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Magnetic control of tokamak plasmas 
through deep reinforcement learning

Jonas Degrave1,3, Federico Felici2,3 ✉, Jonas Buchli1,3 ✉, Michael Neunert1,3, Brendan  
Tracey1,3 ✉, Francesco Carpanese1,2,3, Timo Ewalds1,3, Roland Hafner1,3, Abbas Abdolmaleki1,  
Diego de las Casas1, Craig Donner1, Leslie Fritz1, Cristian Galperti2, Andrea Huber1, 
James Keeling1, Maria Tsimpoukelli1, Jackie Kay1, Antoine Merle2, Jean-Marc Moret2, 
Seb Noury1, Federico Pesamosca2, David Pfau1, Olivier Sauter2, Cristian Sommariva2, 
Stefano Coda2, Basil Duval2, Ambrogio Fasoli2, Pushmeet Kohli1, Koray Kavukcuoglu1, 
Demis Hassabis1 & Martin Riedmiller1,3

Nuclear fusion using magnetic confinement, in particular in the tokamak 
configuration, is a promising path towards sustainable energy. A core challenge is to 
shape and maintain a high-temperature plasma within the tokamak vessel. This 
requires high-dimensional, high-frequency, closed-loop control using magnetic 
actuator coils, further complicated by the diverse requirements across a wide range of 
plasma configurations. In this work, we introduce a previously undescribed 
architecture for tokamak magnetic controller design that autonomously learns to 
command the full set of control coils. This architecture meets control objectives 
specified at a high level, at the same time satisfying physical and operational 
constraints. This approach has unprecedented flexibility and generality in problem 
specification and yields a notable reduction in design effort to produce new plasma 
configurations. We successfully produce and control a diverse set of plasma 
configurations on the Tokamak à Configuration Variable1,2, including elongated, 
conventional shapes, as well as advanced configurations, such as negative 
triangularity and ‘snowflake’ configurations. Our approach achieves accurate tracking 
of the location, current and shape for these configurations. We also demonstrate 
sustained ‘droplets’ on TCV, in which two separate plasmas are maintained 
simultaneously within the vessel. This represents a notable advance for tokamak 
feedback control, showing the potential of reinforcement learning to accelerate 
research in the fusion domain, and is one of the most challenging real-world systems 
to which reinforcement learning has been applied.

Tokamaks are torus-shaped devices for nuclear fusion research and are 
a leading candidate for the generation of sustainable electric power.  
A main direction of research is to study the effects of shaping the  
distribution of the plasma into different configurations3–5 to optimize 
the stability, confinement and energy exhaust, and, in particular, to 
inform the first burning-plasma experiment, ITER. Confining each 
configuration within the tokamak requires designing a feedback con-
troller that can manipulate the magnetic field6 through precise control 
of several coils that are magnetically coupled to the plasma to achieve 
the desired plasma current, position and shape, a problem known as 
the tokamak magnetic control problem.

The conventional approach to this time-varying, non-linear, multi-
variate control problem is to first solve an inverse problem to precom-
pute a set of feedforward coil currents and voltages7,8. Then, a set of 
independent, single-input single-output PID controllers is designed to 
stabilize the plasma vertical position and control the radial position and 

plasma current, all of which must be designed to not mutually interfere6. 
Most control architectures are further augmented by an outer control 
loop for the plasma shape, which involves implementing a real-time 
estimate of the plasma equilibrium9,10 to modulate the feedforward coil 
currents8. The controllers are designed on the basis of linearized model 
dynamics, and gain scheduling is required to track time-varying control 
targets. Although these controllers are usually effective, they require 
substantial engineering effort, design effort and expertise whenever 
the target plasma configuration is changed, together with complex, 
real-time calculations for equilibrium estimation.

A radically new approach to controller design is made possible by 
using reinforcement learning (RL) to generate non-linear feedback 
controllers. The RL approach, already used successfully in several chal-
lenging applications in other domains11–13, enables intuitive setting 
of performance objectives, shifting the focus towards what should 
be achieved, rather than how. Furthermore, RL greatly simplifies 
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the control system. A single computationally inexpensive controller 
replaces the nested control architecture, and an internalized state 
reconstruction removes the requirement for independent equilib-
rium reconstruction. These combined benefits reduce the control-
ler development cycle and accelerate the study of alternative plasma 
configurations. Indeed, artificial intelligence has recently been 
identified as a ‘Priority Research Opportunity’ for fusion control14, 
building on demonstrated successes in reconstructing plasma-shape 
parameters15,16, accelerating simulations using surrogate models17,18 
and detecting impending plasma disruptions19. RL has not, however, 
been used for magnetic controller design, which is challenging due to 
high-dimensional measurements and actuation, long time horizons, 
rapid instability growth rates and the need to infer the plasma shape 
through indirect measurements.

In this work, we present an RL-designed magnetic controller and 
experimentally verify its performance on a tokamak. The control poli-
cies are learned through interaction with a tokamak simulator and are 
shown to be directly capable of tokamak magnetic control on hardware, 
successfully bridging the ‘sim-to-real’ gap. This enables a fundamen-
tal shift from engineering-driven control of a pre-designed state to 
artificial-intelligence-driven optimization of objectives specified by 
an operator. We demonstrate the effectiveness of our controllers in 
experiments carried out on the Tokamak à Configuration Variable 
(TCV)1,2, in which we demonstrate control of a variety of plasma shapes, 
including elongated ones, such as those foreseen in ITER, as well as 
advanced configurations, such as negative triangularity and ‘snowflake’ 
plasmas. Additionally, we demonstrate a sustained configuration in 
which two separate plasma ‘droplets’ are simultaneously maintained 

within the vessel. Tokamak magnetic control is one of the most com-
plex real-world systems to which RL has been applied. This is a promis-
ing new direction for plasma controller design, with the potential to 
accelerate fusion science, explore new configurations and aid in future 
tokamak development.

Learning control and training architecture
Our architecture, depicted in Fig. 1, is a flexible approach for design-
ing tokamak magnetic confinement controllers. The approach has 
three main phases. First, a designer specifies objectives for the experi-
ment, potentially accompanied by time-varying control targets. Sec-
ond, a deep RL algorithm interacts with a tokamak simulator to find 
a near-optimal control policy to meet the specified goals. Third, the 
control policy, represented as a neural network, is run directly (‘zero 
shot’) on tokamak hardware in real time.

