjBA < 0) is necessary for the chiral flocking phase to appear. Below, we assume without loss of generality that the
interaction are non-reciprocal with opposite sign, i.e. jABjBA,WAB

0 WBA
0 < 0.

From Eqs. (S122) and (S123),

∆W0 = ±2
√
|WAB

0 WBA
0 |. (S129)

Plugging this into Eq. (S124), we get

RB =

√∣∣∣∣WBA
0

WAB
0

∣∣∣∣RA =

√∣∣∣∣jBAρBjABρA

∣∣∣∣RA. (S130)

For the flocking phase, ∥∥ ~QA0 ∥∥2
= (jAARA + jABRB)2, (S131)∥∥ ~QB0 ∥∥2
= (jBARA + jBBRB)2, (S132)

while for the antiflocking phase, ∥∥ ~QA0 ∥∥2
= (jAARA − jABRB)2, (S133)∥∥ ~QB0 ∥∥2
= (jBARA − jBBRB)2. (S134)
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We solve the coupled equations

W̄0 = 0, (S135)

Eq. (S129), and Eq. (S130) for RA, RB and the critical value jEP+ for a given j−.
We can solve the above equations analytically in the case jAA = jBB(≡ j), as we perform in the following. We only

consider here the flocking-to-chiral phase transition point, as the antiflocking-chiral transition point can be computed
in a similar way. Using Eq. (S130) to eliminate RB , Eq. (S129) yields the relation

R2
A =

4ηjAB
√−jABjBAρ

2jjAB(jAB − jBA)
√
−jBA/jAB + j2(jAB + jBA)− jABjBA(jAB + jBA)

. (S136)

We substitute this to Eq. (S135) to get,

(j2 + jABjBA)
[
j(jAB + jBA) +

√
−jABjBA(jAB − jBA)

]
ρ

=
[
(j2 − jABjBA)(jAB + jBA) + 2j

√
−jABjBA(jAB − jBA)

]
η.

(S137)

This can be rewritten in terms of j± introduced in Eq. (S116),

(j2 + j2
+ − j2

−)(jj+ + j−
√
j2
− − j2

+)ρ = (2jj−
√
j2
− − j2

+ + j+)(jj+ + j−
√
j2
− − j2

+)η, (S138)

which can be organized into a cubic equation in terms of j2
+ as,

aj6
+ + bj4

+ + cj2
+ + d = 0 (S139)

with

a = (η + jρ)2 + j2
−ρ

2, (S140)

b = 2j4ρ2 − 2η2(j2 − j2
−)− 8ηjj2

− − 3j4
−ρ

2, (S141)

c = η2j4 + 6η2j2j2
− + η2j4

− − 2ηj5ρ− 4ηj3j2
−ρ+ 10ηjj4

−ρ+ j6ρ2 − j4j2
−ρ

2 − 3j2j4
−ρ

2 + 3j6
−ρ

2, (S142)

d = j4
−[−4η2j2(1 + jρ)− j4ρ2 − 4ηjρj2

− + 2j2ρ2j2
− − ρ2j4

−]. (S143)

This can be solved exactly using Cardano’s formula. Its real solution is plotted as a red line in Figs. 2b and 2c in the
main text, giving an excellent agreement with the (anti)flocking/chiral phase transition lines obtained numerically.

III. EXCITATION SPECTRUM AND STABILITY ANALYSIS

In this section, we provide a linear analysis on the fluctuations around the mean-field solution obtained in section II
to study the properties of excitations, the stability of the phases described above, as well as the nature of the phase
transitions between them. We confirm that there is a wide range of parameters where the flocking, antiflocking, and
chiral phases are stable, as summarized in the phase diagram in Fig. 3a in the main text.
We show from this analysis that the chiral phase emerges by the coalescence of the collective eigenmodes in the

transverse channel, which is a fundamentally different mechanism from the conventional phase transition scenarios [59].
We further show that the emergence of the swap phase can be understood as the instability of the flocking/antiflocking
phase against the global longitudinal fluctuations. Based on these results, we argue that it leads to the appearance of
chiral-swap mixed phase exhibiting quasiperiodic oscillation in time, and explain the occurrence of tetracritical points
with reduced codimension in the phase diagram. We also describe how the combination of exceptional points and
the convective terms enforces the occurrence of the pattern-forming instabilities at the (anti)flocking-to-chiral phase
transition.

A. General considerations

We assume the existence of a homogeneous solution ψ(t) = (ρa(t), Pa(t))a to the equation (S51), which therfore also
satisfies the mean-field Eq. (S64). This equation is of the form

∂tψ(t, r) = f(ψ(t, r),∇ψ(t, r), . . . ) (S144)
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The linear stability and the fate of small excitations (e.g. waves) on top of the steady-state are ruled by the linearized
equation of motion for small perturbations δψ = ψ − ψss on top of a steady-state ψss. At first order in δψ, the
perturbations are described by the equation

∂tδψ(t, r) = f(ψ(t, r),∇ψ(t, r), . . . )− f(ψss(t),∇ψss(t) ≡ 0, . . . ) ' L̂(t)δψ(t, r) +O(δψ2) (S145)

where L̂(t) is a linear (differential) operator, that may depend on time through the steady-state ψss(t). As this operator
is linear, we use the Fourier transform to block-diagonalize the differential operators in momentum space, where we
are left with a family of linear equations of the form

∂tδψ(t, k) = L(t, k)δψ(t, k) (S146)

where L(t, k) are finite matrices. In terms of the perturbations δP aµ and δρa of the polarization fields and density
fields,

∂tδP
a
µ = [LPP ]abµνδP

b
ν + [LPρ]abµ δρb (S147a)

∂tδρ
a = [Lρρ]abδρb + [LρP ]abν δP

b
ν . (S147b)

Hence, the matrix elements of L are

[LPP ]abµν = −Dθδabδµν + jabρ
aδµν −

1

2Dθ

∑
c,d,ρ

jacjadP
c
ρP

d
ρ δabδµν −

1

Dθ

∑
c

jabjacP
a
µP

c
ν

+Da(−k2)δabδµν

+
∑
c

λac

[
− ikρP cρδabδµν + 3ikµP cν δab − 3P cµikνδab

]
+λab

[
− 2P aµ ikν + 2ikµP aν − 2P aρ ikρδµν

]
(S148)

and

[LPρ]abµ =

[
(
∑
c

jacP
c)− va0

2
ik

]
δab (S149)

[LρP ]abµ = −δabvb0ikµ (S150)

[Lρρ]ab = 0. (S151)

In the following, we neglect density fluctuations, setting δρa = 0. Hence, we will only consider the stability of the
polarization channel described by L̂ = LPP . This can happen, for instance, when the system is incompressible (see
Refs. [324, 325] for an analysis of the consequences in the Toner-Tu model for a single population). Here, we do not
impose the divergence constraint div(~va) = 0 that would usually arise from the continuity equation by integrating out
high-frequency density fluctuations; instead, we assume that the continuity equation includes appropriate source terms
so that density fluctuations can be traced out without producing constraints on the velocities. We refer to section XI
for a discussion of the situation in which the incompressibility constraint is imposed.

