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Discovering faster matrix multiplication 
algorithms with reinforcement learning

Alhussein Fawzi1,2 ✉, Matej Balog1,2, Aja Huang1,2, Thomas Hubert1,2, 
Bernardino Romera-Paredes1,2, Mohammadamin Barekatain1, Alexander Novikov1, 
Francisco J. R. Ruiz1, Julian Schrittwieser1, Grzegorz Swirszcz1, David Silver1, Demis Hassabis1 
& Pushmeet Kohli1

Improving the efficiency of algorithms for fundamental computations can have a 
widespread impact, as it can affect the overall speed of a large amount of computations. 
Matrix multiplication is one such primitive task, occurring in many systems—from 
neural networks to scientific computing routines. The automatic discovery of 
algorithms using machine learning offers the prospect of reaching beyond human 
intuition and outperforming the current best human-designed algorithms. However, 
automating the algorithm discovery procedure is intricate, as the space of possible 
algorithms is enormous. Here we report a deep reinforcement learning approach 
based on AlphaZero1 for discovering efficient and provably correct algorithms for the 
multiplication of arbitrary matrices. Our agent, AlphaTensor, is trained to play a 
single-player game where the objective is finding tensor decompositions within a 
finite factor space. AlphaTensor discovered algorithms that outperform the state- 
of-the-art complexity for many matrix sizes. Particularly relevant is the case of 4 × 4 
matrices in a finite field, where AlphaTensor’s algorithm improves on Strassen’s two- 
level algorithm for the first time, to our knowledge, since its discovery 50 years ago2.  
We further showcase the flexibility of AlphaTensor through different use-cases: 
algorithms with state-of-the-art complexity for structured matrix multiplication and 
improved practical efficiency by optimizing matrix multiplication for runtime on 
specific hardware. Our results highlight AlphaTensor’s ability to accelerate the 
process of algorithmic discovery on a range of problems, and to optimize for different 
criteria.

We focus on the fundamental task of matrix multiplication, and use 
deep reinforcement learning (DRL) to search for provably correct and 
efficient matrix multiplication algorithms. This algorithm discovery 
process is particularly amenable to automation because a rich space of 
matrix multiplication algorithms can be formalized as low-rank decom-
positions of a specific three-dimensional (3D) tensor2, called the matrix 
multiplication tensor3–7. This space of algorithms contains the stand-
ard matrix multiplication algorithm and recursive algorithms such as 
Strassen’s2, as well as the (unknown) asymptotically optimal algorithm. 
Although an important body of work aims at characterizing the com-
plexity of the asymptotically optimal algorithm8–12, this does not yield 
practical algorithms5. We focus here on practical matrix multiplication 
algorithms, which correspond to explicit low-rank decompositions of 
the matrix multiplication tensor. In contrast to two-dimensional matri-
ces, for which efficient polynomial-time algorithms computing the rank 
have existed for over two centuries13, finding low-rank decompositions 
of 3D tensors (and beyond) is NP-hard14 and is also hard in practice. 
In fact, the search space is so large that even the optimal algorithm 
for multiplying two 3 × 3 matrices is still unknown. Nevertheless, in a 
longstanding research effort, matrix multiplication algorithms have 

been discovered by attacking this tensor decomposition problem using 
human search2,15,16, continuous optimization17–19 and combinatorial 
search20. These approaches often rely on human-designed heuristics, 
which are probably suboptimal. We instead use DRL to learn to recog-
nize and generalize over patterns in tensors, and use the learned agent 
to predict efficient decompositions.

We formulate the matrix multiplication algorithm discovery pro-
cedure (that is, the tensor decomposition problem) as a single-player 
game, called TensorGame. At each step of TensorGame, the player 
selects how to combine different entries of the matrices to multiply.  
A score is assigned based on the number of selected operations required 
to reach the correct multiplication result. This is a challenging game 
with an enormous action space (more than 1012 actions for most inter-
esting cases) that is much larger than that of traditional board games 
such as chess and Go (hundreds of actions). To solve TensorGame and 
find efficient matrix multiplication algorithms, we develop a DRL agent, 
AlphaTensor. AlphaTensor is built on AlphaZero1,21, where a neural net-
work is trained to guide a planning procedure searching for efficient 
matrix multiplication algorithms. Our framework uses a single agent 
to decompose matrix multiplication tensors of various sizes, yielding 
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transfer of learned decomposition techniques across various tensors. 
To address the challenging nature of the game, AlphaTensor uses a 
specialized neural network architecture, exploits symmetries of the 
problem and makes use of synthetic training games.

