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Improving the efficiency of algorithms for fundamental computations can have a
widespread impact, asit can affect the overall speed of alarge amount of computations.

Matrix multiplicationis one such primitive task, occurring in many systems—from
neural networks to scientific computing routines. The automatic discovery of
algorithms using machine learning offers the prospect of reaching beyond human
intuition and outperforming the current best human-designed algorithms. However,
automating the algorithm discovery procedureis intricate, as the space of possible
algorithmsis enormous. Here we report a deep reinforcement learning approach
based on AlphaZero! for discovering efficient and provably correct algorithms for the
multiplication of arbitrary matrices. Our agent, AlphaTensor, is trained to play a
single-player game where the objective is finding tensor decompositions withina
finite factor space. AlphaTensor discovered algorithms that outperform the state-
of-the-art complexity for many matrix sizes. Particularly relevant is the case of 4 x 4
matricesin afinite field, where AlphaTensor’s algorithm improves on Strassen’s two-
level algorithm for the first time, to our knowledge, sinceiits discovery 50 years ago®.

We further showcase the flexibility of AlphaTensor through different use-cases:
algorithms with state-of-the-art complexity for structured matrix multiplication and
improved practical efficiency by optimizing matrix multiplication for runtime on
specifichardware. Our results highlight AlphaTensor’s ability to accelerate the
process of algorithmic discovery on arange of problems, and to optimize for different

criteria.

We focus on the fundamental task of matrix multiplication, and use
deepreinforcement learning (DRL) to search for provably correct and
efficient matrix multiplication algorithms. This algorithm discovery
processis particularly amenable to automation because arich space of
matrix multiplication algorithms canbe formalized as low-rank decom-
positions of aspecific three-dimensional (3D) tensor?, called the matrix
multiplication tensor®”. This space of algorithms contains the stand-
ard matrix multiplication algorithm and recursive algorithms such as
Strassen’s?, as well as the (unknown) asymptotically optimal algorithm.
Although an important body of work aims at characterizing the com-
plexity of the asymptotically optimal algorithm®™, this does not yield
practicalalgorithms®. We focus here on practical matrix multiplication
algorithms, which correspond to explicit low-rank decompositions of
the matrix multiplication tensor. In contrast to two-dimensional matri-
ces, for which efficient polynomial-time algorithms computing the rank
have existed for over two centuries®, finding low-rank decompositions
of 3D tensors (and beyond) is NP-hard™ and is also hard in practice.
In fact, the search space is so large that even the optimal algorithm
for multiplying two 3 x 3 matrices is still unknown. Nevertheless, in a
longstanding research effort, matrix multiplication algorithms have

been discovered by attacking this tensor decomposition problemusing
human search?''¢, continuous optimization”** and combinatorial
search?®. These approaches often rely on human-designed heuristics,
which are probably suboptimal. We instead use DRLto learnto recog-
nize and generalize over patternsin tensors, and use the learned agent
to predict efficient decompositions.

We formulate the matrix multiplication algorithm discovery pro-
cedure (thatis, the tensor decomposition problem) as asingle-player
game, called TensorGame. At each step of TensorGame, the player
selects how to combine different entries of the matrices to multiply.
Ascoreisassigned based onthe number of selected operations required
to reach the correct multiplication result. This is a challenging game
with an enormous action space (more than10 actions for most inter-
esting cases) that is much larger than that of traditional board games
such as chess and Go (hundreds of actions). To solve TensorGame and
find efficient matrix multiplication algorithms, we develop aDRL agent,
AlphaTensor. AlphaTensor is built on AlphaZero*, where aneural net-
work is trained to guide a planning procedure searching for efficient
matrix multiplication algorithms. Our framework uses a single agent
todecompose matrix multiplication tensors of various sizes, yielding
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Fig.1|Matrix multiplication tensor and algorithms. a, Tensor 7, representing
the multiplication of two 2 x 2 matrices. Tensor entries equal to1are depicted
inpurple,and O entries are semi-transparent. The tensor specifies which entries
fromtheinput matricestoread,and where towrite theresult. Forexample,
asc,=a;b, + a,b;, tensor entries located at (a,, b, ¢;) and (a,, b;, ¢;) are setto1.

transfer of learned decomposition techniques across various tensors.
To address the challenging nature of the game, AlphaTensor uses a
specialized neural network architecture, exploits symmetries of the
problem and makes use of synthetic training games.

AlphaTensor scales to a substantially larger algorithm space than
whatiswithinreach for either human or combinatorial search. Infact,
AlphaTensor discovers from scratch many provably correct matrix
multiplication algorithms that improve over existing algorithms in
terms of number of scalar multiplications. We also adapt the algo-
rithmdiscovery procedure to finite fields, and improve over Strassen’s
two-level algorithm for multiplying 4 x 4 matrices for the first time, to
our knowledge, sinceitsinceptionin1969. AlphaTensor also discoversa
diverse set of algorithms—up to thousands for each size—showing that
the space of matrix multiplication algorithmsis richer than previously
thought. We also exploit the diversity of discovered factorizations to
improve state-of-the-art results for large matrix multiplication sizes.
Through different use-cases, we highlight AlphaTensor’s flexibility
and wide applicability: AlphaTensor discovers efficient algorithms
for structured matrix multiplication improving over known results,
and finds efficient matrix multiplication algorithms tailored to spe-
cific hardware, by optimizing for actual runtime. These algorithms
multiply large matrices faster than human-designed algorithms on
the same hardware.

Algorithms as tensor decomposition

As matrix multiplication (A, B) —» AB is bilinear (that is, linear in both
arguments), it can be fully represented by a 3D tensor: see Fig. 1a for
howtorepresent the 2 x 2 matrix multiplication operationasa3D ten-
sor of size 4 x 4 x 4, and refs. >*” for more details. We write 7, for the
tensor describing n x n matrix multiplication. The tensor 7,, is fixed
(thatis, itisindependent of the matrices to be multiplied), has entries
in {0, 1}, and is of size n* x n® x n’. More generally, we use 7, , , to
describe the rectangular matrix multiplication operation of sizen x m
with m x p (note that 7,=7,, , ,). By a decomposition of 7, into R
rank-one terms, we mean

R
T,=Y u”evPeow?, m

r=1

where ® denotes the outer (tensor) product,and u®, v? and w® are all
vectors. Ifatensor 7 canbe decomposed into R rank-one terms, we say
therank of 7 isat most R, or Rank (7) <R. This is a natural extension
from the matrix rank, where amatrix is decomposedinto Y, u® ® v’
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b, Strassen's algorithm?for multiplying 2 x 2 matrices using 7 multiplications.
¢, Strassen'salgorithmin tensor factor representation. The stacked factors
U,Vand W (green, purpleand yellow, respectively) provide arank-7
decomposition of 7, (equation (1)). The correspondence between arithmetic
operations (b) and factors (c) is shown by using the aforementioned colours.

Adecomposition of 7, into Rrank-one terms provides analgorithm
for multiplying arbitrary n x n matrices using R scalar multiplications
(see Algorithm 1). We refer to Fig. 1b,c for an example algorithm mul-
tiplying 2 x 2 matrices with R =7 (Strassen’s algorithm).

Crucially, Algorithm 1 can be used to multiply block matrices. By using
thisalgorithmrecursively, one can multiply matrices of arbitrary size, with
therankR controlling the asymptotic complexity of the algorithm. In par-
ticular, N x N matrices can be multiplied with asymptotic complexity
O(N'°9R)). see ref. > for more details.

DRL for algorithm discovery

We cast the problem of finding efficient matrix multiplication algo-
rithms as a reinforcement learning problem, modelling the environ-
ment as asingle-player game, TensorGame. The game state after step
tisdescribed by a tensor S,, which is initially set to the target tensor
we wish to decompose: S, = 7,,. In each step ¢ of the game, the player
selectsatriplet (u?, v, w?), and the tensor S, is updated by subtract-
ing the resulting rank-one tensor: S, < S,_;- u® ® v®¥ @ w. The goal
ofthe playeristoreachthezerotensor S, = 0 by applying the smallest
number of moves. When the player reaches the zero tensor, the
sequence of selected factors satisfies 7,= Y+, u® ® v© ® w (where
Rdenotes the number of moves), which guarantees the correctness of
the resulting matrix multiplication algorithm. To avoid playing unnec-
essarily long games, we limit the number of steps to amaximum value,
Riimie-

Forevery step taken, we provide areward of -1to encourage finding
the shortest path to the zero tensor. If the game terminates with a
non-zero tensor (after R, steps), the agent receives an additional
terminal reward equal to _V(SRlimit)' where V(Sann) isanupperbound
ontherankofthe terminal tensor. Although this reward optimizes for
rank (and hence for the complexity of the resulting algorithm), other
reward schemes can be used to optimize other properties, such as
practical runtime (see ‘Algorithm discovery results’). Besides, as our
aimis to find exact matrix multiplication algorithms, we constrain
{u®, v w® to have entries in a user-specified discrete set of coeffi-
cients F (for example, F={-2,-1, 0, 1, 2}). Such discretization is com-
mon practice to avoid issues with the finite precision of floating
points!>1520,

To play TensorGame, we propose AlphaTensor (Fig. 2), anagent based
on AlphaZero', which achieved tabula rasa superhuman performance
inthe classical board games of Go, chess and shogi, and onits extension
to handle large action spaces Sampled AlphaZero?. Similarly to
AlphaZero, AlphaTensor uses a deep neural network to guide a Monte



Algorithm 1

R
A meta-algorithm parameterized by {u®, v, w®} _, for computing
the matrix product €=AB. It is noted that R controls the number of
multiplications between input matrix entries.