B. Stability of the flocking/antiflocking phase

We start with the stability analysis on the flocking and the antiflocking phase. In these phases, the steady state
solutions can be written as

~P a0 = P a0 ~e�. (S152)

for a = A,B, where P a0 are real numbers and ~e� is a unit vector pointing at the flocking direction. Crucially ~e� is
the same for a = A and a = B. With this notation, PA0 PB0 > 0 (< 0) corresponds to the (anti)flocking phase. It is
convenient to decompose the fluctuations into longitudinal (�) and transverse (⊥) components,

δ ~P a(r, t) = ~e�δP a�(r, t) + ~e⊥δP
a
⊥(r, t) = P a0

[
~e�δna(r, t) + ~e⊥δφ

a(r, t)
]
, (S153)

where ~e⊥ is a unit vector perpendicular to the flocking direction ~e�. In this way, δna represents longitudinal fluctuations
normalized by P a0 , and δφa is the angle describing the deviation from the flocking direction.
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The relevant part of the linearized version (S146) of the coupled Toner-Tu equations (S62) then reads, in Fourier
space,

L̂(k)d~y(k) = s(k)d~y(k), (S154)

where k = k�~e� + k⊥~e⊥, L̂ = LPP as defined in (S148),

d~y(k) =


δφA(k)
δφB(k)
δnA(k)
δnB(k)

 , (S155)

and ω(k) is the dispersion relation of a collective mode. We decompose the 4x4 matrix L̂(k) controlling the linear
excitations of the system as the block matrix

L̂(k) =

(
L̂⊥⊥(k) L̂⊥�(k)

L̂�⊥(k) L̂��(k)

)
, (S156)

where the blocks correspond to the transverse and longitudinal channels (blocks on the diagonal) and their coupling
(off-diagonal). They have the explicit form

L̂⊥⊥(k) = −

 WAA
0

WAB
0 PB0
PA0

WBA
0 PA0
PB0

WBB
0

− iλ̂⊥⊥k� −
(
DA

0 0
0 DB

0

)
k2, (S157a)

L̂⊥�(k) = iλ̂⊥�k⊥, (S157b)

L̂�⊥(k) = −iλ̂�⊥k⊥, (S157c)

L̂��(k) = −

 WAA
0

WAB
0 PB0
PA0

WBA
0 PA0
PB0

WBB
0

−( jAA

η PA0 Q
A
0

jAB

η PB0 Q
A
0

jBA

η PA0 Q
B
0

jBB

η PB0 Q
B
0

)
− iλ̂��k� −

(
DA

0 0
0 DB

0

)
k2, (S157d)

where

QA0 = jAAP
A
0 + jABP

B
0 , (S158a)

QB0 = jBAP
A
0 + jBBP

B
0 , (S158b)

and λ̂⊥⊥, λ̂⊥�, λ̂�⊥, and λ̂�� are 2×2 real matrices that originate from the convective terms, given by

λ̂⊥⊥ = λ̂�� =

(
3PA0 λAA + PB0 λAB 2PB0 λAB

2PA0 λBA PA0 λBA + 3PB0 λBB

)
, (S159)

λ̂⊥� = λ̂�⊥ =

(
5PA0 λAA + 3PB0 λAB 2PB0 λAB

2PA0 λBA 3PA0 λBA + 5PB0 λBB

)
. (S160)

We use

Da =
(va0 )2

16η
λab = va0v

b
0 (S161)

in our analysis (see section I for further discussion on this point).

1. Computation of the stability regions of the phase diagram

We determine the regions of stability of the (anti)flocking phases (Fig. 3a of the main text) by first solving
numerically the mean-field dynamical system in Eq. (S64) to obtain the quantities Ra = ‖~Pa‖ (a = A,B) and
∆φAB = angle(~PA, ~PB). This allows to identify the phase, and to obtain the matrix L̂(k) using Eq. (S148). The
eigenvalues sα(k) = σα(k) + iωα(k) of this matrix give the growth rates σα(k) and the frequencies ωα(k) of the
perturbations. Because of the existence of a Goldstone mode, the largest growth rate is pinned to σ = 0 at k = 0.
To evaluate the stability of the phase, we determine whether k = 0 is a local maximum by computing the sign of
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the eigenvalues of the Hessian matrix of σ(k) at k = 0, which is obtained by discretizing the second derivatives in
momentum space. The result is presented in Fig. 3a of the main text. We have verified manually (by directly computing
the growth rates as a function of k) that for a large range of parameters, an instability is present only if k = 0 is not a
local minimum. However, this hypothesis might fail in particular cases. This shortcoming will be addressed in future
works by determining the stability regions directly from the full momentum dependent growth rates. The largest
growth rates as a function of the wavevector in Fig. 4b are directly obtained by diagonalizing L̂(k) at each point.

2. Goldstone’s theorem and destabilization towards the chiral phase

Since the flocking and antiflocking phase are spontaneous symmetry broken phases, Goldstone’s theorem assures
that at least one gapless eigenmode (i.e. the Goldstone mode) exists [326]. This can be shown explicitly as follows.
Using the steady state mean-field equation (S67), or

WAA
0 = −W

AB
0 PB0
PA0

=
jABρAPB0

PA0
, (S162)

WBB
0 = −W

BA
0 PA0
PB0

=
jBAρBPA0

PB0
, (S163)

the transverse-transverse block of the dynamical matrix L̂ at k = 0 can be simplified to

L̂⊥⊥(k = 0) = −
(

WAA
0 −WAA

0

−WBB
0 WBB

0

)
. (S164)

Then, it is readily shown, by noting that the transverse and the longitudinal fluctuations decouple at k = 0 since
L̂⊥�(k = 0) = L�⊥(k = 0) = 0, that the vector

d~y(k = 0) =


δφA(0)
δφB(0)
δnA(0)
δnB(0)

 =

 1
1
0
0

 , (S165)

which corresponds to the global in-phase rotation of the direction of the flocks, is a gapless mode:

s(k = 0) = 0. (S166)

We also find another eigenmode

d~y(k = 0) =


δφA(0)
δφB(0)
δnA(0)
δnB(0)

 =

 1
−WBB

0 /WAA
0

0
0

 , (S167)

associated with a gapped spectrum

s(k = 0) = −(WAA
0 +WBB

0 ) = σ⊥⊥, (S168)

where σ⊥⊥ is a growth rate of this mode. Since the "−" solution satisfies (note that Λ0 > 0 in the flocking and
antiflocking phase)

0 = Γ− =
1

2
(−σ⊥⊥ −

√
Λ0), (S169)

we get

σ⊥⊥ = −
√

Λ0 < 0, (S170)

meaning that that the "−" solution is stable, at least against the global transverse fluctuations involving a change in
the relative flocking angle between the two species. In contrast, the "+" solution that satisfies,

0 = Γ+ =
1

2
(−σ⊥⊥ +

√
Λ0), (S171)
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gives a positive growth rate of the mode,

σ⊥⊥ =
√

Λ0 > 0, (S172)

thus is always unstable. This tells us that the only possible stable solution of the flocking and antiflocking phase is the
"−" solution.

We remark that the decay rate (at k = 0) of the two collective transverse modes obtained here, i.e. γ⊥⊥ = −σ⊥⊥ = 0
for the Goldstone mode and γ⊥⊥ =

√
Λ0 for the gapped mode (See Eqs. (S166), (S168) and (S170).), are identical to

the eigenvalues of the matrix Ŵ0 (S67),

Γ− = 0, Γ+ =
√

Λ0. (S173)

Since the exceptional point of Ŵ0 (which satisfies Λ0 = 0) marks the phase transition point from the (anti)flocking
phase to the chiral phase (as shown in Sec. IIA), the above property shows that this point is simultaneously an
exceptional point of L̂⊥⊥(k = 0). At the transition point, similarly to the conventional phase transition, the damping
gap γ⊥⊥ ≡ −σ⊥⊥ =

√
Λ0 of the "−" solution vanishes signaling the instability in the transverse channel to the

chiral phase. However, there is a fundamental difference; the eigenvector given in Eq. (S167) coalesces with the
Goldstone mode given by Eq. (S165) [59]. This mechanism by which the (anti)flocking phase gets destabilized into
the chiral phase by the coalescence of a transverse fluctuations mode with the Goldstone mode is a mechanism unique
to non-equilibrium systems where the dynamics is controlled by non-Hermitian matrices, and is in sharp contrast with
the conventional phase transition mechanism where the gapped mode simply softens at the critical point but are still
orthogonal to other eigenmodes.

The above coincidence of the eigenvalues of Ŵ0 and the decay rate of the transverse modes obtained from L̂⊥⊥(k = 0)

is due to the property that Ŵ0 is invariant under the perturbation (where φa is the steady-state orientation angle of
the polarization)

φA → φA + δφA, φB → φB + δφB (S174)

in the linear order, i.e.

Ŵ0(φA + δφA, φB + δφB) = Ŵ0(φA, φB) +O((δφA)2, δφAδφB , (δφB)2). (S175)

It follows from this that linearizing the mean-field equation (S64) in the transverse channel gives

∂t

(
δφA

δφB

)
= −Ŵ0

(
δφA

δφB

)
. (S176)

Therefore, the two collective transverse modes are computed as,

s = −Γ−, s = −Γ+, (S177)

which must be identical to the ones obtained from L̂⊥⊥(k = 0).