In the first phase, the experimental goal is specified by a set of objec-
tives that can contain a wide variety of desired properties (Extended 
Data Table 4). These properties range from basic stabilization of posi-
tion and plasma current to sophisticated combinations of several 
time-varying targets, including a precise shape outline with specified 
elongation, triangularity and X-point location. These objectives are 
then combined into a ‘reward function’ that assigns a scalar quality 
measure to the state at each time step. This function also penalizes 
the control policy for reaching undesired terminal states, as discussed 
below. Crucially, a well-designed reward function will be minimally 
specified, giving the learning algorithm maximum flexibility to attain 
the desired outcome.
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Fig. 1 | Representation of the components of our controller design 
architecture. a, Depiction of the learning loop. The controller sends voltage 
commands on the basis of the current plasma state and control targets. These 
data are sent to the replay buffer, which feeds data to the learner to update the 
policy. b, Our environment interaction loop, consisting of a power supply 
model, sensing model, environment physical parameter variation and reward 
computation. c, Our control policy is an MLP with three hidden layers that takes 

measurements and control targets and outputs voltage commands. d–f, The 
interaction of TCV and the real-time-deployed control system implemented 
using either a conventional controller composed of many subcomponents (f) 
or our architecture using a single deep neural network to control all 19 coils 
directly (e). g, A depiction of TCV and the 19 actuated coils. The vessel is  
1.5 m high, with minor radius 0.88 m and vessel half-width 0.26 m. h, A cross 
section of the vessel and plasma, with the important aspects labelled.
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In the second phase, a high-performance RL algorithm collects data 
and finds a control policy through interaction with an environment, as 
depicted in Fig. 1a, b. We use a simulator that has enough physical fidel-
ity to describe the evolution of plasma shape and current, while remain-
ing sufficiently computationally cheap for learning. Specifically, we 
model the dynamics governing the evolution of the plasma state under 
the influence of the poloidal field coil voltages using a free-boundary 
plasma-evolution model20. In this model, the currents in the coils and 
passive conductors evolve under the influence of externally applied 
voltages from the power supplies, as well as induced voltages from 
time-varying currents in other conductors and in the plasma itself. The 
plasma is, in turn, modelled by the Grad–Shafranov equation21, which 
results from the balance between the Lorentz force and the pressure 
gradient inside the plasma on the timescales of interest. The evolution 
of total plasma current Ip is modelled using a lumped-circuit equa-
tion. This set of equations is solved numerically by the FGE software 
package22.

The RL algorithm uses the collected simulator data to find a 
near-optimal policy with respect to the specified reward function. 
The data rate of our simulator is markedly slower than that of a typical 
RL environment due to the computational requirements of evolving 
the plasma state. We overcome the paucity of data by optimizing the 
policy using maximum a posteriori policy optimization (MPO)23, an 
actor-critic algorithm. MPO supports data collection across distributed 
parallel streams and learns in a data-efficient way. We additionally 
exploit the asymmetry inherent to the actor-critic design of MPO to 
overcome the constraints of magnetic control. In actor-critic algo-
rithms, the ‘critic’ learns the discounted expected future reward for vari-
ous actions using the available data and the ‘actor’ uses the predictions 
of the critic to set the control policy. The representation of the control 
policy of the actor is restricted, as it must run on TCV with real-time 
guarantees, whereas the critic is unrestricted, as it is only used during 
training. We therefore use a fast, four-layer feedforward neural network 

in the actor (Fig. 1c) and a much larger recurrent neural network in the 
critic. This asymmetry enables the critic to infer the underlying state 
from measurements, deal with complex state-transition dynamics over 
different timescales and assess the influence of system measurement 
and action delays. The information from the coupled dynamics is then 
distilled into a real-time-capable controller.

In the third phase, the control policy is bundled with the associated 
experiment control targets into an executable using a compiler tailored 
towards real-time control at 10 kHz that minimizes dependencies and 
eliminates unnecessary computations. This executable is loaded by the 
TCV control framework24 (Fig. 1d). Each experiment begins with stand-
ard plasma-formation procedures, in which a traditional controller 
maintains the location of the plasma and total current. At a prespecified 
time, termed the ‘handover’, control is switched to our control policy, 
which then actuates the 19 TCV control coils to transform the plasma 
shape and current to the desired targets. Experiments are executed 
without further tuning of the control-policy network weights after 
training, in other words, there is ‘zero-shot’ transfer from simulation 
to hardware.

The control policies reliably transfer onto TCV through several key 
attributes of the learning procedure, depicted in Fig. 1b. We identi-
fied an actuator and sensor model that incorporates properties 
affecting control stability, such as delays, measurement noise and 
control-voltage offsets. We applied targeted parameter variation during 
training across an appropriate range for the plasma pressure, current 
density profile and plasma resistivity through analysis of experiment 
data, to account for varying, uncontrolled experimental conditions. 
This provides robustness while ensuring performance. Although the 
simulator is generally accurate, there are known regions where the 
dynamics are known to be poorly represented. We built ‘learned-region 
avoidance’ into the training loop to avoid these regimes through the 
use of rewards and termination conditions (Extended Data Table 5), 
which halt the simulation when specified conditions are encountered. 
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Fig. 2 | Fundamental capability demonstration. Demonstration of plasma 
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right, picture inside the vessel at 0.6 s showing the diverted plasma with its 
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Termination conditions are also used to enforce operational limits.  
The control policies learn to stay within the specified limits, for example,  
on maximum coil current or the edge safety factor25.

The controllers designed by our architecture are greatly structurally 
simplified compared with conventional designs, as depicted in Fig. 1e, f.  
Instead of a series of controllers, RL-driven design creates a single net-
work controller.

Fundamental capability demonstration
We demonstrate the capability of our architecture on control targets 
in real-world experiments on TCV. We first show accurate control of 
the fundamental qualities of plasma equilibria. We then control a 
wide range of equilibria with complex, time-varying objectives and 
physically relevant plasma configurations. Finally, we demonstrate 
control of a configuration with several plasma ‘droplets’ in the vessel 
simultaneously.