R

Parameters: {u®, v, w(’)},=1: length-n? vectors such that
T = ZR . u v ew?

n r=

Input: A, B: matrices of size nxn

Output: C=AB

(1) forr=1,...,Rdo

@) m, < oyt -+l (gt oy

(3)for i=1,...,n* do

@ c<wmy+ . +w®mg

return C

Carlo tree search (MCTS) planning procedure. The network takes as
input a state (that is, a tensor S, to decompose), and outputs a policy
and a value. The policy provides a distribution over potential actions.
As the set of potential actions (u®, v, w®) in each step is enormous,
we rely on sampling actions rather than enumerating them??2. The
value provides an estimate of the distribution zof returns (cumulative
reward) starting from the current state S,. With the above reward
scheme, the distribution zmodels the agent’s belief about the rank of
thetensor S,. To play agame, AlphaTensor starts from the target tensor
(7,) and uses the MCTS planner at each step to choose the next action.
Finished games are used as feedback to the network to improve the
network parameters.

Overcoming the challenges posed by TensorGame—namely, anenor-
mous action space, and game states described by large 3D tensors
representing an abstract mathematical operation—requires multiple
advances. Allthese components, described briefly below, substantially

improve the overall performance over a plain AlphaZero agent (see
Methods and Supplementary Information for details).

Neural network architecture

We propose a transformer-based?®® architecture that incorporates
inductive biases for tensor inputs. We first project the S x S x Sinput
tensor into three S x S grids of feature vectors by using linear layers
appliedtothethree cyclictranspositions of the tensor. The main part of
the model comprises asequence of attention operations, each applied
to a set of features belonging to a pair of grids (Extended Data Figs. 3
and 4). This generalizes axial attention® to multiple grids, and is both
more efficient and yields better results than naive self-attention. The
proposed architecture, which disregards the order of rows and columns
in the grids, is inspired by the invariance of the tensor rank to slice
reordering. The final feature representation of the three matrices is
passed bothto the policy head (an autoregressive model) and the value
head (a multilayer perceptron).

Synthetic demonstrations

Although tensor decomposition is NP-hard, the inverse task of con-
structing the tensor from its rank-one factors is elementary. Hence,
we generate a large dataset of tensor-factorization pairs (synthetic

R

demonstrations) by first sampling factors{(u®’, v, w)},_, atrandom,
andthen constructing the tensor D= 25:1 u” @ v ® w. Wetrainthe
network on a mixture of supervised loss (that is, to imitate synthetic
demonstrations) and standard reinforcement learning loss (that is,
learning to decompose atarget tensor 7,) (Fig. 2). This mixed training
strategy—training on the target tensor and random tensors— substan-
tially outperforms each training strategy separately. This is despite
randomly generated tensors having different properties from the tar-
get tensors.

Change of basis

7,(Fig.1a)is the tensor representing the matrix multiplicationbilinear
operation in the canonical basis. The same bilinear operation can be
expressed in other bases, resulting in other tensors. These different
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Fig.2|Overview of AlphaTensor. The neural network (bottom box) takes
asinputatensorS,, and outputs samples (u, v, w) from a distribution

over potential next actions to play, and an estimate of the future returns
(for example, of ~Rank (S,)). The network is trained on two datasources:

previously played games and synthetic demonstrations. The updated network
issenttotheactors (top box), whereitis used by the MCTS planner to generate
new games.
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Fig.3 | Comparisonbetween the complexity of previously known matrix
multiplicationalgorithms and the ones discovered by AlphaTensor. Left:
column (n, m, p) refers to the problem of multiplying n x mwith m x p matrices.
The complexity is measured by the number of scalar multiplications (or
equivalently, the number of termsin the decomposition of the tensor). ‘Best
rank known’refers tothe best knownupperbound onthe tensor rank (before
this paper), whereas ‘AlphaTensor rank’ reports the rank upper bounds
obtained with our method, in modular arithmetic (Z,) and standard arithmetic.

tensors are equivalent: they have the same rank, and decompositions
obtained ina custom basis can be mapped to the canonical basis, hence
obtaining a practical algorithmof the formin Algorithm 1. We leverage
this observation by sampling arandom change of basis at the beginning
of every game, applyingitto7,, and letting AlphaTensor play the game
in that basis (Fig. 2). This crucial step injects diversity into the games
played by the agent.

Data augmentation

Fromevery played game, we can extract additional tensor-factorization
pairs for training the network. Specifically, as factorizations are
order invariant (owing to summation), we build an additional
tensor-factorization training pair by swapping a random action with
thelast action from each finished game.

Algorithmdiscovery results
Discovery of matrix multiplication algorithms
We trainasingle AlphaTensor agent to find matrix multiplication algo-
rithms for matrix sizes n x mwithm x p, wheren, m, p < 5. At the begin-
ning of each game, we sample uniformly a triplet (n, m, p) and train
AlphaTensor to decompose the tensor 7, ,, ... Although we consider
tensors of fixed size (7, ,,, ,has size nm x mp x pn), the discovered algo-
rithms can be applied recursively to multiply matrices of arbitrary size.
We use AlphaTensor to find matrix multiplication algorithms over
different arithmetics—namely, modular arithmetic (thatis, multiplying
matricesinthe quotient ring Z,), and standard arithmetic (that is, mul-
tiplying matrices in R).

Figure 3 (left) shows the complexity (that is, rank) of the algo-
rithms discovered by AlphaTensor. AlphaTensor re-discovers the
best algorithms known for multiplying matrices (for example,
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Inall cases, AlphaTensor discovers algorithms that match orimprove over
knownstate of theart (improvements are showninred). See Extended Data
Figs.1and2forexamples of algorithms found with AlphaTensor. Right: results
(for arithmeticin R) of applying AlphaTensor-discovered algorithms on larger
tensors.Eachred dot represents atensor size, with asubset of them labelled.
See Extended Data Table 1for the resultsin table form. State-of-the-art results
areobtained fromthelistinref. .

Strassen’s’and Laderman’s” algorithms). More importantly, AlphaT-
ensor improves over the best algorithms known for several matrix
sizes. In particular, AlphaTensor finds an algorithm for multiplying
4 x 4 matrices using 47 multiplications in Z,, thereby outperforming
Strassen’s two-level algorithm?, which involves 7> = 49 multiplica-
tions. By applying this algorithm recursively, one obtains a practical
matrix multiplication algorithm in Z, with complexity O(N>77%),
Moreover, AlphaTensor discovers efficient algorithms for multiply-
ing matricesin standard arithmetic; for example, AlphaTensor finds
arank-76 decomposition of T, 5 s, improving over the previous
state-of-the-art complexity of 80 multiplications. See Extended
DataFigs.1and 2 for examples.

AlphaTensor generates a large database of matrix multiplication
algorithms—up to thousands of algorithms for each size. We exploit
thisrich space of algorithms by combining them recursively, with the
aim of decomposing larger matrix multiplication tensors. We refer
to refs. %?¢and Appendix H in Supplementary Information for more
details. Using this approach, we improve over the state-of-the-art
results for more than 70 matrix multiplication tensors (with
n,m, p <12).SeeFig.3 (right) and Extended Data Table 1for the results.