AlphaTensor scales to a substantially larger algorithm space than 
what is within reach for either human or combinatorial search. In fact, 
AlphaTensor discovers from scratch many provably correct matrix 
multiplication algorithms that improve over existing algorithms in 
terms of number of scalar multiplications. We also adapt the algo-
rithm discovery procedure to finite fields, and improve over Strassen’s 
two-level algorithm for multiplying 4 × 4 matrices for the first time, to 
our knowledge, since its inception in 1969. AlphaTensor also discovers a 
diverse set of algorithms—up to thousands for each size—showing that 
the space of matrix multiplication algorithms is richer than previously 
thought. We also exploit the diversity of discovered factorizations to 
improve state-of-the-art results for large matrix multiplication sizes. 
Through different use-cases, we highlight AlphaTensor’s flexibility 
and wide applicability: AlphaTensor discovers efficient algorithms 
for structured matrix multiplication improving over known results, 
and finds efficient matrix multiplication algorithms tailored to spe-
cific hardware, by optimizing for actual runtime. These algorithms 
multiply large matrices faster than human-designed algorithms on 
the same hardware.

Algorithms as tensor decomposition
As matrix multiplication (A, B) ↦ AB is bilinear (that is, linear in both 
arguments), it can be fully represented by a 3D tensor: see Fig. 1a for 
how to represent the 2 × 2 matrix multiplication operation as a 3D ten-
sor of size 4 × 4 × 4, and refs. 3,5,7 for more details. We write nT  for the 
tensor describing n × n matrix multiplication. The tensor Tn is fixed 
(that is, it is independent of the matrices to be multiplied), has entries 
in {0, 1}, and is of size n2 × n2 × n2. More generally, we use n m p, ,T  to 
describe the rectangular matrix multiplication operation of size n × m 
with m × p (note that =n n n n, ,T T ). By a decomposition of Tn into R 
rank-one terms, we mean

T ∑= ⊗ ⊗ , (1)n
r

R
r r r

=1

( ) ( ) ( )u v w

where ⊗ denotes the outer (tensor) product, and u(r), v(r) and w(r) are all 
vectors. If a tensor T  can be decomposed into R rank-one terms, we say 
the rank of T  is at most R, or RRank ( ) ≤T . This is a natural extension 
from the matrix rank, where a matrix is decomposed into ∑ ⊗r

R r r
=1

( ) ( )u v .

A decomposition of Tn into R rank-one terms provides an algorithm 
for multiplying arbitrary n × n matrices using R scalar multiplications 
(see Algorithm 1). We refer to Fig. 1b,c for an example algorithm mul-
tiplying 2 × 2 matrices with R = 7 (Strassen’s algorithm).

Crucially, Algorithm 1 can be used to multiply block matrices. By using 
this algorithm recursively, one can multiply matrices of arbitrary size, with 
the rank R controlling the asymptotic complexity of the algorithm. In par-
ticular, N × N matrices can be multiplied with asymptotic complexity 
O N( )Rlog ( )n ; see ref. 5 for more details.

DRL for algorithm discovery
We cast the problem of finding efficient matrix multiplication algo-
rithms as a reinforcement learning problem, modelling the environ-
ment as a single-player game, TensorGame. The game state after step 
t is described by a tensor St, which is initially set to the target tensor 
we wish to decompose: S T= n0 . In each step t of the game, the player 
selects a triplet (u(t), v(t), w(t)), and the tensor St is updated by subtract-
ing the resulting rank-one tensor: ← − ⊗ ⊗t t

t t t
−1

( ) ( ) ( )S S u v w . The goal 
of the player is to reach the zero tensor 0=tS  by applying the smallest 
number of moves. When the player reaches the zero tensor, the 
sequence of selected factors satisfies u v wT = ∑ ⊗ ⊗n t

R t t t
=1

( ) ( ) ( ) (where 
R denotes the number of moves), which guarantees the correctness of 
the resulting matrix multiplication algorithm. To avoid playing unnec-
essarily long games, we limit the number of steps to a maximum value, 
Rlimit.