We first test the fundamental tasks of plasma control through a series 
of changes representative of those required for a full plasma discharge. 
First, from the handover at 0.0872 s, take over and stabilize Ip at −110 kA. 
Next, ramp the plasma current to −150 kA and then elongate the plasma 
from 1.24 to 1.44, thereby increasing the vertical instability growth 
rate to 150 Hz. Next, demonstrate position control through shifting 
the vertical plasma position by 10 cm and then divert the plasma with 
control of the active X-point location (see Fig. 1h). Finally, return the 
plasma to the handover condition and ramp down Ip to −70 kA to shut 
down safely. Although accuracy requirements will generally depend 

on the exact experiment, a reasonable aim is to control Ip to within 5 kA 
(3% of the final 150-kA target) and the shape to within 2 cm (8% of the 
vessel radial half width of 26 cm). Note that the equilibrium reconstruc-
tion used matches a visually reconstructed boundary with a typical 
accuracy26 of 1 cm.

The performance of the control policy is depicted in Fig. 2. All tasks  
are performed successfully, with a tracking accuracy below the 
desired thresholds. In the initial limited phase (0.1 s to 0.45 s), the Ip 
root-mean-square error (RMSE) is 0.71 kA (0.59% of the target) and 
the shape RMSE is 0.78 cm (3% of the vessel half width). In the diverted 
phase (0.55 s to 0.8 s), the Ip and shape RMSE are 0.28 kA and 0.53 cm,  
respectively (0.2% and 2.1%), yielding RMSE across the full window  
(0.1 s to 1.0 s) of 0.62 kA and 0.75 cm (0.47% and 2.9%). This demon-
strates that our RL architecture is capable of accurate plasma control 
across all relevant phases of a discharge experiment.

Control demonstrations
We next demonstrate the capability of our architecture to produce 
complex configurations for scientific study. Each demonstration has 
its own time-varying targets but, otherwise, uses the same architectural 
setup to generate a control policy, including the training and environ-
ment configuration, with only minor adjustments to the reward func-
tion (shown in Extended Data Table 3). Recall that, in each experiment, 
the plasma has low elongation before the handover, and the control 
policy actively modulates the plasma to the configuration of interest. 
Selected time slices from these experiments are shown in Fig. 3, with 
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TCV experiments. Target shape points with 2 cm radius (blue circles), 
compared with the equilibrium reconstruction plasma boundary (black 
continuous line). In all figures, the first time slice shows the handover 
condition. a, Elongation of 1.9 with vertical instability growth rate of 1.4 kHz.  
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found in Extended Data Fig. 2.



418  |  Nature  |  Vol 602  |  17 February 2022

Article

further detail in Extended Data Fig. 1 and error metrics in Extended 
Data Table 1.

Elongating plasmas improves their thermal confinement proper-
ties, but their increased vertical-instability growth rate complicates 
control. We targeted a high elongation of 1.9 with a considerable growth 
rate. The controller was able to produce and stabilize this elongation, 
as shown in Fig. 3a. We obtained a good match between the targeted 
and the desired elongation, with an RMSE of 0.018. We also controlled 
shape and plasma current to their target values, with an Ip RMSE of 
1.2 kA and shape RMSE of 1.6 cm. This demonstrates the capability to 
stabilize a high vertical-instability growth rate of more than 1.4 kHz, 
despite acting at only 10 kHz.

We next tested applying auxiliary heating through neutral beam 
injection to enter ‘H-mode’, which is desirable for having higher 
energy confinement time, but causes notable changes to the plasma 
properties. We were provided a time-varying trajectory on the basis of 
the proposed ITER configuration that uses such auxiliary heating. As 
the normalized pressure βp increases to 1.12, seen in Fig. 3b, the plasma 
position and current were maintained accurately, with an Ip RMSE of 
2.6 kA and shape RMSE of 1.4 cm. This shows that our controller can 
robustly adapt to a changing plasma state and can work with heated 
H-mode plasma under externally specified configurations.

Negative triangularity plasmas are attractive as they have favourable 
confinement properties without the strong edge pressure gradient 
typical of H-modes. We targeted a diverted configuration with trian-
gularity of −0.8, and with X-points at both corners. We successfully 
achieved this configuration, shown in Fig. 3c. The triangularity was 
accurately matched, with an RMSE of 0.070, as were the plasma current 
and shape, with RMSE values of 3.5 kA and 1.3 cm, respectively. This 
demonstrates the ability to rapidly and directly create a configuration 
under active study27.

Snowflake configurations are researched28,29, as they distribute the 
particle exhaust across several strike points. A crucial parameter is 
the distance between the two X-points that form the divertor legs.  
We demonstrated our ability to control this distance, shown in Fig. 3d. 
The control policy first established a snowflake configuration with 
X-points separated by 34 cm. It then manipulated the far X-point to 
approach the limiting X-point, ending with a separation of 6.6 cm. 
The time-varying X-point targets were tracked with a combined 
RMSE of 3.7 cm. The plasma current and shape were maintained to 
high accuracy during this transition, with RMSE values of 0.50 kA and 

0.65 cm, respectively. This demonstrates accurate control of a complex 
time-varying target with several coupled objectives.

In aggregate, these experiments demonstrate the ease with which 
new configurations can be explored, prove the ability of our archi-
tecture to operate in high-performance discharges and confirm the 
breadth of its capability. In the Methods section, we further investigate 
the control-policy behaviours.

New multi-domain plasma demonstration
Lastly, we demonstrate the power of our architecture to explore new 
plasma configurations. We test control of ‘droplets’, a configuration 
in which two separate plasmas exist within the vessel simultaneously. 
It is probably possible that existing approaches could stabilize such 
droplets. Nonetheless, great investment would be required to develop 
feedforward coil-current programming, implement real-time estima-
tors, tune controller gains and successfully take control after plasma 
creation. By contrast, with our approach, we simply adjust the simulated 
handover state to account for the different handover condition from 
single-axis plasmas and define a reward function to keep the position of 
each droplet component steady while ramping up the domain plasma 
currents. This loose specification gives the architecture the freedom to 
choose how to best adapt the droplet shapes as Ip increases to maintain 
stability. The architecture was able to successfully stabilize droplets 
over the entire 200 ms control window and ramp the current within each 
domain, as shown in Fig. 4. This highlights the advantage of a general, 
learning-based control architecture to adapt control for previously 
unknown configurations.