Acrucialaspect of AlphaTensor isits ability to learn to transfer knowl-
edge between targets (despite providing no prior knowledge on their
relationship). By training one agent to decompose various tensors,
AlphaTensor shares learned strategies among these, thereby improv-
ing the overall performance (see Supplementary Information for
analysis). Finally, it is noted that AlphaTensor scales beyond current
computational approaches for decomposing tensors. For example, to
our knowledge, no previous approach was able to handle 7, which has
an action space 10" times larger than 7;. Our agent goes beyond this
limit, discovering decompositions matching or surpassing
state-of-the-art for large tensors such as 7s.
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Analysing the symmetries of matrix multiplication algorithms
From a mathematical standpoint, the diverse algorithms discovered
by AlphaTensor show that the space is richer than previously known.
For example, while the only known rank-49 factorization decomposing
T,=T,® T,before this paper conforms to the product structure (that
is, it uses the factorization of 7, twice, which we refer to as Strassen-
square?), AlphaTensor finds more than 14,000 non-equivalent fac-
torizations (with standard arithmetic) that depart from this scheme,
and have different properties (such as matrix ranks and sparsity—see
Supplementary Information). By non-equivalent, we mean that it is
not possible to obtain one fromanother by applying asymmetry trans-
formation (such as permuting the factors). Such properties of matrix
multiplication tensors are of great interest, as these tensors represent
fundamental objects in algebraic complexity theory>*’. The study of
matrix multiplication symmetries can also provide insight into the
asymptotic complexity of matrix multiplication®. By exploring thisrich
space of algorithms, we believe that AlphaTensor will be useful for
generating results and guiding mathematical research. See Supple-
mentary Information for proofs and details on the symmetries of
factorizations.

Beyond standard matrix multiplication

Tensors canrepresent any bilinear operation, suchas structured matrix
multiplication, polynomial multiplication or more custom bilinear
operations used in machine learning??%, We demonstrate here a
use-case where AlphaTensor finds a state-of-the-art algorithm for
multiplying an nx nskew-symmetric matrix withavector oflength n.
Figure 4ashows the obtained decompositions for smallinstance sizes n.
We observe a pattern that we generalize to arbitrary n, and prove that
thisyields a general algorithm for the skew-symmetric matrix-vector
product (Fig. 4b). This algorithm, which uses (n-1)(n+2)/2 - %nz
multiplications (where ~indicates asymptotic similarity), outperforms
the previously known algorithms using asymptotically n? multiplica-
tions?, and is asymptotically optimal. See Supplementary Information

Extrapolationton=10isshownintherightmostfigure. b, Skew-symmetric
matrix-by-vector multiplication algorithm, obtained from the examples solved
by AlphaTensor. The w;and g;termsinsteps 3and 5 correspond to the m, terms
inAlgorithm1.Itis noted that steps 6-9 do notinvolve any multiplications.

for a proof, and for another use-case showing AlphaTensor’s ability
tore-discover the Fourier basis (see also Extended Data Table 2). This
shows that AlphaTensor canbe applied to custombilinear operations,
andyield efficient algorithms leveraging the problem structure.

Rapid tailored algorithm discovery
We show a use-case where AlphaTensor finds practically efficient matrix
multiplication algorithms, tailored to specific hardware, with zero
prior hardware knowledge. To do so, we modify the reward of AlphaT-
ensor: we provide an additional reward at the terminal state (after the
agent found a correct algorithm) equal to the negative of the runtime
of the algorithm when benchmarked on the target hardware. That is,
wesetr;=r,+Ab, wherer,is the reward scheme described in ‘DRL for
algorithmdiscovery’, b.is thebenchmarking reward (non-zero only at
theterminal state) and Ais a user-specified coefficient. Aside from the
different reward, the exact same formulation of TensorGame is used.
We train AlphaTensor to search for efficient algorithms to multiply
4 x 4 block matrices, and focus on square matrix multiplication of size
8,192 (each block is hence of size 2,048) to define the benchmarking
reward. AlphaTensor searches for the optimal way of combining the
16 square blocks of the input matrices onthe considered hardware. We
do not apply the 4 x 4 algorithm recursively, to leverage the efficient
implementation of matrix multiplication on moderate-size matrices
(2,048 x 2,048 inthis case). We study two hardware devices commonly
used in machine learning and scientific computing: an Nvidia V100
graphics processing unit (GPU) and a Google tensor processing unit
(TPU) v2. The factorization obtained by AlphaTensor is transformed
intoJAX*° code, whichis compiled (just in time) before benchmarking.
Figure 5a,b shows the efficiency of the AlphaTensor-discovered
algorithms on the GPU and the TPU, respectively. AlphaTensor dis-
covers algorithms that outperform the Strassen-square algorithm,
which is a fast algorithm for large square matrices*~2. Although
the discovered algorithm has the same theoretical complexity as
Strassen-square, it outperforms it in practice, as it is optimized for
the considered hardware. Interestingly, AlphaTensor finds algorithms
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Fig.5|Speed-ups ofthe AlphaTensor-discovered algorithm. a,b, Speed-ups
(%) of the AlphaTensor-discovered algorithms tailored for a GPU (a) and a TPU
(b), optimized for amatrix multiplication of size 8,192 x 8,192. Speed-ups are
measured relative to standard (for example, cuBLAS for the GPU) matrix
multiplication onthe same hardware. Speed-ups are reported for various

with alarger number of additions compared with Strassen-square (or
equivalently, denser decompositions), but the discovered algorithms
generate individual operations that can be efficiently fused by the
specific XLA® grouping procedure and thus are more tailored towards
the compiler stack we use. The algorithms found by AlphaTensor also
provide gains on matrix sizes larger than what they were optimized
for. Finally, Fig. 5c shows the importance of tailoring to particular
hardware, as algorithms optimized for one hardware do not perform
aswell on other hardware.

Discussion

Trained from scratch, AlphaTensor discovers matrix multiplication
algorithms that are more efficient than existing human and
computer-designed algorithms. Despite improving over known
algorithms, we note that a limitation of AlphaTensor is the need
to pre-define a set of potential factor entries F, which discretizes
the search space but can possibly lead to missing out on efficient
algorithms. An interesting direction for future research is to adapt
AlphaTensor to search for F. One important strength of AlphaTensor
isits flexibility to support complex stochastic and non-differentiable
rewards (from the tensor rank to practical efficiency on specific hard-
ware), in addition to finding algorithms for custom operations in a
wide variety of spaces (such as finite fields). We believe this will spur
applications of AlphaTensor towards designing algorithms that opti-
mize metrics that we did not consider here, such as numerical stability
or energy usage.

The discovery of matrix multiplication algorithms has far-reaching
implications, as matrix multiplication sits at the core of many com-
putational tasks, such as matrix inversion, computing the determi-
nant and solving linear systems, to name a few’. We also note that our
methodology can be extended to tackle related primitive mathemati-
cal problems, such as computing other notions of rank (for example,
border rank—see Supplementary Information), and NP-hard matrix
factorization problems (for example, non-negative factorization). By
tackling a core NP-hard computational problemin mathematics using
DRL—the computation of tensor ranks—AlphaTensor demonstrates the
viability of DRL in addressing difficult mathematical problems, and
potentially assisting mathematicians in discoveries.
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matrix sizes (despite optimizing the algorithm only on one matrix size). We also
reportthe speed-up of the Strassen-square algorithm. The medianspeed-upis
reported over 200 runs. The standard deviation over runsis <0.4 percentage
points (see Supplementary Information for more details). ¢, Speed-up of both
algorithms (tailored toa GPU and a TPU) benchmarked onboth devices.
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Methods

TensorGame

TensorGame is played as follows. The start position S, of the game
corresponds to the tensor 7 representing the bilinear operation of
interest, expressed insome basis. In each step t of the game, the player
writes down three vectors (u®, v, w®), which specify the rank-1tensor
u®® v® ® w?, and the state of the game is updated by subtracting the
newly written down factor:

S, €8,,-uP@vO@w®, (2

The game ends when the state reaches the zero tensor, S = 0. This
means that the factors written down throughout the game forma
factorization of the start tensor S, that is, So= Y, u® @ vO @ w®.
This factorization is then scored. For example, when optimizing for
asymptotic time complexity the score is -R, and when optimizing
for practical runtime the algorithm corresponding to the factorization
{(u® v, w(”)}f=1 is constructed (see Algorithm 1) and then bench-
marked on the fly (see Supplementary Information).

In practice, we also impose a limit R, on the maximum number of
moves in the game, so that a weak player is not stuck in unnecessarily
(oreveninfinitely) long games. When a game ends because it has run
out of moves, a penalty score is given so that it is never advantageous
todeliberately exhaust the move limit. For example, when optimizing
for asymptotic time complexity, this penalty is derived from an upper
boundonthetensor rank of the final residual tensorSp, . Thisupper
bound onthe tensor rank is obtained by summing the matrix ranks of
the slices of the tensor.

TensorGame over rings. We say that the decomposition of 7,,in equa-
tion (1) isinaring & (defining the arithmetic operations) if each of the
factorsu®, v® and w® has entries belonging to the set £, and additions
and multiplications are interpreted according to £. The tensor rank
depends, in general, on the ring. At each step of TensorGame, the ad-
ditions and multiplications in equation (2) are interpreted in £. For
example, when working in Z,, (in this case, the factors u®, v and w®
livein F=1{0, 1}),amodulo 2 operationis applied after each state update
(equation (2)).