3. Destabilization towards the swap phase and the emergence of the active time-quasicrystal

In this paragraph, we show that the longitudinal fluctuations can also get destabilized by the non-reciprocal
interaction implying a phase transition to the swap phase (see SI Movie 2).
The existence of two independent mechanisms of destabilization, with one in the transverse channel (that leads to

the chiral phase) and one in the longitudinal channel (that leads to the swap phase), suggests the existence of a phase
where both channels destabilize. As we show in Figs. 2b, 2c and 2g of the main text, a mixed chiral-swap phase indeed
exists, as a result of the simultaneous occurrence of these two instabilities.

We focus on the uniform longitudinal fluctuations in this channel, described by the linear operator

L̂��(k = 0) = −
(

WAA
0 −WAA

0

−WBB
0 WBB

0

)
−
(

jAA

η PA0 Q
A
0

WAA

ρAη
PA0 Q

A
0

WBB

ρBη
PB0 Q

B
0

jBB

η PB0 Q
B
0

)
, (S178)

where we have used the steady state condition (S67) or (S162), (S163). The collective eigenmodes are given by

s
��
± (0) = −

[
ζ� ±

√
ζ2
� − η�

]
, (S179)
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where

η� =
4

η

[
jAAWBB

0 PA0 Q
A
0 + jBBWAA

0 PB0 Q
B
0 +WAA

0 WBB
0 (PA0 Q

A
0 + PB0 Q

B
0 ) + µ�PA0 Q

A
0 P

B
0 Q

B
0

]
, (S180)

µ� =
1

η

[
jAAjBB − WAA

0 WBB
0

ρAρB

]
=

1

η

[
jAAjBB −

(
jAA − η

ρA
− (QA0 )2

2ηρA
)(
jBB − η

ρB
− (QB0 )2

2ηρB
))]

> 0, (S181)

ζ� = WAA
0 +WBB

0 +
1

η

[
jAAPA0 Q

A
0 + jBBPB0 Q

B
0

]
. (S182)

The inequality µ� > 0 is shown under the assumption jAA, jBB > 0. Equation (S179) shows that this mode is
(un)stable when η� > 0(< 0), because the largest growth rate of this channel is given by

σ�� ≡ max
[
Re[s−(k = 0),Re[s+(k = 0)]

]
=
√
ζ2
� − η� − |ζ�| < 0(> 0). (S183)

In the case where the inter-species coupling has the same sign jABjBA > 0 (which includes the reciprocal case
jAB = jBA), η� is always positive and thus stable. This is seen as follows. When jAB , jBA > 0(< 0), the system is in
a (anti)flocking phase at low enough noise strength, giving PA0 PB0 > 0(< 0). Then, from Eqs. (S162) and (S163), we
get WAA

0 ,WBB
0 > 0. Similarly, from the definition of Qa0 given by Eq. (S158), PA(B)

0 and QA(B)
0 have the same signs

irrespective of the sign of the inter-species coupling jAB , jBA, i.e. P a0 Qa0 > 0. Since all the terms contributing to η� in
Eq. (S180) is thus positive as long as jAB and jBA has the same sign, the parameter η� is positive and thus stable
(σ�� < 0).

This restriction is lifted in the strong non-reciprocal case where the inter-species interaction have opposite signs
jABjBA < 0. In particular, WAA

0 ,WBB
0 , P a0 Q

a
0 may all become negative. Thus, as the non-reciprocal interaction

increases, η� gets smaller and smaller until it approaches zero, or equivalently, σ�� = 0. Such softening of the
longitudinal mode implies a phase transition to a swap phase.

This scenario is confirmed in Fig. S2, which shows the growth rate σ�� of the collective mode in this channel, in the
vicinity of the phase transition point to the swap phase. As expected, the negative growth rate σ�� in the flocking
phase softens (i.e. σ�� = Res+(k = 0) approaches zero) at the flocking-to-swap phase transition point (j+ = jswap+ ).

4. Tetracritical point

Here we argue that, from the properties shown above, a tetracritical point, which is the point where the four phases
(i.e. the (anti)flocking, chiral, swap, and the chiral-swap phase) meet at a single point, naturally emerges at least
within the mean-field approximation. This is demonstrated in Fig. 2c in the main text, where the tetracritical points
are marked by black dots.

The properties that we have shown so far can be summarized as follows:

1. In the (anti)flocking phase, there exists two types of solutions, namely, the "−" and "+" solutions, but the "+"
solution is always unstable. On the other hand, as long as the system is away from the exceptional point Λ0 > 0,
the "−" solution is always stable against the global (k = 0) transverse channel fluctuations.
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Methods Fig. S3. Bifurcation diagrams. Unless otherwise specified, the parameters are the same as in Fig. 2c of the main
text. An exceptional point (marked by a black star) separates the branches labelled (+) and (−). The tetracritical points are
found in the panel c and Fig. 2c in the main text at (j∗−, j

∗
+) ≈ (±0.38,±0.07). Note that the x-axis scales are different in the

four panels.

2. Approaching the exceptional point Λ0 = 0 (which is the point where the "−" and the "+" solution coalesces),
however, the (anti)flocking phase destabilizes in the transverse channel, signaling the phase transition to the
chiral phase.

3. Independently from the above mechanism, "−" solution can also destabilize in the global longitudinal channel
fluctuations, implying the phase transition into the swap phase.

4. In the parameter region between the chiral and swap phase, a mixed chiral-swap time quasicrystal phase emerges.

The properties 1 and 2 show that the (anti)flocking-to-chiral phase transition always occurs at the many-body
exceptional point. As an example of such a situation, in Figs. S3a and b, we have plotted the amplitude of the
polarization

∥∥ψ∥∥ (where ψ = (~PAT
0 , ~PBT

0 )T) for both the stable and unstable solutions in the (anti)flocking phase with
j− < j∗−. As seen in the figure, the stable "−" solution and the unstable "+" solution coalesce at the exceptional point,
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which marks the phase transition point from the (anti)flocking phase to the chiral phase.
On the other hand, property 3 shows that there are cases where the "−" solution of the (anti)flocking phase exhibits

phase transition to the swap phase. The property that this phase transition is associated with the destabilization of
the longitudinal channel implies that the "susceptibility" of the amplitude of the polarization (i.e. the sensitivity of
the amplitude of the polarization against a parameter change) diverges. This is indeed seen in the region j− > j∗− in
Fig. S3d at the (anti)flocking-to-swap phase transition point, where the derivative of the amplitude

∥∥ψ∥∥ in the stable
branch of the "−" solution diverges, i.e.

∣∣ ∂∥∥ψ∥∥/∂j+ ∣∣→∞ at the transition point. In this case, the exceptional point
sits in the unstable branch of solutions.
At j− = j∗−, these two types of transition points (i.e. the exceptional point and the diverging susceptibility point)

merges at j+ = j∗+ as shown in Fig. S3c. Since these are the signals of the transition to the chiral and swap phase,
respectively, and keeping in mind that the chiral/swap time quasicrystal phase occurs in the region between the chiral
and the swap phase (property 4), the point (j∗−, j

∗
+) is nothing but the tetracritical point.