Discussion
We present a new paradigm for plasma magnetic confinement on 
tokamaks. Our control design fulfils many of the hopes of the com-
munity for a machine-learning-based control approach14, including 
high performance, robustness to uncertain operating conditions, 
intuitive target specification and unprecedented versatility. This 
achievement required overcoming gaps in capability and infra-
structure through scientific and engineering advances: an accurate, 
numerically robust simulator; an informed trade-off between simu-
lation accuracy and computational complexity; a sensor and actua-
tor model tuned to specific hardware control; realistic variation 
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of operating conditions during training; a highly data-efficient RL 
algorithm that scales to high-dimensional problems; an asymmetric 
learning setup with an expressive critic but fast-to-evaluate policy; 
 a process for compiling neural networks into real-time-capable code 
and deployment on a tokamak digital control system. This resulted 
in successful hardware experiments that demonstrate fundamental 
capability alongside advanced shape control without requiring 
fine-tuning on the plant. It additionally shows that a free-boundary 
equilibrium evolution model has sufficient fidelity to develop trans-
ferable controllers, offering a justification for using this approach 
to test control of future devices.

Efforts could further develop our architecture to quantify its robust-
ness through analysis of the non-linear dynamics30–32 and reduce train-
ing time through increased reuse of data and multi-fidelity learning33. 
Additionally, the set of control targets can be expanded, for example, 
to reduce target heat loads through flux expansion5, aided by the use of 
privileged information in the critic to avoid requiring real-time observers.  
The architecture can be coupled to a more capable simulator, for example,  
incorporating plasma pressure and current-density-evolution physics, 
to optimize the global plasma performance.

Our learning framework has the potential to shape future fusion 
research and tokamak development. Underspecified objectives can find 
configurations that maximize a desired performance objective or even 
maximize power production. Our architecture can be rapidly deployed 
on a new tokamak without the need to design and commission the 
complex system of controllers deployed today, and evaluate proposed 
designs before they are constructed. More broadly, our approach may 
enable the discovery of new reactor designs by jointly optimizing the 
plasma shape, sensing, actuation, wall design, heat load and magnetic 
controller to maximize overall performance.
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Methods

Tokamak à Configuration Variable
The TCV 1,34, shown in Fig. 1, is a research tokamak at the Swiss Plasma 
Center, with a major radius of 0.88 m and vessel height and width of 
1.50 m and 0.512 m, respectively. TCV has a flexible set of magnetic coils 
that enable the creation of a wide range of plasma configurations. Elec-
tron cyclotron resonance heating and neutral beam injection35 systems 
provide external heating and current drive, as used in the experiment in 
Fig. 3b. TCV is equipped with several real-time sensors and our control 
policies use a subset of these sensors. In particular, we use 34 of the wire 
loops that measure magnetic flux, 38 probes that measure the local 
magnetic field and 19 measurements of the current in active control 
coils (augmented with an explicit measure of the difference in current 
between the ohmic coils). In addition to the magnetic sensors, TCV is 
equipped with other sensors that are not available in real time, such 
as the cameras shown in Figs. 2 and 4. Our control policy consumes  
the magnetic and current sensors of TCV at a 10-kHz control rate.  
The control policy produces a reference voltage command at each time 
step for the active control coils.

Tokamak simulator
The coupled dynamics of the plasma and external active and passive 
conductors are modelled with a free-boundary simulator, FGE22.  
The conductors are described by a circuit model in which the resistivity  
is considered known and constant, and the mutual inductance is  
computed analytically.

The plasma is assumed to be in a state of toroidally symmetric equilib-
rium force balance (Grad–Shafranov equation21), in which the Lorentz 
force J × B generated from the interaction of the plasma current density, 
J, and the magnetic field, B, balances the plasma pressure gradient 
∇p. The transport of radial pressure and current density caused by 
heat and current drive sources is not modelled. Instead, the plasma 
radial profiles are modelled as polynomials whose coefficients are 
constrained by the plasma current Ip plus two free parameters: the 
normalized plasma pressure βp, which is the ratio of kinetic pressure 
to the magnetic pressure, and the safety factor at the plasma axis qA, 
which controls the current density peakedness.

The evolution of the total plasma current Ip, is described as a 
lumped-parameter equation on the basis of the generalized Ohm’s 
law for the magnetohydrodynamics model. For this model, the total 
plasma resistance, Rp, and the total plasma self-inductance, Lp, are 
free parameters. Finally, FGE produces the synthetic magnetic meas-
urements that simulate the TCV sensors, which are used to learn the 
control policies, as discussed below.

Specific settings for the droplets
In the experiment with the droplets (Fig. 4), the plasma is considered 
pressureless, which simplifies the numerical solution of the force bal-
ance equation. Moreover, the G coil was disabled in simulation, as it 
was placed in open circuit during experiments (the fast radial fields it 
generates were deemed unnecessary for these plasmas). This experi-
ment used an earlier model for the Ip evolution designed for 
stationary-state plasma operation. This model has one free parameter, 
the radial profile of the neoclassical parallel plasma conductivity σ  
(ref. 22). This model was replaced with the one described above for the 
single-domain plasma experiment, as it better describes the evolution 
of Ip, especially when it is changing rapidly.

Plasma parameter variation
We vary the plasma-evolution parameters introduced above during 
training to provide robust performance across the true but unknown 
condition of the plasma. The amount of variation is set within ranges 
identified from experimental data as shown in Extended Data Table 2. 
In the single-plasma experiments, we vary the plasma resistivity Rp, as 

well as the profile parameters βp and qA. Lp is not varied, as it can be 
computed from a simple relation36. These are all independently sampled 
from a parameter-specific log-uniform distribution. In the experiment 
with droplets, we vary the initial ohmic coil current values according 
to a uniform distribution. We set two different values for the droplet 
σ  components. We sample the log of the difference between them 
from a scaled beta distribution and the overall shift in the combined 
geometric mean from a log-uniform distribution, and then solve for 
the individual σ . Parameter values are sampled at the beginning of 
each episode and kept constant for the duration of the simulation.  
The sampled value is deliberately not exposed to the learning architec-
ture because it is not directly measureable. Therefore, the agent is forced 
to learn a controller that can robustly handle all combinations of these 
parameters. This informed and targeted domain-randomization tech-
nique proved to be effective to find policies that track time targets for 
shape and Ip while being robust to the injection of external heating and 
the edge-localized mode perturbations during high confinement mode.