We note thatinteger-valued decompositions u®, v and w? lead to
decompositions in arbitrary rings £. Hence, provided F only contains
integers, algorithms we find in standard arithmetic apply more gener-
allytoanyring.

AlphaTensor

AlphaTensor builds on AlphaZero! and its extension Sampled
AlphaZero®, combining a deep neural network with a sample-based
MCTS search algorithm.

The deep neural network, f(s) = (7, z) parameterized by 0, takes as
inputthe currentstate s of the game and outputs a probability distribu-
tionm(-|s) overactions and z(-|s) over returns (sum of future rewards) G.
The parameters 8 of the deep neural network are trained by reinforce-
ment learning from self-play games and synthetic demonstrations.
Self-play games are played by actors, running a sample-based MCTS
search at every state s,encountered in the game. The MCTS search
returns animproved probability distribution over moves from which
anaction a, is selected and applied to the environment. The sub-tree
under a,is reused for the subsequent search at s,,;. At the end of the
game, areturn Gis obtained and the trajectory is sent to the learner to
update the neural network parameters 6. The distribution over returns
z(-|s,) is learned through distributional reinforcement learning using
the quantile regression distributional loss**, and the network policy
m(-|s,) isupdated using aKullback-Leibler divergence loss, to maximize
its similarity to the search policy for self-play games or to the next
action for synthetic demonstrations. We use the Adam optimizer®

with decoupled weight decay®® to optimize the parameters 6 of the
neural network.

Sample-based MCTS search. The sample-based MCTS searchis very
similar to the one described in Sampled AlphaZero. Specifically, the
search consists of aseries of simulated trajectories of TensorGame that
are aggregated in a tree. The search tree therefore consists of nodes
representing states and edges representing actions. Each state-action
pair (s, a) stores aset of statistics N(s, a), Q(s, a), fi(s, a), where N(s, a)
is the visit count, Q(s, a) is the action value and 71(s, a) is the empirical
policy probability. Each simulation traverses the tree from the root
state s, until a leaf state s, is reached by recursively selecting in each
statesanaction athat has notbeen frequently explored, has highem-
pirical policy probability and high value. Concretely, actions within
the tree are selected by maximizing over the probabilistic upper con-

fidence tree bound®"*’
2, N(s, b)

arg‘rz‘naxQ(s, a) +c(s)-7i(s,a) +NG.a)
where c(s) is an exploration factor controlling the influence of the
empirical policy (s, a)relative to the values Q(s, a) as nodes are visited
more often. In addition, a transposition table is used to recombine
different action sequences if they reach the exact same tensor. This
canhappen particularly oftenin TensorGame as actions are commuta-
tive. Finally, when aleaf state s, isreached, it is evaluated by the neural
network, whichreturns K actions {a;} sampled from n(a|s,), alongside
the empirical distribution ii(als,) = % Y. 64,4, and a value v(s) con-
structed from z(-|s,). Differently from AlphaZero and Sampled Alp-
haZero, we chose v not to be the mean of the distribution of returns
z(-|s;) asisusualin most reinforcement learning agents, but instead to
bearisk-seeking value, leveraging the facts that TensorGameis a deter-
ministic environment and that we are primarily interested in finding
the best trajectory possible. The visit counts and values on the simu-
lated trajectory are then updated in a backward pass as in Sampled
AlphaZero.

Policy improvement. After simulating N(s) trajectories from state s
using MCTS, the normalized visit counts of the actions at the root of
thesearchtree N(s, a)/N(s) formasample-based improved policy. Dif-
ferently from AlphaZero and Sampled AlphaZero, we use an adaptive
temperature scheme to smooth the normalized visit counts distribution
assomestates can accumulate an order of magnitude more visits than
others because of sub-tree reuse and transposition table. Concretely,
we define the improved policy as T7i(s, a) = NY*(s, a)/ 3, NY™(s, b)
where 7(s) =logN(s)/logN if N>N and1otherwise, with N being a
hyperparameter. For training, we use Z1 directly as a target for the
network policy . For acting, we additionally discard all actions that
have a value lower than the value of the most visited action, and sample
proportionally to Z/i among those remaining high-value actions.

Learning one agent for multiple target tensors. We train a single
agent to decompose the different tensors 7, ,, ,in a givenarithmetic
(standard or modular). As the network works with fixed-size inputs, we
pad alltensors (with zeros) to the size of the largest tensor we consider
(75, of size 25 x 25 x 25). At the beginning of each game, we sample uni-
formly atrandomatarget7, ,, ,, and play TensorGame. Training asin-
gleagentondifferent targetsleads tobetter results thanks to the trans-
fer betweentargets. Allour results reported in Fig. 3 are obtained using
multiple runs of this multi-target setting. We also train a single agent
to decompose tensors in both arithmetics. Owing to learned transfer
between the two arithmetics, this agent discovers a different distribu-
tion of algorithms (of the same ranks) in standard arithmetic than the
agenttrained on standard arithmetic only, thereby increasing the over-
all diversity of discovered algorithms.



Synthetic demonstrations. The synthetic demonstrations buffer
contains tensqr-factorization pairs, where the factorizations
{(u®, v, w)}_ arefirst generated at random, after which the tensor
D=YF u”®vP®w" isformed. We create a dataset containing
5 million such tensor-factorization pairs. Each element in the factors
is sampled independently and identically distributed (i.i.d.) froma
given categorical distribution over F (all possible values that can be
taken). We discarded instances whose decompositions were clearly
suboptimal (contained afactor withu=0,v=0,orw=0).

In addition to these synthetic demonstrations, we further add to
the demonstration buffer previous games that have achieved large
scorestoreinforce the good moves made by the agentin these games.

Change of basis. The rank of abilinear operation does not depend on
the basis in which the tensor representing it is expressed, and for any
invertible matrices A, Band Cwe haveRank (7) = Rank (7 ®B9) where

T AB.Ojs the tensor after change of basis given by

s S S
TABO=Y 3 Y ABiCiTan- (3)
a=1b=1c=1

Hence, exhibiting a rank-R decomposition of the matrix multiplica-
tion tensor 7, expressed in any basis proves that the product of two
n x nmatrices can be computed using R scalar multiplications. Moreo-
ver, itis straightforward to convert such a rank-R decomposition into
arank-Rdecompositioninthe canonical basis, thus yielding a practical
algorithm of the formshownin Algorithm 1. We leverage this observa-
tionby expressing the matrix multiplication tensor 7,inalarge number
of randomly generated bases (typically 100,000) in addition to the
canonical basis, and letting AlphaTensor play games in all bases in
parallel.

This approach has three appealing properties: (1) it provides anatural
exploration mechanism as playing games in different bases automati-
callyinjects diversity into the games played by the agent; (2) it exploits
properties of the problem as the agent need not succeed inall bases—it
is sufficient to find a low-rank decomposition in any of the bases; (3)
itenlarges coverage of the algorithm space because a decomposition
with entriesinafinite set F={-2,-1, 0, 1, 2} found in a different basis
need not have entries in the same set when converted back into the
canonical basis.

In full generality, a basis change for a 3D tensor of size S xS x S is
specified by threeinvertible S x Smatrices A, Band C. However, inour
procedure, we sample bases at random and impose two restrictions:
(1) A=B=C, as this performed better in early experiments, and (2)
unimodularity (detA € {-1, +1}), which ensures that after converting
anintegral factorizationinto the canonical basis it still containsinteger
entries only (this is for representational convenience and numerical
stability of the resulting algorithm). See Supplementary Information
for the exact algorithm.

Signed permutations. Inaddition to playing (and training on) gamesin
differentbases, we also utilize a data augmentation mechanismwhen-
ever the neural network is queriedinanew MCTS node. Atacting time,
whenthe networkis queried, we transform the input tensor by applying
achange of basis—where the change of basis matrix is settoarandom
signed permutation. We then query the network on this transformed
input tensor, and finally invert the transformation in the network’s
policy predictions. Although this data augmentation procedure can
be applied with any generic change of basis matrix (that s, it is not
restricted to signed permutation matrices), we use signed permuta-
tions mainly for computational efficiency. At training time, whenever
the neural networkis trained onan (input, policy targets, value target)
triplet (Fig. 2), we apply arandomly chosen signed permutation to
both the input and the policy targets, and train the network on this

transformed triplet. In practice, we sample 100 signed permutations
atthe beginning of an experiment, and use them thereafter.