For every step taken, we provide a reward of −1 to encourage finding 
the shortest path to the zero tensor. If the game terminates with a 
non-zero tensor (after Rlimit steps), the agent receives an additional 
terminal reward equal to γ− ( )R limit

S , where γ( )R limit
S  is an upper bound 

on the rank of the terminal tensor. Although this reward optimizes for 
rank (and hence for the complexity of the resulting algorithm), other 
reward schemes can be used to optimize other properties, such as 
practical runtime (see ‘Algorithm discovery results’). Besides, as our 
aim is to find exact matrix multiplication algorithms, we constrain 
{u(t), v(t), w(t)} to have entries in a user-specified discrete set of coeffi-
cients F (for example, F = {−2, −1, 0, 1, 2}). Such discretization is com-
mon practice to avoid issues with the finite precision of floating 
points15,18,20.

To play TensorGame, we propose AlphaTensor (Fig. 2), an agent based 
on AlphaZero1, which achieved tabula rasa superhuman performance 
in the classical board games of Go, chess and shogi, and on its extension 
to handle large action spaces Sampled AlphaZero21. Similarly to 
AlphaZero, AlphaTensor uses a deep neural network to guide a Monte 

c1 c2

c3 c4

=
a1 a2

a3 a4

·
b1 b2

b3 b4

a

U =

1 0 1 0 1 0

0 0 0 0 1 1

0 1 0 0 0 0

1 1 0 1 0 –1

V =

1 0

0 0 0

0 1 1

1 0 1

W =

1 0 0 1 1

0 0 1 0 1 0

0 1 0 1 0 0

1 0 0a1 a2 a3 a4

b1

b2

b3

b4

c1

c3

c2

c4

b c

–1

0

1

0

1 0

0 1

0 0

0 –1

–1 0 1

0 1

0 0

1 0

–1 1 0

0

0

0

1

–1

m1 = ( a1 + a4 )( b1 + b4 )

m2 = ( a3 + a4 ) b1

m3 = a1 ( b2 – b4 )

m4 = a4 ( b3 – b1 )

m5 = ( a1 + a2 ) b4

m6 = ( a3 – a1 )( b1 + b2 )

m7 = ( a2 – a4 )( b3 + b4 )

c1 = m1 + m4 – m5 + m7

c2 = m3 + m5

c3 = m2 + m4

c4 = m1 – m2 + m3 + m6

Fig. 1 | Matrix multiplication tensor and algorithms. a, Tensor T2 representing 
the multiplication of two 2 × 2 matrices. Tensor entries equal to 1 are depicted 
in purple, and 0 entries are semi-transparent. The tensor specifies which entries 
from the input matrices to read, and where to write the result. For example,  
as c1 = a1b1 + a2b3, tensor entries located at (a1, b1, c1) and (a2, b3, c1) are set to 1.  

b, Strassen's algorithm2 for multiplying 2 × 2 matrices using 7 multiplications.  
c, Strassen's algorithm in tensor factor representation. The stacked factors  
U, V and W (green, purple and yellow, respectively) provide a rank-7 
decomposition of 2T  (equation (1)). The correspondence between arithmetic 
operations (b) and factors (c) is shown by using the aforementioned colours.
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Carlo tree search (MCTS) planning procedure. The network takes as 
input a state (that is, a tensor tS  to decompose), and outputs a policy 
and a value. The policy provides a distribution over potential actions. 
As the set of potential actions (u(t), v(t), w(t)) in each step is enormous, 
we rely on sampling actions rather than enumerating them21,22. The 
value provides an estimate of the distribution z of returns (cumulative 
reward) starting from the current state tS . With the above reward 
scheme, the distribution z models the agent’s belief about the rank of 
the tensor St. To play a game, AlphaTensor starts from the target tensor 
( nT ) and uses the MCTS planner at each step to choose the next action. 
Finished games are used as feedback to the network to improve the 
network parameters.

Overcoming the challenges posed by TensorGame—namely, an enor-
mous action space, and game states described by large 3D tensors 
representing an abstract mathematical operation—requires multiple 
advances. All these components, described briefly below,  substantially 

improve the overall performance over a plain AlphaZero agent (see 
Methods and Supplementary Information for details).

Neural network architecture
We propose a transformer-based23 architecture that incorporates 
inductive biases for tensor inputs. We first project the S × S × S input 
tensor into three S × S grids of feature vectors by using linear layers 
applied to the three cyclic transpositions of the tensor. The main part of 
the model comprises a sequence of attention operations, each applied 
to a set of features belonging to a pair of grids (Extended Data Figs. 3 
and 4). This generalizes axial attention24 to multiple grids, and is both 
more efficient and yields better results than naive self-attention. The 
proposed architecture, which disregards the order of rows and columns 
in the grids, is inspired by the invariance of the tensor rank to slice 
reordering. The final feature representation of the three matrices is 
passed both to the policy head (an autoregressive model) and the value 
head (a multilayer perceptron).