Sensing and actuation
The raw sensor data on TCV go through a low-pass filtering and 
signal-conditioning stage37. We model this stage in simulation by a 
time delay and a Gaussian noise model, identified from data during a 
stationary-plasma operation phase (Extended Data Table 2). This sen-
sor model (shown in Fig. 1b) captures the relevant dynamics affecting 
control stability. The power-supply dynamics (also shown in Fig. 1b) 
are modelled with a fixed bias and a fixed time delay identified from 
data, as well as a further offset varied randomly at the beginning of 
each episode. The values for these modifications can be found in 
Extended Data Table 2. This is a conservative approximation of the true 
thyristor-based power supplies37, but captures the essential dynamics 
for control purposes.

The control policy can learn to be robust against very non-linear 
hardware-specific phenomena. For example, when the current in the 
active coils changes polarity and the controller requests a too low volt-
age, the power supplies can get ‘stuck’, erroneously providing zero 
output current over an extended period of time (Extended Data Fig. 4b). 
This phenomenon might affect both the controller stability and the pre-
cision. To demonstrate the capability of our controller to deal with this 
issue, we applied ‘learned-region avoidance’ in the advanced control  
demonstration to indicate that currents near zero are undesirable.  
As a result, the control policy effectively learns to increase the voltages 
when changing the current polarity to avoid stuck coils on the plant 
(Extended Data Fig. 4c).

Neural-network architecture
MPO23 uses two neural-network architectures to design and optimize 
the policy: the critic network and the policy network. Both networks 
are adapted during training, but only the policy network is deployed 
on the plant.

For the critic network, the inputs are combined with the hyperbolic 
tangent function value of the last commanded action and fed to a long 
short-term memory (LSTM) layer 256 units wide. The outputs of the 
LSTM layer are then concatenated with its inputs and fed to a multilayer 
perceptron (MLP), that is, a stack of two densely connected hidden lay-
ers with 256 latents each. Each of the MLP layers uses an exponential 
linear unit non-linearity. Finally, we use a last linear layer to output 
the Q-value.

The policy network is restricted to a network architecture that can 
be evaluated on the target hardware within 50 μs to obtain the neces-
sary 10-kHz control rate. Additionally, the network needs to perform 
this inference to sufficient numerical accuracy on the control system, 
which uses a different processor architecture from the hardware used 
for training. Therefore, the policy network is built as follows. We feed 
the inputs to a stack of a linear layer with 256 outputs. The outputs of 
this linear layer are normalized with a LayerNorm38 and bounded using 



a hyperbolic tangent function. After this, the output is fed through a 
three-layer MLP using exponential linear unit non-linearity and 256 
latents each. The output of this stack is fed through a final linear layer 
that outputs two parameters per action: one mean of the Gaussian 
distribution and one standard deviation of the Gaussian distribution. 
The standard deviation uses a softplus non-linearity to make sure it 
is always positive. The parameters of this Gaussian distribution over 
actions are the output of the neural network. Note that, for assessing 
the policy in simulation and executing on TCV, only the mean of the 
distribution is used. With this small neural network, we can perform 
inference within the L2 cache of the CPU on the control system.

These neural networks are initialized with the weights of a truncated 
normal distribution scaled with the number of inputs and a bias of zero. 
The exception is the last layer of the policy network, which is initialized 
the same way but scaled with 0.0001 (ref. 39). These networks are trained 
with an unroll length of 64 steps. For training, we used a batch size of 
256 and a discount of 0.99.

Extended Data Figure 5a shows the importance of an asymmetric 
design between the actor network and the critic network. We compare 
the standard setup with a symmetric setup in which the critic is also 
limited by the control rate on the plant. In the standard setup, the critic 
network is much larger than the policy network (718,337 parameters 
compared with 266,280 parameters) and also uses a recurrent LSTM. 
In the symmetric setup, the critic is also an MLP that is about the same 
size as the policy (266,497 parameters). We see that the symmetric 
design notably underperforms the asymmetric design in learning 
an effective policy. We additionally find that the main benefit comes 
from the recurrent design in the critic to handle the non-Markovian  
properties of this environment. When we scale up the critic keeping the 
feedforward structure of the policy, we find that widening its width to  
512 units (926,209 parameters) or even 1,024 units (3,425,281 parameters)  
still does not match the performance of the setup with the smaller but 
recurrent critic.

Learning loop
Our approach uses an episodic training approach in which data are 
collected by running the simulator with a control policy in the loop, 
as shown in Fig. 1a. The data from these interactions are collected in a 
finite-capacity first-in-first-out buffer40. The interaction trajectories 
are sampled at random from the buffer by a ‘learner’, which executes 
the MPO algorithm to update the control-policy parameters. During 
training, the executed control policy is stochastic to explore success-
ful control options. This stochastic policy is represented by a diagonal 
Gaussian distribution over coil actions.

Each episode corresponds to a single simulation run that terminates 
either when a termination condition is hit, which we will discuss below, 
or when a fixed simulation time has passed in the episode. This fixed time 
was 0.2 s for the droplets, 0.5 s in the case of Extended Data Fig. 2a, c,  
and 1 s otherwise. Each episode is initialized from an equilibrium state 
at the preprogrammed handover time, which was reconstructed from 
a previous experiment on TCV.

Our training loop emulates the control frequency of 10 kHz. At each 
step, the policy is evaluated using the observation from the previous 
step. The resulting action is then applied to the simulator, which is then 
stepped. Observations and rewards are also collected at the 10-kHz 
control frequency, resulting in training data collected at 0.1 ms inter-
vals. For our simulation, we chose a time step of 50 kHz. Hence, for each 
evaluation of the policy, five simulation time steps are computed. The 
action, that is, the desired coil voltage, is kept constant during these 
substeps. Data from intermediate steps are only used for checking 
termination conditions and are discarded afterwards. This enables 
choosing the control rate and simulator time step independently and, 
hence, setting the latter on the basis of numerical considerations.