Action canonicalization. Forany,, 1,, A; € {-1, +1} such that 44,4, =1,
theactions (4,u, A,v, A;w) and (u, v, w) are equivalent because they lead
to the same rank-one tensor (A;u) ® (A,v) ® (A;w) =u ® v ® w. To pre-
vent the network from wasting capacity on predicting multiple equiva-
lentactions, during training we always present targets (u, v, w) for the
policy head in a canonical form, defined as having the first non-zero
element of uand the first non-zero element of v strictly positive. Thisis
well defined because uor vcannot be all zeros (if they are to be part of
aminimal rank decomposition), and for any (u, v, w) there are unique
Ay, Ay, A5 € {1, +1} (with Ad,A; = 1) that transform it into canonical form.
In case the network predicts multiple equivalent actions anyway, we
merge them together (summing their empirical policy probabilities)
beforeinserting theminto the MCTS tree.

Training regime. We train AlphaTensorona TPU v3, withatotal batch
size of 2,048. We use 64 TPU cores, and train for 600,000 iterations.
Ontheactorside, the games are played on standalone TPU v4, and we
use 1,600 actors. In practice, the procedure takesaweek to converge.

Neural network

Thearchitectureis composed of atorso, followed by a policy head that
predictsadistribution over actions, and avalue head that predicts adis-
tribution of the returns fromthe current state (see Extended Data Fig. 3).

Input. The input to the network contains all the relevant information
of the current state and is composed of a list of tensors and a list of
scalars. The most important piece of information is the current 3D
tensor S, of size S x S x S. (For simplicity, in the description here we
assumethatallthethree dimensions of the tensor are equalinsize. The
generalization to different sizes is straightforward.) In addition, the
model is given access to the last 4 actions (h being a hyperparameter
usually setto 7), represented as h rank-1tensors that are concatenated
totheinput. Thelist of scalarsincludes the time index t of the current
action (where 0 <t <Ryi0)-

Torso. Thetorso of the networkisin charge of mapping both scalarsand
tensors from the input to a representation that is useful to both policy
and value heads. Itsarchitecture is based on amodification of transform-
ers?,and its main signature is that it operates over three S x Sgrids pro-
jected from the S x S x Sinput tensors. Each grid represents two out of
the three modes of the tensor. Defining the modes of the tensor as
U, v, W, therowsand columns of the first grid are associated toZ/and v,
respectively, the rows and columns of the second grid are associated to
Wand U, and the rows and columns of the third grid are associated to V
and W.Each element of each gridis afeature vector, anditsinitial value
is given by the elements of the input tensors along the grid’s missing
mode. These feature vectors are enriched by concatenatingan S xS x 1
linear projection from the scalars. This is followed by a linear layer pro-
jecting these feature vectorsinto a 512-dimensional space.

Therestof the torsoisasequence of attention-based blocks with the
objective of propagating information between the three grids. Each of
thoseblocks has three stages, one for every pair of grids. Ineach stage,
thegridsinvolved are concatenated, and axial attention?* is performed
over the columns. Itisnoted thatineach stage we performin parallel S
self-attention operations of 2S elements in each. The representation
sent to the policy head corresponds to the 35*512-dimensional feature
vectors produced by the last layer of the torso. A detailed description
of the structure of the torso is specified in Extended Data Fig. 4 (top)
and Appendix A.1.1in Supplementary Information.

Policy head. The policy head uses the transformer architecture?
to model an autoregressive policy. Factors are decomposed into k
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tokens of dimensionality d such that k x d = 3S. The transformer con-
ditions on the tokens already generated and cross-attends to the fea-
tures produced by the torso. At training time, we use teacher-forcing,
thatis, the ground truth actions are decomposed into tokens and
taken as inputs into the causal transformer in such a way that the
prediction of atoken depends only on the previous tokens. At infer-
ence time, K actions are sampled from the head. The feature repre-
sentation before the last linear layer of the initial step (that is, the
only step that is not conditioned on the ground truth) is used as an
input to the value head, described below. Details of the architecture
arepresented in Extended Data Fig. 4 (centre) and Appendix A.1.2in
Supplementary Information.

Value head. The value head is composed of a four-layer multilayer
perceptron whose lastlayer produces g outputs correspondingto the
zq zq 291 % quantlles In this way, the value head predicts the distri-
bution ofreturns fromthis state in the form of values predicted for the
aforementioned quantiles®. Atinference time, we encourage the agent
toberisk-seeking by using the average of the predicted values for quan-
tiles over 75%. A detailed description of the value head is presented in
Extended Data Fig. 4 (bottom) and Appendix A.1.3 in Supplementary
Information.

Related work

The quest for efficient matrix multiplication algorithms started with
Strassen’s breakthrough in ref.?, which showed that one can multiply
2 x 2 matrices using 7 scalar multiplications, leading to an algorithm
of complexity O(n?>%Y). This led to the development of a very active field
of mathematics attracting worldwide interest, which studies the asymp-
totic complexity of matrix multiplication (see refs. ). So far, the best
known complexity for matrix multiplication is O(n?>3"28¢)(ref.'2), which
improves over ref. ", and builds on top of fundamental results in the
field®°. However, this does not yield practical algorithms, as such
approachesbecome advantageous only for astronomical matrix sizes.
Hence, asignificant body of work aims at exhibiting explicit factoriza-
tions of matrix multiplication tensors, as these factorizations provide
practical algorithms. After Strassen’s breakthrough showing that
rank (7,) <7, efficient algorithms for larger matrix sizes were
found™¢'82638 Most notably, Laderman showed in ref. ® that 3 x 3
matrix multiplications can be performed with 23 scalar multiplications.
Inadditionto providingindividual low-rank factorizations, animpor-
tant research direction aims at understanding the space of matrix
multiplication algorithms—as opposed to exhibiting individual
low-rank factorizations—by studying the symmetry groups and diver-
sity of factorizations (see ref. > and references therein). For example,
the symmetries of 2 x 2matrix multiplication were studied inrefs. >,
where Strassen’s algorithm was shown to be essentially unique. The
case of 3 x 3 was studied in ref. **, whereas a symmetric factorization
forallnis providedin ref. .

Onthe computational front, continuous optimization hasbeenthe
mainworkhorse for decomposing tensors”**¢, and in particular matrix
multiplication tensors. Such continuous optimization procedures (for
example, alternatingleast squares), however, yield approximate solu-
tions, which correspond to inexact matrix multiplication algorithms
with floating point operations. To circumvent thisissue, regularization
procedures have been proposed, suchasref.’®, to extract exact decom-
positions. Unfortunately, such approaches often require substantial
humanintervention and expertise to decompose large tensors. A dif-
ferent line of attack was explored in refs. “*8, based on learning the
continuous weights of atwo-layer network that mimics the structure
of the matrix multiplication operation. This method, whichis trained
through supervised learning of matrix multiplication examples, finds
approximate solutions to 2 x 2 and 3 x 3 matrix multiplications.
Inref.*8, a quantization procedure is further used to obtain an exact
decomposition for 2 x 2. Unlike continuous optimization-based

approaches, AlphaTensor directly produces algorithms from the
desired set of valid algorithms, and is flexible in that it allows us to
optimize a wide range of (even non-differentiable) objectives. This
unlocks tackling broader settings (for example, optimizationin finite
fields, optimization of runtime), as well as larger problems (for exam-
ple, 7,and 75) than those previously considered. Different from con-
tinuous optimization, abooleansatisfiability (SAT) based formulation
of the problem of decomposing 3 x 3 matrix multiplication was
recently proposed inref.?°, which adds thousands of new decompo-
sitions of rank 23 to the list of known 3 x 3 factorizations. The approach
relies on a state-of-the-art SAT solving procedure, where several
assumptions and simplifications are made on the factorizations to
reduce the search space. As s, this approach s, however, unlikely to
scale to larger tensors, as the search space grows very quickly with
the size.

Onthe practicalimplementation front, ref. proposed several ideas
to speed up implementation of fast matrix multiplication algorithms
on central processing units (CPUs). Different fast algorithms are then
compared and benchmarked, and the potential speed-up of such algo-
rithms is shown against standard multiplication. Other works focused
on getting the maximal performance out of a particular fast matrix
multiplication algorithm (Strassen’s algorithm with one or two levels
of recursion) on a CPU* or a GPU*. These works show that, despite
popular belief, such algorithms are of practical value. We see writing
acustom low-levelimplementation of a given algorithm to be distinct
fromthe focus of this paper—developing new efficient algorithms—and
we believe that the algorithms we discovered can further benefit from
amore efficientimplementation by experts.

Beyond matrix multiplication and bilinear operations, a growing
amount of research studies the use of optimization and machine learn-
ing to improve the efficiency of computational operations. There
are three levels of abstractions at which this can be done: (1) in the
hardware design, for example, chip floor planning®, (2) at the hard-
ware-software interface, for example, program super-optimization
of areference implementation for specific hardware™, and (3) on the
algorithmiclevel, for example, program induction®, algorithm selec-
tion® or meta-learning®*. Our work focuses on the algorithmiclevel of
abstraction, although AlphaTensor is also flexible to discover efficient
algorithms for specific hardware. Different from previous works, we
focus on discovering matrix multiplication algorithms that are prov-
ably correct, without requiringinitial reference implementations. We
concludebyrelating our work broadly to existing reinforcement learn-
ing methods for scientific discovery. Within mathematics, reinforce-
ment learning was applied, for example, to theorem proving®~%, and
tofinding counterexamples refuting conjectures in combinatorics and
graph theory®. Reinforcement learning was further shown to be useful
in many areasin science, such as molecular design®®®' and synthesis®
and optimizing quantum dynamics®.