5. Exceptional point enforced pattern formation

The chiral and swap phases appear in mean-field theory as spatially uniform instabilities of the (anti)flocking
phases. Now we show that the flocking and antiflocking phases generically exhibit a finite wavelength instability in the
transverse fluctuation channel in the vicinity of the exceptional point (except in highly fine-tuned situations), implying
the occurrence of pattern formation. This originates from the singular behavior of the mean-field operator at this
point combined with the presence of convective terms. At the exceptional point Λ0 = 0 of the matrix Ŵ0,

0 = Γ− = Γ+ =
1

2
(WAA

0 +WBB
0 ), (S184)

and hence, WAA
0 = −WBB

0 (≡W0). As a consequence, the block L̂⊥⊥(k) corresponding to transverse fluctuations in
Eq. (S157) reduces to

L̂⊥⊥(k) = −i
(
W0 −W0

W0 −W0

)
− iλ̂⊥⊥k� −

(
DA

0 0
0 DB

0

)
k2. (S185)

The matrix L̂⊥⊥(k) has an exceptional point at k = 0, where the two collective modes given by Eqs. (S165) and
(S167)) coalesce [59]. Below, we restrict ourselves to k⊥ = 0, where the transverse fluctuations decouple from the
longitudinal mode such that the eigenvalues of L̂⊥⊥(k = k�~e�) describe the collective modes of the system in this
channel (i.e. L̂⊥�(k = k�~e�) = L̂�⊥(k = k�~e�) = 0). The complex growth rates (s = σ + iω including the frequencies
ω as imaginary parts) of the collective modes are

s⊥⊥± (k�~e�) = ±i
√
iC0k� +O(k2

�)− iλ⊥⊥0 k� −D0k
2
�. (S186)

Here,

C0 = −2W0(λ⊥⊥2 + λ⊥⊥3 ) and D0 =
DA

0 +DB
0

2
, (S187)

where λ̂⊥⊥ is parameterized as

λ̂⊥⊥ = λ⊥⊥0 σ̂0 + λ⊥⊥1 σ̂1 + iλ⊥⊥2 σ̂2 + λ⊥⊥3 σ̂3, (S188)

where σ̂α (α = 0, 1, 2, 3) are the Pauli matrices, and λ⊥⊥α are real numbers since λ̂⊥⊥ is a real matrix.
The leading order contribution in respect to k� has a singular form s⊥⊥± ∼ ±i√iC0k� as long as C0 6= 0. As a result,

since the quantity inside the square root is purely imaginary, at least one of the two modes is inevitably unstable,
irrespective of the sign of C0. This shows that in the vicinity of a phase transition point from a (anti)flocking to the
chiral phase, the uniform state is always destabilized by transverse fluctuations.

This originates from the exceptional point physics in the presence of convective terms. Typically, the eigenvalues in
the vicinity of the exceptional point behave as s± ∼ ±i

√
∆, where ∆ is a characteristic distance from the exceptional

point. In our situation, recalling that L̂⊥⊥(k = 0) is at an exceptional point, the finite momentum k contribution
to L̂⊥⊥(k�~e�) can be regarded as the contributions that makes L̂⊥⊥(k�~e�) deviate from that point. Because of the
presence of the convective term λ̂⊥⊥k�, the leading order is O(k�). As a result, ∆ ∼ ik�, leading to s± ∼ ±i

√
ik�, so

at least one of the complex growth rates has a positive real part, implying an instability leading to pattern formation.
The uniform flocking phase may be stabilized by moving away from the exceptional point.
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C. Floquet stability analysis of the chiral phase

Here we provide a stability analysis on the chiral phase. As the mean-field solution in this phase depends on time,
the method used to analyze the stability of the (anti)flocking phases cannot be directly applied. Instead, we take
advantage of the periodicity in time of the mean-field solution ~P a(t) given by Eq. (S77) we perform a Floquet stability
analysis of the phase [327–329] (see also Ref. [330] for an example in the context of fluid mechanics). We note that
the transformation to the rotating frame does not completely eliminate the time dependence, due to the presence of
convective terms.
The mean-field solution in the chiral phase (~P a(t) in Eq. (S77)) is T -periodic in time with a period T = 2π/Ω,

where Ω is given by Eq. (S89). Specializing the relevant part of Eq. (S146) to this case, we obtain

∂tδ ~P (t,k) = L(t,k)δ ~P (t,k) (S189)

where crucially L(t,k) is T -periodic, namely L(t+ T,k) = L(t,k). This equation is formally solved by the evolution
operator U(t) such δ ~P (t,k) = U(t)δ ~P (0,k) is a solution of (S189) for any initial condition δ ~P (0,k) (in the context of
ODEs, the evolution operator is called the principal fundamental matrix solution of the differential equation). This
evolution operator is the time-ordered exponential

U(t,k) = T exp

(∫ t

0

L(k, s)ds
)

(S190)

which can also be written as the infinite series

U(t,k) = lim
δt/t→0

bt/δtc∏
n=1

exp (nδtL(k, nδt)) . (S191)

Assuming the periodicity of L(t) = L(t + T ), the Floquet theorem [327, 329] implies that the evolution operator
satisfies (pointwise in k)

U(t+ nT ) = U(t)[U(T )]n (S192)

The evolution operator evaluated after one period U(T ) is called the Floquet operator (also known as the monodromy
matrix). It is convenient to write it as U(T ) = eTL

eff
(where Leff is defined up to a choice of branch cut for the

logarithm). The property (S192) allows to decompose the evolution operator as U(t) = V (t)etL
eff

where V (t) = V (t+T )
is periodic in time. This decomposition shows that crucially, the long-time behavior of the solutions of Eq. (S189), and
in particular their stability, is fully controlled by the Floquet operator U(T ).
Indeed, any solution of (S189) can be decomposed into fundamental solutions δ ~Pα(k, t), which are obtained from

the eigenvalues λα(k) and eigenvectors δ ~P 0
α(k) of U(T,k) as

δ ~Pα(k, t) = (λα)t ~pα(t,k) (S193)

where ~pα(t,k) = V (t)δ ~P 0
α(k) = pα(t+ T,k) is periodic in time. The eigenvalues λα(k) of U(T,k) are called Floquet

multipliers (or characteristic multipliers), and they can be written as λα(k) = esα(k) where sα(k) is called a Floquet
exponent (the Floquet exponents are also the eigenvalues of Leff, and they are only defined up to a phase). The
Floquet exponent sα(k) = σα(k) + iωα(k) can be decomposed into real and imaginary parts, which correspond to the
growth rate σα(k) of the corresponding fundamental solution and its oscillation quasi-frequency ωα(k) (only defined
up to multiples of 2π/T ). A positive (negative) growth rate corresponds to an unstable (stable) solution. Equivalently,
the solution is stable when the absolute value of the Floquet multiplier |λα| is smaller than unity.

To determine the stability of the chiral phase, we first solve numerically the mean-field dynamical system in
Eq. (S64) to obtain the time-independent quantities Ra = ‖~Pa‖ (a = A,B) and ∆φAB = angle(~PA, ~PB). We obtain
the time-dependent mean-field solution ~Pa,ss(t) as well as its period T using Eqs. (S77) and (S89). This allows us to
compute the time-dependent matrix L(t) from Eq. (S148), where ~Pa is replaced by ~Pa,ss(t). We then use a discretized
version of Eq. (S191) (where δt is finite) to compute U(T,k), which is diagonalized to determine the Floquet multipliers
λα(k). A direct inspection of the spectra shows that as in the time-independent case, we always have |λα(0)| ≤ 1 in
the chiral phase (because it is the mean-field solution), with one marginal eigenvalue pinned at |λ| = 1. We focus
on the multiplier λ(0) with maximal absolute value, for which |λ(0)| = 1. We use the same procedure as for the
(anti)flocking phases to estimate the stability of the phase from the sign of the eigenvalues of the Hessian matrix of the
function k 7→ |λ(k)| at k = 0, and the same caveat applies. By carrying out this procedure, we find wide regions in
parameter space where the chiral phase is stable, as shown in Fig. 3a of the main text.
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IV. NON-RECIPROCITY AND BROKEN DETAILED BALANCE

In this section, we show that the non-reciprocity in Eq. (2) of the main text (Jmn 6= Jnm) implies the breaking of
detailed balance in the corresponding Markov process. The broken detailed balance (and hence, the lack of microscopic
reversibility) implies that the system is out-of-equilibrium, allowing the appearance of oscillating states [331–336], see
also Refs. [191, 337].

We consider a set of coupled Langevin equations

∂tXm(t) = Fm(X) + σmnηn(t) (S194)

where Xn are a set of random variables for n = 1, . . . , N , and ηn(t) are white noises with unit standard deviation.
This general form encompasses Eq. (2) of the main text. (It can also describe the coarse-grained Eq. (1) of the main
text, provided that a noise is added to the right-hand side.) The evolution of the probability distribution p(t, x) of the
random variables X = (X1, . . . , XN ) ruled by Eq. (S194) is described by the Fokker-Planck equation [338, 339]

∂tp = Ŵp (S195)

where the operator Ŵ is defined by

Ŵp = −∂m[Fm(x)p(t, x)] +Dmn∂m∂np(t, x) (S196)

for an arbitrary distribution p, where ∂m = ∂/∂xm and D = σσT /2. In the following, we shall assume that the
diffusion tensor Dmn = Dmδmn is diagonal (as D is real and symmetric, this can always be achieved through an
appropriate change of variable xm → Jmm′xm′).