We use a distributed architecture41 with a single learner instance on a 
tensor processing unit and several actors each running an independent 

instance of the simulator. We used 5,000 actors in parallel for our 
experiments, generally resulting in training times of 1-3 days, although 
sometimes longer for complex target specifications. We ran a sweep 
on the number of actors required to stabilize a basic plasma and the 
results can be seen in Extended Data Fig. 5. We see that a similar level 
of performance can be achieved with a large reduction in the number 
of actors for a moderate cost in training time.

As RL only interacts sample-wise with the environment, the policy could 
be fine-tuned further with data from interacting with the plant. Alterna-
tively, one might imagine leveraging the database of past experiments 
performed on TCV to improve the policy. However, it is unclear if the data 
are sufficiently diverse, given the versatility of TCV and the fact that the 
same plasma configuration can be achieved by various coil-voltage con-
figurations. Especially for previously unknown plasma shapes, no data or 
only very limited data are available, rendering this approach ineffective.  
Conversely, the simulator can directly model the dynamics for the con-
figurations of interest. This issue in which data collection requires a good 
policy becomes even more pronounced if one wants to optimize a policy 
de novo from data, without relying on a simulator model.

Rewards and terminations
All of our experiments have several objectives that must be satisfied 
simultaneously. These objectives are specified as individual reward 
components that track an aspect of the simulation — typically, a physi-
cal quantity — and these individual components are combined into a 
single scalar reward value. Descriptions of the targets used are listed 
in Extended Data Table 4. The target values of the objectives are often 
time-varying (for example, the plasma current and boundary target 
points), and are sent to the policy as part of the observations. This 
time-varying trace of targets is defined by a sequence of values at points 
in time, which are linearly interpolated for all time steps in between.

Shape targets for each experiment were generated using the shape 
generator42 or specified manually. These points are then canonical-
ized to 32 equally spaced points along a spline, which are the targets 
that are fed to the policy. The spline is periodic for closed shapes but 
non-periodic for diverted shapes, ending at the X-points.

The process for combining these multiple objectives into a single 
scalar is as follows. First, for each objective, the difference between 
the actual and target values is computed, and then transformed with a 
non-linear function to a quality measure between 0 and 1. In the case of 
a vector-valued objective (for example, distance to each target-shape 
point), the individual differences are first merged into a single scalar 
through a ‘combiner’, a weighted non-linear function. Finally, a weighted 
combination of the individual objective-specific quality measures is 
computed into a single scalar reward value between 0 and 1 using a 
combiner as above. This (stepwise) reward is then normalized so that 
the maximum cumulative reward is 100 for 1 s of control. In cases in 
which the control policy has triggered a termination, a large negative 
reward is given. See Extended Data Table 5 for more details.

We typically compute the quality measure from the error using a 
softplus or sigmoid, which provides a non-zero learning signal early in 
training when the errors are large, while simultaneously encouraging 
precision as the policy improves. Similarly, we combine the rewards 
using a (weighted) smooth max or geometric mean, which gives a larger 
gradient to improving the worst reward, while still encouraging improv-
ing all objectives. The precise reward definitions used in each of our 
experiments are listed in Extended Data Table 3 and the implementa-
tions are available in the supplementary material.

Further findings
Some controllers exhibited several interesting behaviours, which are 
briefly mentioned here. These control behaviours hint at further poten-
tial capabilities of learned-control approaches.

External heating was applied during the experiment shown in Fig. 3b. 
We first ran a test experiment without heating, but with the exact same 
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controller and objectives. This provides a simple repeatability test in 
the control window before heating was applied. A performance com-
parison is depicted in Extended Data Fig. 3 and shows that, in these two 
experiments, the controller performed similarly.

When given the goal to maintain only the plasma position and cur-
rent, our architecture autonomously constructed a low-elongation 
plasma that eliminates the vertical instability mode (Extended Data 
Fig. 4a), without being explicitly told to do so.

Our control architecture can naturally choose to use a varying com-
bination of poloidal field and ohmic coils to drive the inductive voltage 
required for sustaining the plasma current (Extended Data Fig. 4b), 
in contrast to existing control architectures that typically assume a 
strict separation.

Our architecture can learn to include non-linear physical and con-
trol requests by adding objectives to the goal specification. It can, for 
example, avoid limitations in the power supplies that occasionally 
cause ‘stuck’ control-coil currents when reversing polarity (Extended 
Data Fig. 4c) and avoid X-points in the vessel but outside the plasma 
(Extended Data Fig. 4d) when requested with high-level rewards.

We see that, for some quantities, there is a steady-state error in the 
target value (for example, κ in Extended Data Fig. 3). Future develop-
ment will be towards removing such errors, for example, by making 
the control policy recurrent rather than feedforward. Care must be 
taken to ensure that these more powerful recurrent policies do not 
overspecialize to the specific dynamics of the simulator and continue 
to transfer to TCV successfully.

Deployment
As the stochastic nature of the training policy is only useful for explo-
ration, the final control policy is taken to be the mean of the Gaussian 
policy at the conclusion of training. This gives a deterministic policy 
to execute on the plant. During training, we monitor the quality of this 
deterministic policy before deployment.

The control loop of TCV runs at 10 kHz, although only half of the 
cycle time, that is, 50 μs, is available for the control algorithm due to 
other signal processing and logging. Therefore we created a deploy-
ment system that compiles our neural network into real-time-capable 
code that is guaranteed to run within this time window. To achieve this, 
we remove superfluous weights and computations (such as the explo-
ration variance) and then use tfcompile43 to compile it into binary 
code, carefully avoiding unnecessary dependencies. We tailored 
the neural network structure to optimize the use of the processor’s 
cache and enable vectorized instructions for optimal performance. 
The table of time-varying control targets is also compiled into the 
binary for ease of deployment. In future work, targets could easily 
be supplied at runtime to dynamically adjust the behaviour of the 
control policy. We then test all compiled policies in an automated, 
extensive benchmark before deployment to ensure that timings are 
met consistently.