Data availability

Thedatausedto train the system were generated synthetically accord-
ing to the procedures explained in the paper. The algorithms discov-
ered by AlphaTensor are available for download at https://github.com/
deepmind/alphatensor.

Code availability

Aninteractive notebook with code to check the non-equivalence of algo-
rithmsis provided. Moreover, the fast algorithms from the ‘Algorithm
discovery results’ sectionona GPU and a TPU are provided. These are
available for download at https://github.com/deepmind/alphatensor.
A full description of the AlphaZero algorithm that this work is based
onisavailableinref.!, and the specific neural network architecture we
useisdescribed using pseudocodein the Supplementary Information.
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ai,1 ai2 Qi3 a4 bi,1 bi2 b1z bia ci,1 €12 C€C1,3 C1,4
az1 a22 a23 G24 b1 b2z b23 baa| _ [c21 c22 c23 c24
az,;1 azz2 Q33 as4 b3,y bz b3z bza]  |c31 c32 €33 c34
asg,1 Q42 A43 Q44 ban bao basz  baa C4,1 C4a2 €43

h1 =a1,1b1,3

ho = (a1,1 + a3, + a3 3)(b1,1 + b3,1 + b3,3)

hs = (a1,1 +as,1 +asza)(bi,2 + bsg 2+ bs 3)
(a1,3+az2,1 +a2,3) (b1,3 + b1,a + b3,4)
(a1,1 +as,1) (bri,1 +bi,2 +b1,3+bs,1 + b33+ ba2+bas)
he = (a1,3 + a2,3) (b1,3 + b1,a + bz2 + bz 3+ bz a4 + bs 2+ bs 3)
h7 = (a1,4 + aa,3 + as,4) (bz,1 + bz 3+ bs 1)
hg = (a1,4 +aa,1 + as,4) (b1,3 + b1,a + bs4)
ho = (a1,3 + a2,3 + a2,4) (bz,2 + bs 2 + bs 3)

hio = (a1, 4+ as,4) (b1,3 +b1,a +b3,;1 +b3 3+ bs1 +bs3z+bsa)
hi1 = a3z,3(b1,1 +b22 + b2 3+ b3,1 +b3,2)

hi2 = (a1,2 + az2 + asz 3) (ba,2 + b2,3 + b3 2)

hiz = a3z,4 (b1,2 +b2,1 +b2,3 +bs1 +bs2)

hia = (a1,2 + a3,2) (ba,1 +b2,2 +b2,3 + b3,2 + ba,1)

his = (a1,2 +az2 +asz4) (ba,1 +b2,3 +bs 1)

hie = az,1 (b1,2 +b1,4 +b22+ ba3 + b34)

hi7 = (a1,2 +a2,;1 +az2) (b1,2 + b2,2 + b2 3)

hig = (a1,2 + a2,2) (b1,2 + ba,2 +b2,3 + ba,a + baa)

hig = az,4 (ba,3 +b24 + b3 2+ by +bss)

hao = (a1,2 +a2,3 +az4+ a3 2+ asz3)bse2

ho1 = (a1,2 + a2 +az4) (ba,3 +b2s + bs4)

hoo = as,3 (ba,3 +b24 + b3 1 +b3a+bs1)

hoz = (a1,1 +a1,3+a14a+az3+azs+as 1+ azs)(bs,2 + bg3)
hos = (a1,2 + as2 + as 3) (ba,3 + b2,4 + b3 4)

hos = (a1,2 + as,2) (b1,1 +b2,1 + ba,3 + ba,a + b3,4)

hog = (a1,2 + as,;1 + as2) (b1,1 + b2,1 + b2,3)

ho7 = a1,4bs 3

hog = (a1,2 +a2,;1 +az2+a3,1 +as4)bi 2

hog = (a1,2 +a2,1 +az,3+ as,o + as,3)bsa

h3o = (a1,2 +az;1 +a3,3+as,1 +as2)bi1

h31 = as,1 (b1,1 +b1,a +b21 +bo3 +baa)

hss = (a1,2 +az 2+ asza+as3+ as,a) b

h3z = (a1,2 +az2+asa+as1 + as,4)bga

h3s = (a2,1 +as,;1 +as,1) (b1,1 +b1,2 + b1,4)

hss = (a1,2 + a2;1 + a2 + a3,z + as,3) (ba,2 + b2,3)

hse = (a1,2 +a2,4 +az 2+ as3)(ba,3 +b2a+ b3 2+ ba1)

hs7 = (a1,2 +a2,1 +asz3+ as2)(br,1 +b2,2 + b3 + b3 4)

hss = (a2,2 + az .o+ as2) (ba,1 + ba,o + b2 a)

hzg = a1,2b2 3

hao = a1,3b3 3

ha1 =(a1,1 +a1,3+ai,a+ a1 +a2,3+as1 +asaq)(br,z+ bi,4)
hao = (a1,2 +az 2 +asza + as,1 + ag2) (b2,1 + b2,3)

h4z = (a2,4 + az.a + as,4) (ba,1 +ba2 + ba 4)

hasa = (a2,3 + asz,3 + as,3) (b3,1 + bs,2 + b3 4)

has = (@11 +a1,3+a1,a+az1 +as 3+ as,3+ as,4) (b3,1 + b3,3)
hse = (a1,2 +az2 +asz s+ as;1) (b2 +ba,1 + b2z + b )

har = (a1,2 + as;2 + az,a + as> + as,3) (b2,3 + ba2,4)
= his + hag + h2 + h3o + h32 + h3g + hao + haz + has + h7

|
c2.1 = h11 4+ hi2 + h1a + hoo + h22 4+ hos + has + hoag + has + h3e + ha7 + h3s + haa + har
c3,1 = h11 4+ hi2 + h1a 4+ his + hae 4+ h3o + h3g + ha2
ca,1 = h1s 4+ hoa + haa + hos + hae 4+ h3a2 + h3g + ha2
c1,2 = hi12 + h17 + hoo + h23 + ha7 + hag + h3s + h3g + h3 + hg
c22 = hi2 + h17 + hig + hig + h2o + h21 + h3s + hag
c32 = hi2 +hi13 + hia + his + h17 + hag + h3s + hag
ci,2 = hi13 + hi1a + his + hig + h19 + h21 + h32 + h33 + hae + has + haz + ha3 + hae + haz
c1,3 = h1 + ho7 + h3g + hao
c23 = hi1e + h17 + hig + hig + h21 + h3g + hao + ha + he + ho
¢33 = hi11 +hi2 +hiz +hig +his +h1 +he +h3zg + hs + hs
ci,3 = h1o + ha2 + ho4 + hos + hae + ha7 + h31 + h3o + h7 + hg

c1,4 = h1 + ho1 + hag + hag + h33 + h3g + ha1 + har + ha + hg

¢34 = hi6 + hi7 + h1s + ho1 + haa + hag + h3g + haz

¢34 = h16 + hi7 + h1s + has + hag + has + h3o + hs1 + h3a + hss + har + hss + haa + hae
c4,4 = ha1 + hos + has + hoe + h31 + h3zs + h3o + haz

Extended DataFig.1|Algorithm for multiplying4 x 4 matricesinmodular arithmetic (Z,) with 47 multiplications. This outperforms the two-level Strassen’s
algorithm, which involves 72 =49 multiplications.



bii b2
a1 G2 @13 @14 Q15 bsi s
az1 G2 Q23 G24 Aa25 b3’1 b3’2
a3l G322 @33 Q34 Aa35 b4’1 b4’2
aq,1 Q42 @43 Q44 Q45 bs,l b5’2
hi1 =a32(=bay —b25s —b31)
he = (a2,2 + az5 — az5) (—b2,5 — bs,1)

h3_(—(1;1—a41+a4>)( b11+b25)
h4—(012+(114+a14)( 5 —baa)
hs = (a1,5 + az,2 + az2;5) (— b24+b51)
hﬁ (—a2,2 — az,5 — aa5) (b2,3 + bs,1)
h7 = (—a11 + as1 — aa2) (b11 + ba,4)
(