Assume that the process defined by Ŵ has a stationary distribution ps(x) (such that Ŵps = 0). We define a weighted
scalar product on distributions by

〈f, g〉s =

∫
1

ps(x)
f(x)g(x)dx. (S197)

The operator Ŵ satisfies detailed balance (for ps) if it is self-adjoint with respect to this scalar product [338], namely if
for any distributions f and g,

〈f, Ŵg〉s = 〈Ŵf, g〉s . (S198)

A few tedious but straightforward manipulations show that for the Langevin Eq. (S194), the detailed balance condition
Eq. (S198) is equivalent to [333]

Fm = Dm
∂mps
ps

(S199)

for all m = 1, . . . , N . This equation implies (but is not necessarily equivalent to)

∂nFm
Dm

=
ps(∂m∂nps)− (∂mps)(∂nps)

p2
s

(S200)

which in turn implies that for all m,n, one has [333]

Dn∂nFm = Dm∂mFn. (S201)

For the system considered in the main text, Eq. (2), we have Dm = Dn = η2/2 for all m,n and

Fm(θ) =
∑
n

Jmn sin(θn − θm). (S202)

Hence (for n 6= m),

∂nFm(θ) = Jmn cos(θn − θm) (S203)

and by permuting the indices,

∂mFn(θ) = Jnm cos(θm − θn) = Jnm cos(θn − θm) (S204)

We conclude that Jmn 6= Jnm implies that detailed balance is broken (in the situation when the noises can have
different strengths, this condition would read DnJmn 6= DmJnm).
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V. NONEXISTENCE OF THE CHIRAL PHASE WITH TWO PARTIALLY NON-RECIPROCAL
AGENTS

In this section, we analyze the evolution of two and only two non-reciprocal agents A and B, that represent either
two oscillators in the Kuramoto model (without a natural frequency), or two self-propelled agents in the Vicsek model.
We show analytically that stable chiral motion is only possible when the interactions are fully non-reciprocal: any
amount of reciprocal interaction eventually leads to alignment, and the chiral behavior is a transient.
We assume that the agents always close enough to interact, and neglect the effect of noise. The evolution of their

angles θA and θB is then described by the equations

∂tθA = JAB sin(θB − θA) (S205a)
∂tθB = JBA sin(θA − θB). (S205b)

It is convenient to define

θ̄ = θA + θB ∆θ = θA − θB J± = JAB ± JBA (S206)

in terms of which the dynamical system in Eq. (S205) becomes

∂tθ̄ = −J− sin(∆θ) (S207a)
∂t∆θ = −J+ sin(∆θ). (S207b)

The coefficient J+ represents the reciprocal part of the interactions, while J− represents the non-reciprocal part. When
the reciprocal interactions vanish, J+ = 0, then ∆θ(t) = ∆θ(0) is a constant (equal to its initial value), and the
average angle θ̄(t) increases linearly. This corresponds to a circular motion at a frequency 1/[J− sin(∆θ(0))], whose
characteristics are highly sensitive to the initial conditions. In an exactly anti-reciprocal system (and in the absence of
noise), this circular motion goes on forever. However, in this very simple model, any amount of reciprocal interaction
J+ 6= 0 leads to the eventual suppression of the circular motion, on a time scale of order 1/J+. Indeed, when the
reciprocal part of the interaction J+ is nonzero, ∆θ relaxes to either 0 or π depending on the sign of J+ (the solution
flows from the unstable fixed point to the stable one). When J+ vanishes, the situation is marginal and ∆θ remains
constant.
We now solve the system (S207) explicitly. In terms of y = tan(∆θ/2), for which y′(t) = −J+y(t), Eq. (S207b)

describes an exponential relaxation on a time scale 1/J+, namely

tan

(
∆θ(t)

2

)
= tan

(
∆θ(0)

2

)
exp (−J+ t) . (S208)

The evolution of the average angle θ̄(t) is slaved to the evolution of ∆θ, as

θ̄(t) = θ̄(0)− J−
∫ t

0

sin(∆θ(t′))dt′. (S209)

As a consequence, θ̄(t) becomes approximately constant when ∆θ(t) approaches 0 or π. More precisely, we find

θ̄(t) = θ̄(0)− 2
J−
J+

[
arccot

(
y0 e−t J+

)
− arccot (y0)

]
(S210)

where y0 = tan (∆θ(0)/2). This expression exhibits an indeterminate form as J+ → 0, that can however be resolved
and yields a linear behavior in time consistent with the previous discussion,

θ̄(t) = θ̄(0)− 2J−
y0 t

1 + y2
0

= θ̄(0)− J− sin[∆θ(0)]t. (S211)

VI. NON-RECIPROCAL KURAMOTO MODEL

In this section, we consider a non-reciprocal version of the Kuramoto model [61, 62, 78, 79, 81, 234–240] with two
communities (a = A,B). We first give numerical evidence that the Ott-Antonsen type mean-field analysis [61, 62,
78, 79, 81, 234–240] used in the Methods is consistent with direct simulations of the microscopic model Eq. (S212).
We then show analytically that the time-dependent phases are absent when all oscillators have identical natural
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frequencies (pictorially, ∆a = 0) and there is no random noise. Perhaps counter-intuitively, noise/disorder is necessary
for the occurrence of such time-dependent ordered phases (Sec. VIB). We further argue that the interplay between
noise/disorder (that continuously resets the evolution, thereby promoting the chase-and-runaway behavior) and the
many-body interactions (that makes the state “rigid”) is responsible for the emergence of time-dependent ordered
phases. We support this claim by computing the standard deviations of the order parameter (Sec. VIC).
The emergence of the time-dependent phases (such as the chiral phase) as a consequence of the interplay between

disorder/noise and many-body interactions is strikingly similar to the phenomenon of order-by-disorder that often arises
in frustrated many-body systems [102, 340, 341]. There, the presence of thermal noise or disorder stabilizes an ordered
phase even when the ground state is degenerate. This analogy implies a surprising connection between geometric
frustration and the dynamical frustration due to non-reciprocal interactions that may only arise in non-equilibrium
systems.

We consider the Kuramoto model [69, 70, 342, 343]

∂tθ
a
m = ωam +

∑
b=A,B

Nb∑
n=1

Jab sin(θbn − θam) + ηa(t), (S212)

where θam and ωam are the phase and natural frequency of the m-th oscillator in the community a, Na is the number of
a-species oscillators, ηa(t) is a white noise acting on species a, and Jab is the coupling strength between the oscillators
in the communities a and b. The inter-community interaction can be non-reciprocal by allowing JAB 6= JBA. We
assume that all-to-all connections between the oscillators. Unless otherwise specified, we assume that the natural
frequencies of species a follow the Lorentzian distribution,

ga(ω) =
1

π

∆a

(ω − ωa)2 + ∆2
a

. (S213)

(We will also consider the case where all the frequencies are equal.) We are mainly interested in the behavior of the
order parameters that characterizes the synchronization is given by,

za(t) ≡ ra(t)eiφa(t) =
1

Na

Na∑
m=1

eiθ
a
m(t), (S214)

which becomes finite when synchronization occurs. In the following, we restrict our attention to the O(2) symmetric
situation where ωA = ωB = 0 (it is crucial that the detuning ωA − ωB is set to zero, but we can restore a common
oscillation frequency ωA = ωB by a change of reference frame). The SO(2) symmetric case where a detuning can exist
(and in which PT-symmetry is explicitly broken) is discussed in the Methods.

A. Time-dependent phases in the PT-symmetric Kuramoto model

Here, we compare the dynamics of the non-reciprocal Kuramoto model (without noise) with the mean-field dynamical
system

∂tza = (iωa −∆a)za +
1

2

∑
b

jab
[
zb − z2

a zb
]

(S215)

describing the evolution of the complex order parameter za(t) of each community a, and where zb is the complex
conjugate of zb. In the limit where Na →∞, this mean-field reduction should be exact, see Refs. [61, 62, 78, 79, 81, 234–
241].