Post-experiment analysis
The plasma shape and position are not directly observed and need to be 
inferred from the available magnetic measurements. This is done with 
magnetic-equilibrium reconstruction, which solves an inverse problem 
to find the plasma-current distribution that respects the force balance 
(Grad–Shafranov equation) and best matches the given experimental 
magnetic measurements at a specific time in a least-squares sense.

In a conventional magnetic control design, a real-time-capable 
magnetic-equilibrium reconstruction is needed as a plasma-shape 
observer to close the shape-control feedback loop (shown as the 
‘Plasma shape’ observer in Fig. 1f). In our approach, instead, we only 
make use of equilibrium reconstruction with LIUQE code10 during 
post-discharge analysis to validate the plasma-shape controller per-
formances and compute the physical initial conditions for the simula-
tion during training.

After running the experiment, we use this equilibrium-reconstruction 
code to obtain an estimate of the plasma state and magnetic flux field. 
Using this approach is consistent with previous literature for evaluat-
ing performance9,10.

The plasma boundary is defined by the last closed-flux surface (LCFS) 
in the domain. We extract the LCFS as 32 equiangular points around the 
plasma axis and then canonicalize with splines to 128 equidistant points. 
The error distance is computed using the shortest distance between 
each of the points that defined the target shape and the polygon defined 
by the 128 points on the LCFS. The shape RMSE is computed across 
these 32 error distances over all time steps in the time range of interest.

Errors on scalar quantities, such as Ip or elongation, are computed 
from the error between the reference and the respective estimation 
from the equilibrium reconstruction over the time period of interest. 
The estimate of the growth rate of the vertical displacement instability6 
is computed from a spectral decomposition of the linearized system 
of equations of the simulator around the reconstructed equilibrium.

Comparison with previous work
In recent years, advanced control techniques have been applied to mag-
netic confinement control. De Tommasi et al.44 describe a model-based 
control approach for plasma-position control using a linear model 
and a cascaded feedback-control structure. Gerkšič and De Tommasi45 
propose a model predictive control approach, demonstrating linear 
model predictive control for plasma position and shape control in 
simulation, including a feasibility estimate for hardware deployment. 
Boncagni et al.46 have proposed a switching controller, improving on 
plasma-current tracking on hardware but without demonstrating fur-
ther capabilities. There has been other previous work in which RL has 
learned on plasma models, for example, to control the safety factor47 
or to control the ion-temperature gradient48. Recently, Seo et al.49 have 
developed feedforward signals for beta control using RL, which have 
then been verified on the KSTAR tokamak.

More generally, machine-learning-based approaches are being devel-
oped for magnetic-confinement control and fusion in general, not lim-
ited to control. A survey of this area is provided by Humphreys et al.14, 
who categorized approaches into seven Priority Research Opportuni-
ties, including accelerating science, diagnostics, model extraction, 
control, large data, prediction and platform development. Early use 
of neural networks in a control loop for plasma control is presented by 
Bishop et al.15, who used a small-scale neural network to estimate the 
plasma position and low-dimensional shape parameters, which were 
subsequently used as error signals for feedback control.

Our architecture constitutes an important step forward in terms of 
generality, in which a single framework is used to solve a broad variety 
of fusion-control challenges, satisfying several of the key promises of 
machine learning and artificial intelligence for fusion set out in ref. 14.

Application to alternative tokamaks
Our approach has been successfully demonstrated on TCV, and we are 
confident that, with a few basic modifications, our approach is directly 
applicable to other tokamaks that meet some assumptions and techni-
cal requirements laid out below. All present-day tokamaks have been 
confirmed to respect, from the magnetic control point of view, the 
coupled equations solved by free-boundary simulators. Equilibrium 
controllers have routinely been designed on the basis of these models, 
and — for future tokamaks — there is no reason as of yet to believe this 
model will no longer be valid. Naturally, we cannot predict the perfor-
mance of our approach on other kinds of devices.

To simulate a different device, the free-boundary simulator param-
eters will need to be set appropriately. This includes the machine 
description with the locations and electrical properties of coils, ves-
sel and limiter, the actuator and sensor characteristics, such as current 
and voltage ranges, noise and delay. Operational conditions such as 
the expected range of variation of profile parameters also need to be 



determined. Finally, rewards and targets need to be updated to match 
the geometry and desired shapes.

The aforementioned characteristics should be readily available, 
as these are typically part of the design process for a given tokamak. 
Indeed, Grad–Shafranov equilibrium calculations are routinely carried 
out for the general design and analysis of a new tokamak, and these 
include all required parameters. These variations in vessel geometry 
and the number, placement and range of sensors and coils should not 
require changes to the learning algorithm beyond adjusting design 
bounds. The learning algorithm will automatically adjust input and 
output layer dimensions for the neural network and will automatically 
learn a policy suited to the new vessel and control system.

Further considerations are required for deployment. Our approach 
requires a centralized control system with sufficient computational power 
to evaluate a neural network at the desired control frequency, although a 
desktop-grade CPU is sufficient to meet this requirement. Also, an exist-
ing magnetic controller is needed to perform plasma breakdown and 
early ramp-up before handing over to the learned controller. Although 
our controllers are trained to avoid terminations in simulation corre-
sponding to disruption criteria, they are not guaranteed to avoid plasma 
disruptions. Hence, if the target tokamak cannot tolerate certain kinds 
of disruptions, a machine-protection layer such as a simpler fallback 
controller or interlock system should be in place during experiments.

Data availability
TCV experimental data from the images in this paper are available in the 
Supplementary information. Source data are provided with this paper.

Code availability
The learning algorithm used in the actor-critic RL method is MPO23, a 
reference implementation of which is available under an open-source 
license41. Additionally, the software libraries launchpad50, dm_env51, 
sonnet52, tensorflow53 and reverb40 were used, which are also available 
as open source. The code to compute the control targets, rewards and 
terminations is available in the Supplementary information. FGE and 
LIUQE are available subject to license agreement from the Swiss Plasma 
Center at EPFL (Antoine Merle antoine.merle@epfl.ch, Federico Felici 
federico.felici@epfl.ch).
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Extended Data Fig. 1 | Pictures and illustration of the TCV. a, b Photographs showing the part of the TCV inside the bioshield. c CAD drawing of the vessel and 
coils of the TCV. d View inside the TCV (Alain Herzog/EPFL), showing the limiter tiling, baffles and central column.