(-

hs = (as,2 — as,3 — as,3) (—b2,3 + b31)
hg = (—a12 — a1,4 + as,4) (b2,3 + ba,1)
hio = (az,2 + az;5) bs,1

hi1 = (—a2,1 — as,1 + as2) (—bi,1 + bay2)
hi2 = (!11.1 - 114.2)b1,1

hiz = (a1,2 + @14 + az,4) (b2,2 + ba,1)

hia = (a1,3 — as2 + as3) (bz,a + b3,1)

his = (—a1,2 — a1,4) ba1

hie = (—as2 + as3) b3,

hiz =(a12+a14—az21 +a22 —az3+az4—az2+a33 —as1 +as2) bz
hig = az,1 (b1, + bi,2 + bs2)

hig = —a2,3 (b3,1 + bs,2 + bs,2)

hao = (—a1,5 +az1 + azs —azs) (=biy — b2 + bia — bs2)

ho1 = (a2,1 + az2,3 — az2,5) bs2

hae = (a1,3 — a4 — az,4) (b1, +br,2 —bia — bz — ba2 + b3 a + baa)
ho3 = a1,3 (—bs,1 + b3,a + baa)

hog = a1,5 (—baa — bs,1 + bs.4)

has = —a1,1 (bi1,1 — b1 a)

hoe = (—a1,3+a1,4+ai5)baa

ha7 = (a1,3 —as,1 +as3) (bi,1 —bia +bis +b3s)

hog = —a3,4 (—bzs — ba,1 — bas)

hag = az 1 (b1,1 + b15 4 b35)

h3o = (az,1 —az 3+ asza)bzs

h31 = (—a1,4 —a1,5 — az,a) (—baa — bs1 +bs 4 — bs 5)

haz = (az,1 + a1 + as,4) (b1,3 — bay1 — ba2 — ba3)

has = as3 (=bs,1 — bs3)

h3s = as,4 (=b1,3 4+ ba1 + ba,3)

has = —aa,5 (b1,3 + bs,1 + bs,3)

has = (az,3 — a2;5 — aas) (ba,1 +bs2 + b3z + bs2)

ha7r = (—a4,1 — 4,4 +aa5) b3

hag = (—a2,3 —as1 +asz — aza) (bas + ba1 + ba2 +bas)

h3g = (_(l.‘i.l — Q4,1 — Q4,4 + (1-1.3) (bl,S +bs,1 + bs,3 + bs,s)

hao = (—a1,3 +a1,4 + ar5 — as,a) (=bs1 — baz + b3 a + baa)

har = (—a1,1 + a1 — aas) (b1,3 +b31 + b33 —bsa+bs1 +bs3 — bs.4)
haz = (—a2,1 +az25 —ass) (b1 —bi,2 — bis + ba1 + baz + bas — bs2)
haz = az,4 (ba,1 + ba,2)

haa = (a2,3 + as2 — as3) (bz,2 — b3,1)

has = (—a33 + az,a — as,3) (b3,5 + ba,1 + ba,z + bas + bs1 + bs3 + bs,5)

has = —as,5 (—bs,1 — bs5)
har = (a2, — a25 —as1 +ass) (b + b2 +bis —bay —bao —
hag = (—a2,3 + a3 3) (b2,2 + b3,2 + bz s + ba,1 + ba2 + bas)

ba,5)

bi3
ba 3
bs.3
by3
bs,3

hgg = (—a11 —a13+a1a+a1s —az1 —az3+aza+azs) (—biy — b2 +b1a)

hso = (—a1,4 — az,4) (b2,2 — b31 — bz,2 + bz .a — ba2 + baa)

b1,4 b1,5 . . ., ., .,

bos bos €11 Ci2 €3 Ci4 C15

bss big | = C2;1 C22 C23 C24 C25

bis bas €31 €32 C33 C34 C35

b b C41 C42 C43 C44 C4p5

5,4 5,5

hs1 = az,2 (b2,;1 + b2,2 — bs,1)
hs2 = as2 (b1,1 + b2,1 + b2,3)
hss = —a1,2 (—b2,1 + b2,a + ba,1)
hsa = (a12 +a1,4 —a22 —azs —as2 + a3 3 — aa2 + @43 — ass — as5) bas
hss = (a1,4 — aa,4) (—b2,3 + b3,1 + b33 — b3 g + baz — b a)
hse = (a1,1 —a1,5 — as,1 +aas) (b3 + b3z —bsa+bs,1 +bs3 — bsa)
hs7 = (—as1 — as1) (—b1,3 —b1,5 —ba,s — bs,1 — bs,3 — bs,5)
hsg = (—a1,4 —a15 —az 4 —az;s) (—bs,1 + bs.a — bs5)
hso = (—az3 +as s — as3 + as,4) (ba,1 +ba3 +bas +bs1+bs3+bs5)
heo = (a2,5 + as,5) (b2,3 — b3, 1 — bz 2 — b33 — bs2 — bs,3)
he1 = (a1,4+az4) (b1 —bra+bis —bas —baa~+bas —bsa+bsa—bss)
hez = (az,1 + as,1) (b2 +b1,3 + ba2 — bay — bao — baz)
hes = (—asz;3 — aa3) (—b2,3 — b33 — b3,5 — ba,1 — ba,3 — bays)
hea = (a1,1 —a1,3 —a1a+as1 —azsz —asa) (br,1 —bia+bis)
hes = (—a1,1 + as,1) (—b1,3 + b1,a +b2a — bs,1 — bs,3 + bs4)
hee = (1,1 — @12+ a13 — a5 — G20 — G25 — 3.0+ A3,3 — Aa1 + a1,2) baa
her = (az;s —azs) (b, +b1,2+bis —bas —bay —bao —bas+bs2+bss)
hes = (a1,1 +a1,3 —a1,4a — a5 — as,) — as,3 + asa + as5) (—bs,1 — bs,z + bs,a)
heo = (—a1,3 + a1a — az3 + aza) (—ba,a — ba,1 — b3,z + b3 a — bs,2 + bs,4)
h7o = (a2,3 — as,5 + as,3 — aa5) (—bs,1 — bs,2 — bs,3)
h71 = (—a3,1 +a33 —asa+ass — as,1 + as3 — asa + ass) (—bs; 1 — bs 3 — bs5)
h72 = (—az2,1 —aza — as;1 — aaa) (a1 + ba2 + ba3)
h7s = (a1,3 —a1,4 —a1,5 + az3 —aza — az5) (b1,1 +bi2 —bia +baa +bs 2 — bsa)
hra = (a2,1 — az3 + a24 — as,1 + asz — aza) (ba,y + bao + bays)
h7s = —(a12+a1,4 —az2 —azs —as1 +as2 +asa+ass —as,1 +asa2)bas
hz¢ = (a1,3 + as;3) (=b1,1 +bra — b5 +baa + bsa — b3s)
c1,1 = —hio + hi2 + hia — his — hie + hsz + hs — hes — hr
c21 = hio + hi1 — hi2 + haz + his + hie — hir — haa + hs
c31 = hio — hi2 + his + hie — h1 + ha + hg — ha + hzs
c41 = —hio + h12 — his — hig + hs2 + hsa — he — hg + ho
c1,2 = hiz + his + h2o + h21 — h22 + has + hos — haz + hag + hso
c22 = —hi1 + hi2 — hiz — his — hie + hi7 + his — hig — ho1 + hag + haa
3,2 = —hie — h1g — ha1 — hag — hag — h3s + haz + haa — har + has
c1,2 = hi1 — hi2 — his + ho1 — ha2 + haz — haa — hze + he2 — h7o
c1,3 = his + has + haa + haa — har + hao — har + hss — hse — ho
2,3 = —hio + h19 + ha2 + has + hae + har — haz — heo — he — hr2
3,3 = —hie — hos + has + har — hag + has — hae + hes — hr1 — hs
c1,3 = hio + h1s + hie — has + haa — has — har — hsa + he + hs — ho
c1,4 = —hio + hi2 + h1a — hi6 + has + h2a + has + hae + hs — hee — hr
¢2,4 = h1o + his — h1g + hao — ha2 — hoa — hag — hs — heo + hr3
3,4 = —h1a + hie — has — hag + ha7 + hog + ha1 + hae — hss + hre
c1,4 = h12 + has + hae — has — has — hao + ha1 + hes — hes — hr
c1,5 = his + h2a + has + hor — hos + hao + ha1 — ha + he1 + hes
c2,5 = —hio — his — h2 — hao — hss + ha2 — haz + hae + her + hra
¢35 = —h1o + hi2 — his + has + hag — ha — h3o — ha + hag + ha — hrs
c1,5 = —h12 — hag + h3o — haa + has + hao + hs — has + hs7 + hso

Extended DataFig.2|Algorithm for multiplying 4 x 5by 5 x 5 matricesin standard arithmetic with 76 multiplications. This outperforms the previously best

known algorithm, whichinvolves 80 multiplications.
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Extended Data Table 1| Rank results obtained by combining decompositions (in standard arithmetic)