The results of the comparison are presented in Fig. S4, and show a good agreement between the microscopic
simulations and the mean-field description.

B. Lack of time-dependent phases without disorder or noise

In this section, we show that when all the oscillators have identical natural frequencies and there is no noise, the
dynamics of two communities of oscillators can be mapped to the dynamics of two oscillators. As a consequence,
the time-dependent phases (such as the chiral (travelling wave) and swap (periodic synchronization) phases) of the
PT-symmetric Kuramoto model are absent in this case. This explicitly shows that these time-dependent phases are
driven by noise/disorder.
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Methods Fig. S4. Comparison of direct simulations of the Kuramoto model with mean-field solutions. (A)
Simulation of N = 4000 particles (separated in two species) with Lorentzian frequency distributions with parameters ωA = ωB = 0
∆A = ∆B = 0.05, without noise. We have set jAA = jBB = 1.0 and j− = 1.6, as well as (a) chiral j+ = 0.1 (b) swap j+ = 0.7
(c) chiral+swap j+ = 0.4. The total duration is Tsim = 200 with (a,c) δt = 0.05 and (b) δt = 0.025. (B) Solutions of the
corresponding mean-field dynamical systems. The agreement is very good. The most striking difference between (A) and (B)
is the existence of a slow drift in the swap phase in the direct simulations (not present in the mean-field analysis), that we
attribute to finite-size effects.

We note that this result hinges on the infinite-ranged coupling between the oscillators, and might not hold true with
finite-ranged couplings. For instance, Eq. (S138) in the non-reciprocal Vicsek model suggests the possibility of a chiral
phase at zero disorder η = 0 for |j−| > |j| (although other instabilities not taken into account by this equation might
also take place). Yet, we expect the range of parameters in which the chiral is stable to be enlarged by the noise even
in this case (compare Fig. 2b and Fig. 2c in the main text).

In the absence of noise (ηa = 0), the steady-state with frequency Ω has an order parameter of the form

za(t) = zaeiΩt with za = raeφ
0
a , (S216)

that satisfies the self-consistency condition (derived in the Methods; note that here we start directly from the Kuramoto
model Eq. (S212), not from the Ott-Antonsen mean field description)

za = Rae
iαaFa[za, zb] (S217)

where

Raeiαa =
∑
b

jabzb, (S218a)

Fa[zA, zB ] =

∫ π/2

−π/2
dθ cos θ eiθga(Ra sin θ + Ω) +

∫ π

−π
dθ
∫
|x|>1

dx eiθga(Rax+ Ω)

√
x2 − 1

|x− sin θ| , (S218b)

and jab = JabNb. The first and the second term of Eq. (S218b) are contributions from synchronized and unsynchronized
oscillators, respectively.
In the limit where the width of the distribution of natural frequencies vanish ∆a → 0+ (so all oscillators have the

same natural frequency), we get

Fa =
eiζa

Ra
with ζa = − sin

( Ω

Ra

)
, (S219)
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Methods Fig. S5. Eventual alignment in the absence of noise and/or frequency spread. We compute the standard
deviations of the order parameter in the chiral phase (the norms of ~PA and ~PB , and their relative angle ∆φ) obtained by
simulations of the microscopic model Eq. (S1). We used the same parameters as in Fig. S4a, with the exception of the frequency
distribution: here all the natural frequencies are equal to ωA = ωB = 0. In contrast with what Fig. S4a, we observe here that
the oscillators all eventually align. We have used δt = 0.01.

as long as the synchronization frequency is not very far away from resonance |Ω| < Ra, where there are no contribution
from the second term of Eq. (S218b).

Plugging Eq. (S219) into Eq. (S217) yields

za(t) = rae
iφa(t) = ei(αa+ζa)eiΩt, (S220)

giving perfect synchronization ra = 1 and φa(t) = αa + ζa + Ωt. The perfect synchronization ra = 1 implies that all
the oscillators in the community a satisfy θam(t) = φa(t). It then follows (by substituting this in Eq. (S212)) that the
dynamics (in the long time limit where the amplitude ra(t) has converged to unity) are described by

∂tφA = jAB sin(φB − φA), (S221)
∂tφB = jBA sin(φA − φB) (S222)

which are identical to the dynamical equations Eq. (S205) for the case of two agents! This is because, in the absence of
noise and disorder, all the oscillators perfectly synchronize within each population, so each group of oscillators simply
behaves as a single (macroscopic) oscillator characterized solely by its phase φa.
As we show in Sec. V, the state of the system in these phases eventually approaches a constant (i.e. Ω = 0) with

φA − φB = 0(π) when JAB + JBA > 0(< 0), corresponding to the static, coherent (π-state) phase. This explicitly
shows that the time-dependent phases that cannot occur without noise or disorder.

These conclusions are numerically confirmed in Fig. S5 from direct numerical simulations of Eq. (S212) with ηa = 0
and ωam = 0. As expected from the arguments above, the phases of the two order parameters eventually align, even
though the system would be deep in the chiral phase when a small width in the frequency distribution is introduced
(compare with Fig. S4a where ∆A = ∆B = 0.05). The magnitude of the order parameters |zA| and |zB | approaches
one, which is also consistent with the discussions above. Hence, the existence of the time-dependent (chiral, swap, and
chiral+swap) phases crucially hinges on a finite amount of disorder in the frequencies and/or on the presence of a
random noise. The noise/disorder alone would however simply suppress any order without the rigidity provided by
many-body interactions, see Fig. S6 in Sec. VIC.
The exactly non-reciprocal case JAB = −JBA is a singular point, where a finite synchronization frequency Ω =

±(JAB + JBA) is obtained in the long-time limit. However, even here, there is an important difference from the chiral
phase: the relative phase φA − φB can take an arbitrary value set by the initial condition, while in the chiral phase
they are determined intrinsically. (See the detailed analysis in Sec. II A for the chiral phase in a non-reciprocal Vicsek
model.)

The above analysis clearly shows that noise/disorder is a necessary element for the time-dependent phases to emerge
in this system. This can be intuitively understood as follows: Let JAB > 0 and JBA < 0 with JAB > |JBA|. As
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Methods Fig. S6. Standard deviations of the order parameters in the chiral phase. We compute the standard
deviations of the order parameter in the chiral phase (the norms of ~PA and ~PB , and their relative angle ∆φ) obtained by
simulations of the microscopic model Eq. (S1). Here, there is a slight amount of reciprocal interaction between the two species.
Without noise, the chiral phase does not exist as the populations eventually synchronize or antisynchronize. Noise restores the
chiral behavior, at the price of fluctuations of the order parameter, but they decrease approximately as 1/

√
N with the number

of agents N . The gray lines are equally spaced 1/
√
N curves and are meant as a guide to the eye (not a fit). In order to single

out the influence of the number of agents from other, we set their velocities to zero and their interaction range to be infinite.
We used JAA = JBB = 1, JAB = 1, JBA = −1.1, η = 8× 10−2. The total duration is Tsim/δt = 4000 with δt = 0.5, over which
the standard deviation is computed.

discussed earlier, the predator group A oscillators would stop chasing the prey group B oscillators once they caught
them (i.e. become aligned). (We emphasize that we are not describing a prey-predator model in the usual sense, and
that the chase occurs on the circle in which the phases of the oscillators or angles of the self-propelled particles live,
not in physical space.) However, noise can kick this state out of this optimal state for the A component, restarting the
chase again. Since noise occurs continuously, this (randomized) chase-and-runaway motion will continue even in the
long-time limit. This continuous resetting of the dynamics is reminiscent of the predator-prey population dynamics
discussed in Ref. [344–346].

C. Convergence of the chiral phase

The discussion in the previous subsection confirms that noise/disorder is necessary for the time-dependent phases
to appear. However, there is an important caveat: the noise may simultaneously destroy the order. Here we argue
that the many-body interaction effect plays an equally crucial role in the appearance of the time-dependent phases by
making this phase rigid and stable against noise.