Extended Data Fig. 2 | A larger overview of the shots in Fig. 3. We plotted the 
reconstructed values for the normalized pressure βp and safety factor qA, along 
with the range of domain randomization these variables saw during training  
(in green), which can be found in Extended Data Table 2. We also plot the growth 

rate, γ, and the plasma current, Ip, along with the associated target value. Where 
relevant, we plot the elongation κ, the neutral beam heating, the triangularity δ 
and the vertical position of the bottom X-point ZX and its target.
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Extended Data Fig. 3 | Control variability. To illustrate the variability of the 
performance that our deterministic controller achieves on the environment, 
we have plotted the trajectories of one policy that was used twice on the plant: 
in shot 70599 (in blue) and shot 70600 (in orange). The dotted line shows where 
the cross sections of the vessel are illustrated. The trajectories are shown from 
the handover at 0.0872 s until 0.65 s after the breakdown, after which, on shot 

70600, the neutral beam heating was turned on and the two shots diverge.  
The green line shows the RMSE distance between the LCFS in the two experiments,  
providing a direct measure of the shape similarity between the two shots.  
This illustrates the repeatability of experiments both in shape parameters such 
as elongation κ and triangularity δ and in the error achieved with respect to the 
targets in plasma current Ip and the shape of the last closed-flux surface.



Extended Data Fig. 4 | Further observations. a, When asked to stabilize the 
plasma without further specifications, the agent creates a round shape.  
The agent is in control from t = 0.45 and changes the shape while trying to attain 
Ra and Za targets. This discovered behaviour is indeed a good solution, as this 
round plasma is intrinsically stable with a growth rate γ < 0. b, When not given a 
reward to have similar current on both ohmic coils, the algorithm tended to use 
the E coils to obtain the same effect as the OH001 coil. This is indeed possible, 
as can be seen by the coil positions in Fig. 1g, but causes electromagnetic forces 
on the machine structures. Therefore, in later shots, a reward was added to 
keep the current in both ohmic coils close together. c, Voltage requests by the 

policy to avoid the E3 coil from sticking when crossing 0 A. As can be seen in, for 
example, Extended Data Fig. 4b, the currents can get stuck on 0 A for low 
voltage requests, a consequence of how these requests are handled by the 
power system. As this behaviour was hard to model, we introduced a reward to 
keep the coil currents away from 0 A. The control policy produces a high 
voltage request to move through this region quickly. d, An illustration of the 
difference in cross sections between two different shots, in which the only 
difference is that the policy on the right was trained with a further reward for 
avoiding X-points in vacuum.



Article

Extended Data Fig. 5 | Training progress. Episodic reward for the 
deterministic policy smoothed across 20 episodes with parameter variations 
enabled, in which 100 means that all objectives are perfectly met.  a comparison 
of the learning curve for the capability benchmark (as shown in Fig. 2) using our 
asymmetric actor-critic versus a symmetric actor-critic, in which the critic is 
using the same real-time-capable feedforward network as the actor. In blue is 
the performance with the default critic of 718,337 parameters. In orange, we 
show the symmetric version, in which the critic has the same feedforward 
structure and size (266,497 parameters) as the policy (266,280 parameters). 

When we keep the feedforward structure of the symmetric critic and scale up 
the critic, we find that widening its width to 512 units (in green, 926,209 
parameters) or even 1,024 units (in red, 3,425,281 parameters) does not bridge 
the performance gap with the smaller recurrent critic. b comparison between 
using various amounts of actors for stabilizing a mildly elongated plasma. 
Although the policies in this paper were trained with 5,000 actors, this 
comparison shows that, at least for simpler cases, the same level of performance 
can be achieved with much lower computational resources.



Extended Data Table 1 | Performance metrics of experiments

Various performance metrics of the shots on the plant are tabulated here. The triangularity, elongation and radius are only shown for policies in which this was a target measure. The X-point 
distance is only computed in the time window where an X-point target was requested.
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Extended Data Table 2 | Simulation parameters for actuator, sensor and current diffusion models

Parameter values as identified from data. The action bias was fit on the power supply output voltage. Measurement noise is Gaussian additive noise and randomly sampled at each simulation 
time step. We use a fixed action bias with an additive random offset to account for non-ideal behaviour of power supply hardware. Current diffusion-parameter variations account for the 
uncontrolled operating conditions. Parameter variations are sampled at the beginning of each episode but kept constant during the episode. The samples are drawn from uniform (action bias) 
and log-uniform (current diffusion) distributions using the bounds in this table. For single-plasma training, Rp, βp and qA are varied, whereas in a multiple-plasmas training, we vary σ  and IOH. In 
the latter case, we sample an overall geometric mean offset of the two σ  from a log-uniform distribution. We sample the log of the multiplicative difference between them from Bs (4,4), for 
which Bs is a scaled β distribution. We sample a single IOH value for both coils. Parameters are sampled as absolute values unless explicitly indicated as scaling factors.



Extended Data Table 3 | Rewards used in the experiments

Empty cells are not used in that reward. Any cell that does not specify a weight has an implicit weight of 1. Vector-valued weights (for example, Droplets: R) return several values to the final 
combiner. See Exended Data Table 4 for the descriptions of the different reward components and Extended Data Table 5 for the transforms, combiners and terminations. All of the terminations 
criteria were used for these experiments. Code for these rewards is available in the supplementary material.
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Extended Data Table 4 | Reward components

Description of reward components. All of these return an actual and a target value, and many allow time-varying target values. See Extended Data Table 3 for where and how they are used.



Extended Data Table 5 | Reward elements

Elements used to construct reward functions. Transforms scale the different reward component. The q95 value is as  defined54. Transforms take a good and bad value that usually have some 
semantic meaning defined by the reward component and then map it to the range 0-1. The good value should lead to a reward close or equal to 1, whereas a bad value should lead to a reward 
close or equal to 0. Combiners take a list of values and corresponding weights and return a single value. Any values with a weight of 0 are excluded. Terminations trigger the end of an episode 
with a large negative reward. Specific implementations are in the Supplementary Data.
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