Size Discovered Known Recipe
(n, m, p) rank rank
(3,4,5) 47 48 (3,4,5)*
(3,4,11) 103 104 (3,4,5) +(3,4,6)
3,5,9) 105 106 (3,5,4)+(3,5,5)
(3,9,11) 225 226  (3,9,5)+(3,9,6)
4, 4,5) 63 64  (4,4,5)
4,5,5) 76 80 (4,5,5)"
4,5,9) 139 140 (4,5,4) + (4,5,5)
4,5,10) 152 154  2(4,5,5)
4,5,11) 169 170  (4,5,3) + (4,5, 8)
4,9, 10) 255 259 9(2,3,3)+6(2,3,4)
4,9,11) 280 284 4(2,3,3)+11(2,3,4)
4,11,11) 343 346 (2,3,3)+3(2,3,4)+3(2,4,3) +8(2,4,4)
4,11,12) 366 372 4(2,3,4)+11(2,4,4)
5,57 134 136 (5,5,3)+(5,5,4)
5,7,9) 234 235 (2,3,5) +(2,4,4) +(2,4,5) + (3,3,4) + (3,3,5) + (3,4,4) + (3,4, 5)
(5,7, 10) 257 258 (2,3,5)+2(2,4,5) +2(3,3,5) +2 (3,4, 5)
(&, 74 1) 280 281 (2,3,5) +(2,4,5) +(2,4,6) +2 (3, 3,6) + (3,4,5) + (3,4, 6)
(5,8,9) 262 264 (2,4,4)+2(2,4,5) +2(3,4,4) +2(3,4,5)
(5, 8, 10) 287 291 3(2,4,5)+4(3,4,5)
(5,8,11) 317 319 (2,4,5)+2(2,4,6) +2(3,4,5) +2 (3,4, 6)
(5,9,9) 296 297 (2,4,5) +(2,5,4) +(2,5,5) + (3,4,4) + (3,4,5) + (3,5,4) + (3,5, 5)
(5,9, 10) 323 325 (2,4,5)+2(2,5,5) +2(3,4,5) +2(3,5,5)
(5,9,11) 358 359 (2,3,3)+5(2,3,4) +3(3,3,3) +6 (3,3,4)
(5,9,12) 381 384  6(2,3,4)+9(3,3,4)
6,7,9) 270 273 6(2,3,3)+9(2,4,3)
(6,7,10) 296 297  3(3,3,5)+4(3,4,5)
(6,7,11) 322 324 (3,3,5)+2(3,3,6)+2(3,4,5) +2(3,4,6)
(6, 8, 10) 329 336 7(3,4,5)
(6,8, 11) 365 368  3(3,4,5)+4(3,4,6)
6,9,9) 342 343 (3,4,4) +2(3,4,5) +2(3,5,4) +2 (3,5, 5)
(6,9, 10) 373 375 3(3,4,5)+4(3,5,5)
(6,9, 11) 411 416 4(3,3,3)+11(3,3,4)
(7,7,9) 318 321 (3,3,5) +(3,4,4) +(3,4,5) + (4,3,4) + (4,3,5) + (4,4,4) + (4,4,5)
(7,7, 10) 350 352 (3,3,5)+2(3,4,5) +2(4,3,5) +2(4,4,5
(7,7,11) 384 387 (3,3,6) + (3,4, 5)+(346)+(435)+(436)+(445)+(446)
(7,8,9) 354 360 9(2,4,3)+6(3,4,3)
(7, 8, 10) 393 398  3(3,4,5)+4(4,4,5)
(7,8, 11) 432 438  2(2,4, 3)+7(2,4,4) +2(3,4,3) +4(3,4,4)
(7,8,12) 462 468 9(2,4,4) +6(3,4,4)
(7,9,9) 399 406 6(3,3,3)+9(4,3,3)
(7,9, 10) 441 450 9(2,3,5)+6(3,3,5)
(7,9, 11) 481 492 5(2,3,5)+4(2,3,6) +(3,3,5)+5(3,3,6)
(7,9,12) 510 522 9(2,3,6)+6(3,3,6)
(7, 10, 10) 478 494  3(3,5,5)+4(4,5,5)
(7,10, 11) 536 543 (3,5,5)+2(3,5,6) +2(4,5,5) +2 (4,5, 6)
(7,11, 11) 582 589 (3,5,6) +(3,6,5) +(3,6,6) +2(4,5,5) +2 (4,6, 6)
(8, 8, 10) 441 443 7(4,4,5)
(8,8,11) 489 492 (4,2,3)+3(4,2,4) +3(4,3,3) +8 (4,3,4)
(8,9,10) 489 492 9(4,3,3)+6(4,3,4)
(8,9,11) 533 543  3(2,3,5)+(2,3,6)+3(3,3,5)+8(3,3,6)
8,9,12) 560 570 4(2,3,6)+11(3,3,6)
(8, 10, 10) 532 559 7(4,5,5)
(8,10, 11) 596 610 2(4,3,3)+7(434)+2(443)+4(444)
(8,10, 12) 636 645 9(4,3,4)+6 (4,
(8, 11,11) 649 660 (4,3,3)+3(4,3 4)+3(443)+8(444)
8,11,12) 691 699 4(4,3,4)+11 (4,4,4)
9,9,9 498 511 6(3,3,3)+9(6,3,3)
9,9, 10) 534 540 6(3,3,4)+9(3,3,6)
9,9,11) 576 600 6(3,3,5)+9(3,3,6)
9, 10, 10) 606 625 9(3,5,3)+6(3,5,4)
9,10, 11) 657 680 3(3,3,5)+6(3,3,6)+3(3,4,5)+3(3,4,6)
9,10, 12) 696 708 9(3,3,6)+6(3,4,6)
o, 11,11) 725 754  3(3,5,2)+5(3,5,3) +(3,6,2) +11 (3,6, 3)
,11,12) 760 768  4(3,2,6)+16 (3,3,6)
(10, 10, 10) 682 686 5(5,3,3)+4(5,3,4) +4(5,4,3) +2(5,4,4)
(10, 10, 11) 746 758 (3,3,5)+4 (3,3, )+2(345)+2(346)+2(4,3,5)+2(4,3,6)+(4,4,5)+(4,4,6)
(10, 10, 12) 798 812 5(3,3,6)+4(3,4,6) +4(4,3,6) +2(4,4,6)
(10, 11, 11) 821 836 2(5,3, 3)+7(5,3,4)+2(5,5,3)+4(5,5,4)
(10, 11, 12) 874 894 2(3,2,6)+10(3,3,6)+2(4,2,6) +6(4,3,6)
(10, 12, 12) 928 936 12 (3,6,3) +8(4,6,3)
(@hl 1kl i) 896 919 (5,2,2)+3(5,2,3) +3(5,3,2) +3(5,3,3) +(6,2,3) +(6,3,2) +14 (6, 3, 3)
(11,11, 12) 941 972 (2,2,6) +4(2,3,6) +4 (3,2,6) +17 (3, 3, 6)
(11, 12, 12) 990 1022 5(2,6,3)+21(3,6,3)

The table shows the cases where we were able to obtain an improvement over state-of-the-art, for tensors 7, ,, , (with n,m, p<12). The recipe column indicates the low-level matrix multiplica-
tion algorithms used to build the corresponding factorization. (n,m, p) denotes the best known bound on the rank of 7, 1, .; see Appendix H in Supplementary Information for more details. For
tensors that were directly decomposed by AlphaTensor, the recipe shows a star mark, e.g. (3,4, 5) . All the factorizations are made available.



Extended Data Table 2 | Result of applying AlphaTensor to the tensor representing the cyclic convolution operation
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AlphaTensor finds the discrete Fourier matrix (DFT) and the inverse DFT matrix in finite fields. The figure shows the decompositions found by AlphaTensor of the nxnxn tensor representing the
cyclic convolution of two vectors, for three different values of n in the finite field of order 17. The action space, characterized by the number of possible factor triplets {u®, v®, w}, is thus 17°",
which is of the order of 10? for n=8. Despite the huge action space, AlphaTensor finds the optimal rank-n decompositions for the three values of n. The factors in the figure are stacked vertically,
i.e., U=[u",...,u™]. For ease of visualization, the factor entries have been expressed in terms of powers of an n-th primitive root of unity in the finite field. Within each column, each colour
uniquely represents one element of the field (e.g., for the column n=4, we have depicted in grey 4°=4*=47=1). By inspecting the patterns in the decompositions, one could extrapolate the
results for other values of n and other fields. Indeed, the factors u®” and v correspond to the DFT coefficients, since u(k” = v(k’)=zk’, whereas the factors w” correspond to the inverse DFT, since
w{)=27K" nfor Ok, r<n, where zis an n-th primitive root of unity (i.e., 2"=1and z#1for any 1<j<n).
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