Our claim is supported in Fig. S6 for the chiral phase, where the evolution of the standard deviations2 of the order
parameters with N is obtained from simulations (where N = NA + NB is the total number of agents). When the
number of agents is still far from the thermodynamic limit (N . 10), the standard deviations are of O(1) (or even
larger) meaning that the fluctuations are larger than the order parameter itself, questioning the robustness of the
order. However, as N gets larger, the standard deviations decrease approximately as 1/

√
N , signaling the stabilization

of the chiral phase. A similar scaling is observed in the case of the standard Kuramoto model, see Ref. [70].

2 Note that the amplitude of order parameter contains information
on the standard deviation of the individual oscillators. This is not
what we analyze here. Instead, we discuss the standard deviation

of the order parameter itself, which captures whether the phase
is well-defined or not.
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VII. MANY-BODY STABILIZATION OF THE CHIRAL PHASE AGAINST CHANGES OF THE
CHIRALITY

We have seen in Sec. VIB that noise is crucial in the establishment of the chiral phase. In this paragraph, we show
how noise can also destroy the chiral phase by randomly flipping the chirality over time. We also show that this process
is exponentially suppressed when the number of agents increases.

This situation is very similar to Néel relaxation theory [347, 348] which describes the mean transition time between
the two equilibrium states available to the magnetization of single-domain ferromagnetic nanoparticles.

The Kuramoto and Vicsek models without microscopic noise can be described by an accurate mean-field dynamical
system, that (correctly) predicts the lack of a chiral phase in some circumstances. The microscopic noise leads to the
apparition of the chiral phase by a mechanism of constant resetting of the dynamics. When only a few agents are
present, the dynamics is effectively random and it is not clear that it can be correctly captured by a noisy mean-field
equation of motion. When the number of agents increases, the effect of noise is reduced and we can expect to capture
some aspects of the dynamics (such as the chirality flips) by a noisy dynamical system. As we shall see, the effect
of the noise is exponentially reduced with the number of agents, leading to a deterministic dynamical system in the
hydrodynamic limit.

The chiral phase spontaneously breaks parity: in a deterministic dynamical system (without noise), the resulting
motion can either be clockwise or counterclockwise, depending on the initial conditions. In reality, some noise (thermal
or not) is always present, and the mean-field dynamical system ∂tX = f(X) (e.g. Eq. (1) of the main text) becomes a
stochastic dynamical system ∂tX = f(X) + ξ(t) in which ξ(t) is a random noise. A large enough fluctuation can flip
the system from clockwise to counterclockwise, as represented in Fig. S7. This leads to a statistical restoration of
parity: the system undergoes a succession of clockwise and counterclockwise motions, that have an average lifetime τ
(the time between two successive flips), which has to be compared with the duration of an experiment.

The chirality flips occur when the angle ∆φ between the order parameters ~vA and ~vB changes sign (see Fig. S7, and
e.g. Eqs. (S77)-(S79) in the case of flocking). Away from the phase transitions, we expect every mode to relax way
faster than ∆φ (except the global rotation of both ~vA and ~vB , which can be ignored because of the symmetry). Hence,
we focus only on ∆φ and write a reduced dynamical system for ∆φ, such as

∂t∆φ = h(∆φ) + ξ(t) (S223)

Intuitively, ∆φ essentially evolves in a double-well potential, in which the two minima ±∆φc correspond to the
clockwise and counterclockwise chiral phases. The variable ∆φ(t) fluctuates because of the noise, and can sometimes
overcome the potential barrier to go from one minimum to another. (Despite this intuitive description in terms of a
potential, we do not assume that the system is at equilibrium. We simply start from Eq. (S223).) This situation is
known as the Kramers problem, and the characteristic time τ between two transitions follows an Arrhenius law of the
form [349, 350]

τ = τ0 exp

(
∆U

σ2
ξ

)
(S224)

in which σξ is the standard deviation of the Gaussian noise ξ(t) with zero mean and with 〈ξ(t)ξ(0)〉 = 2σ2
ξδ(t), and

∆U is the effective barrier height defined as

∆U = −
∫ 0

±∆φc

h(ϑ) dϑ. (S225)

Here, we have ignored the additional complexity coming from the fact that ∆φ is an angle, which does not qualitatively
affect the argument.
In section VIC, we have seen from numerical simulations that the fluctuations of the order parameter decrease as

1/
√
N when the number of agents N increases (when N is large). This can be understood as a consequence of the

central limit theorem, according to which the average of N independent and identically distributed variables with
finite variances σ2 converges to a normal distribution with variance σ2/N . Accordingly, we assume that

σξ =
σ0√
N

(S226)

in which σ0 is a constant representing the standard deviation of the noise acting on a single agent (in a thermal system,
we would have σ2

0 ∝ kBT ). The quantities τ0 and ∆U are properties of the mean-field dynamical system, so they do
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Methods Fig. S7. Noise-activated chirality inversion.

not depend on N . Hence, we find that the escape time behaves as

τ ' τ0 exp

(
N

∆U

σ2
0

)
(S227)

when N is large enough. In other terms, the lifetime of the chiral phase increases exponentially with the number of
agents, leading to a stable chiral phase in the hydrodynamic limit.

VIII. EXCEPTIONAL TRANSITION IN A NON-RECIPROCAL O(3)-SYMMETRIC SYSTEM

In this section, we discuss an example of an exceptional transition in a different symmetry group, namely the
group of three-dimensional rotations O(3). This supports the suggestion that exceptional transitions are a generic
phenomenon not limited only to O(2)-equivariant systems (note, however, that O(2) is indeed a subgroup of O(3)).

The dynamical system

∂t~va = αab~vb + βabcd 〈~vb, ~vc〉~vd (S228)

in which ~va(t) is now an element of R3 is O(3)-equivariant (with the standard diagonal action). For concreteness, we
use the same αab and βabcd as in the flocking system, and write

∂t~vA =

[
jAAρA − η −

1

2η
‖jAA~vA + jAB~vB‖2

]
~vA + jABρA~vB (S229)

in which the vectors are now 3D. We define j± = [jAB ± jBA]/2.
Direct simulations of this dynamical system show that it exhibits a time-independent phase in which the O(3)

symmetry is spontaneously broken: ~vA and ~vB acquire a finite value (and point in the same direction). This phase is
destabilized by non-reciprocal interactions. We observe a transition to a chiral phase, in which the order parameters
~vA(t) and ~vB(t) rotate in a common plane (which plane, and in which direction is random). This transition is marked
by an exceptional point at s ≡ σ + iω = 0 in the spectrum of the Jacobian L of the dynamical system, as we show in
Fig. S8.

IX. EXCEPTIONAL TRANSITION IN COUPLED LASERS

In this section, we discuss an example of single-body exceptional transition in laser physics and its destabilisation by
the noise.
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Methods Fig. S8. Exceptional transition in a O(3)-symmetric system. The spectrum of the Jacobian L corresponding
to Eq. (S229) exhibits an exceptional point at the transition between static alignment and chiral motion in which the order
parameters orbit in the same plane, with a fixed angle between them. The two most unstable distinct eigenvalues λi = σi + iωi
of L coalesce at j− ≈ 0.36. In the aligned phase, they correspond to Goldstone modes (with λ = 0 in the whole phase) and
massive (i.e., damped) modes. This value coincides with the transition (marked by a red dashed line) from a constant solution
to a traveling waves state in which both order parameters rotate in a common plane. (Note the presence of other exceptional
points with finite eigenvalues (away from the red dashed line): they are irrelevant in this discussion.) We also show the absolute
value of the angle between ~vA and ~vB . We have set jAA = jBB = 1, ρA = ρB = 1, η = 0.5, and j+ = 0.05.

In exceptional point lasers, the main idea is to start with a linear system (e.g., coupled cavities) exhibiting an
exceptional point, on top of which a lasing transition occurs. When the EP is close to the laser threshold, various
interesting phenomena occur [20, 103–105, 305, 351–354]. Most of the initial literature focuses on linear models [305],
with non-linearities playing essentially no role beyond determining the amplitude of the lasing emission [104]. For
instance, the EP identified in Ref. [104] occurs below the laser threshold (see Fig. 2 in Ref. [104]). The dramatic effects
of EP on the lasing transition are not related with the exceptional transitions analyzed in this paper (this can be
understood as follows: the lasing transition, by which the U(1) phase symmetry is spontaneously broken, should be
compared to the flocking transition, or more generally the disorder-to-(anti)aligned transition).

Further studies analyzed the non-linear behavior of lasers (after threshold), see e.g. Refs [103, 105, 305]. In Ref. [103],
a secondary threshold was predicted and observed, which coincides with what we call exceptional transitions, as we
now discuss.
Ref. [103] considers two coupled ring-shaped laser cavities. The evolution of the (nondimensionalized) complex

amplitudes of light in each cavity A1 and A2 is described by

∂tA1 = −γA1 + g0
A1

1 + |A1|2
+ iA2 (S230a)

∂tA2 = −γA2 − f0
A1

1 + |A2|2
+ iA1 (S230b)

(the quantities called A1 and A2 here are called a1 and a2 in Eq. (3) of Ref. [103]). The linear system obtained by
setting |A1|2 = 0 = |A2|2 in Eq. (S230) (i.e., linerizing around A1 = A2 = 0) has an EP when |f0 + g0| = 2. The lasing
transition occurs when the complex amplitudes Aa acquire a finite value, spontaneously breaking the U(1) symmetry
Aa → eiθAa (see e.g. Ref. [355–358]). From our perspective, the square-root bifurcation of the steady-state frequency
Ωss (called λ in Fig. 5 of Ref. [103]) corresponds to an exceptional transition. This can be seen by computing the
eigenvalues of the Jacobian of the dynamical system in Eq. (S230), see Fig. S9. We point out that this transition is
not associated with an EP of Eq. (S230) linerized around A1 = A2 = 0 (because it is a secondary bifurcation on top of
the symmetry-broken state). (In the current case, it does however coincide with an EP of the nonlinear Hamiltonian,
see the discussion in section III B 2.)

In Ref. [103], an experiment is carried out in which a transition is observed from one to two peaks in the emission
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Methods Fig. S9. Exceptional transition in a coupled laser cavities. The spectrum of the Jacobian L corresponding to
Eq. (S230) exhibits an exceptional point at the transition between two different lasing phases, corresponding to the aligned and
chiral phases. In the aligned lasing phase, the phases φ1 and φ2 of the complex amplitudes A1 and A2 described by Eq. (S230)
are constant, while they increase or decrease at constant rate in the chiral phase (depending on the branch). The transition
between these two phases is marked by a red dashed line. The two most unstable distinct eigenvalues λi = σi + iωi of L coalesce
at g0 ≈ 2.44. In the aligned phase, they correspond to the Goldstone mode of the broken U(1) symmetry (with λ = 0 in the
whole phase) and a massive (i.e., damped) mode. We also show the absolute value of the angle between ~vA and ~vB , which
bifurcates into two branches in the chiral phase. The frequency of the steady-state in the chiral phase also undergoes a pitchfork
bifurcation (not shown here, see Fig. 5 of Ref. [103]). We have set f0 = 2 and γ = 0.1, following Fig. 5 of Ref. [103].

spectrum of the laser (Fig. 8b and c of Ref. [103]). The two resonances in the equivalent of the chiral phase is attributed
to the noise, that excites the two clockwise and counterclockwise modes (in blue and red in Fig. 5 of Ref. [103]).
Because of the noise, the clockwise/counterclockwise symmetry is restored on average. We interpret this in terms
of noise-assisted chirality flips in Sec. VII, in which we show that the lifetime of the chiral phase (without flips) can
be exponentially enhanced by many-body effects. In principle, this could also be realized in non-Hermitian versions
of photonic networks containing many coupled lasers [31, 70, 75, 106–110]. A similar phenomenon can also occur in
quantum polariton lasers [58].

X. THE CASE OF MULTIPLE POPULATIONS

In this section, we discuss the case of systems composed of more than two species interacting non-reciprocally. Most
of the time, we expect their properties to reduce to the case of two species. This is because the phase transitions
(bifurcations) involve only the one or two most unstable modes. For instance, the chiral phase occurs when a damped
transverse mode coalesce with a Goldstone mode (see Sec. III B 2), while the swap phase emerges when the damping
rate of a longitudinal mode vanishes. These phase transitions should occur even when more than two populations are
involved, provided that the most unstable modes correspond to the ones described above, while the other modes are
more damped and effectively irrelevant.

That being said, richer behaviors may possibly arise when collective modes unique to multi-species systems become
unstable. For example, we expect an additional phase transition within the chiral phase to arise when the third
transverse mode (which do not exist in the two-species system) becomes unstable. (We order the modes by decreasing
non-positive growth rate.) There, the three transverse modes are expected to affect each other non-reciprocally, which
may potentially give rise to a more complex time-dependent phase in the order parameter dynamics, that might include
chaotic behavior. Another possibility is the emergence of higher-order exceptional points (see e.g. Ref. [141]), where
more than two eigenmodes coalesce simultaneously (corresponding to a Jordan block of size n > 2), which may arise at
higher codimension. From the point of view of bifurcation theory, this would be a special case of a Takens-Bogdanov
type bifurcation with higher codimension as described in Ref. [359]. In the vicinity of a n-th order exceptional
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point (where n modes coalesce), the eigenvalues typically behave as s ∼ iei2πm/n∆1/n (m = 0, 1, . . . , n− 1), where ∆
characterizes the distance from the exceptional point. As a result, we expect a higher-order exceptional point enforced
pattern formation to occur in spatially extended many-body systems, even in systems without flow (where there is no
convective terms). This is because the dispersion relation is expected to take the form s(k) ∼ iei2πm/nk2/n at the n-th
order exceptional point (note that the finite k contribution ∆ ∼ k2 characterizes the distance from the exceptional
point). Hence, a dynamical instability with the growth rate σ(k) = Re s(k) > 0 should emerge at finite momentum for
n ≥ 3. This is in contrast to the (n = 2) exceptional point enforced pattern formation discussed in Sec. III B 5, where
the convective term of the flocking model plays an essential role. Finally, the higher-order exceptional point (with a
higher codimension) could give rise to different types of phase transitions with more complicated hysteretic behavior.

XI. PATTERN FORMATION IN THE INCOMPRESSIBLE REGIME

In this section, we discuss the influence of the incompressibility constraint on pattern formation. In the main text,
we have entirely ignored the incompressibility constraint div(~va) = 0 that would arise from Eq. (S42) in a system where
mass is conserved, while still assuming constant densities ρa ≈ const. in order to focus on the single hydrodynamic
equation (S62).

We now show that the exceptional point enforced pattern formation (discussed in Sec. III B 5) still occurs when the
incompressibility constraint div(~va) = 0 is enforced.
To do so, we project the hydrodynamic equation onto the subspace of divergence-free fields. At the level of the

linear stability analysis, this is done by applying the Leray projector [360, 361] on the Jacobian L(k).
The situation where the fluid is really incompressible can be analyzed by projecting the hydrodynamic equation

onto the subspace of divergence-free fields. At the level of the linear stability analysis, we use the Leray projector
P(k) = Id− |k̂〉〈k̂| (where k̂ = ~k/‖~k‖), see Refs. [360, 361], and consider the projected linear operator

Lincomp.(k) = P(k)L(k)P(k) (S231)

restricted to the range of the orthogonal projection. We find that the exceptional-point-driven instability predicted
in the main text is still present in the linear stability analysis of the incompressible fluid, while some of the other
instabilities can disappear (see Fig. S11 and SI Movie 5). We have also performed simulations of the full hydrodynamic
equation (S62) in the incompressible case (as in the main text, the simulations are performed under periodic boundary
conditions using the open-source pseudospectral solver Dedalus [190]). To do so, two pressure fields Πa are added as
Lagrange multipliers of the incompressibility constraints. Accordingly, we added a term −∇Πa to the RHS of the
equation of motion for ~va. The simulations confirm the existence of pattern formation beyond the linear stability
analysis, but the patterns are different, see Fig. S10).

We compare both situations in Figs. S10 and S11, that respectively show the results of simulations of the non-linear
hydrodynamic theory, and the corresponding linear stability analysis of the uniform flow.
In both cases, it is unclear whether the pattern will stabilize at long times. Interestingly, we find indications that

stable or metastable lattices of vortices (somewhat similar to Abrikosov lattices) can occur in some situations. These
questions will be analyzed elsewhere.
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