Synthetic demonstrations
Although tensor decomposition is NP-hard, the inverse task of con-
structing the tensor from its rank-one factors is elementary. Hence, 
we generate a large dataset of tensor-factorization pairs (synthetic 
demonstrations) by first sampling factors u v w{( , , )}r r r

r
R( ) ( ) ( )

=1 at random, 
and then constructing the tensor = ∑ ⊗ ⊗r

R r r r
=1

( ) ( ) ( )D u v w . We train the 
network on a mixture of supervised loss (that is, to imitate synthetic 
demonstrations) and standard reinforcement learning loss (that is, 
learning to decompose a target tensor nT ) (Fig. 2). This mixed training 
strategy—training on the target tensor and random tensors— substan-
tially outperforms each training strategy separately. This is despite 
randomly generated tensors having different properties from the tar-
get tensors.

Change of basis
 nT  (Fig. 1a) is the tensor representing the matrix multiplication bilinear 
operation in the canonical basis. The same bilinear operation can be 
expressed in other bases, resulting in other tensors. These different 

Algorithm 1
A meta-algorithm parameterized by =u v w{ , , }r r r( ) ( ) ( )

r
R

1 for computing 
the matrix product C = AB. It is noted that R controls the number of 
multiplications between input matrix entries.

Parameters: =u v w{ , , }r r r( ) ( ) ( )
r
R

1: length-n2 vectors such that 
Tn

r r r( ) ( ) ( )
r
R

1= ∑ ⊗ ⊗= u v w
Input: A, B: matrices of size n × n
Output: C = AB
(1) for r = 1, …, R do
(2)     ← + + + +� �m u a u a v b v b( ) ( )r n n1 1

r
n
r r

n
r

1
( ) ( )

1
( ) ( )

2 22 2

(3) for i = 1, …, n2 do
(4)     �c w m w mi R1i i

R(1) ( )← + +
return C
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Fig. 2 | Overview of AlphaTensor. The neural network (bottom box) takes  
as input a tensor St, and outputs samples (u, v, w) from a distribution  
over potential next actions to play, and an estimate of the future returns  
(for example, of S−Rank ( )t ). The network is trained on two data sources: 

previously played games and synthetic demonstrations. The updated network 
is sent to the actors (top box), where it is used by the MCTS planner to generate 
new games.
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tensors are equivalent: they have the same rank, and decompositions 
obtained in a custom basis can be mapped to the canonical basis, hence 
obtaining a practical algorithm of the form in Algorithm 1. We leverage 
this observation by sampling a random change of basis at the beginning 
of every game, applying it to Tn, and letting AlphaTensor play the game 
in that basis (Fig. 2). This crucial step injects diversity into the games 
played by the agent.

Data augmentation
From every played game, we can extract additional tensor-factorization 
pairs for training the network. Specifically, as factorizations are 
order invariant (owing to summation), we build an additional 
tensor-factorization training pair by swapping a random action with 
the last action from each finished game.

Algorithm discovery results
Discovery of matrix multiplication algorithms
We train a single AlphaTensor agent to find matrix multiplication algo-
rithms for matrix sizes n × m with m × p, where n, m, p ≤ 5. At the begin-
ning of each game, we sample uniformly a triplet (n, m, p) and train 
AlphaTensor to decompose the  tensor Tn m p, , . Although we consider 
tensors of fixed size (Tn m p, ,  has size nm × mp × pn), the discovered algo-
rithms can be applied recursively to multiply matrices of arbitrary size. 
We use AlphaTensor to find matrix multiplication algorithms over 
different arithmetics—namely, modular arithmetic (that is, multiplying 
matrices in the quotient ring 2Z ), and standard arithmetic (that is, mul-
tiplying matrices in R).

Figure 3 (left) shows the complexity (that is, rank) of the algo-
rithms discovered by AlphaTensor. AlphaTensor re-discovers the 
best algorithms known for multiplying matrices (for example, 

Strassen’s2 and Laderman’s15 algorithms). More importantly, AlphaT-
ensor improves over the best algorithms known for several matrix 
sizes. In particular, AlphaTensor finds an algorithm for multiplying 
4 × 4 matrices using 47 multiplications in 2Z , thereby outperforming 
Strassen’s two-level algorithm2, which involves 72 = 49 multiplica-
tions. By applying this algorithm recursively, one obtains a practical 
matrix multiplication algorithm in Z2 with complexity O N( )2.778 . 
Moreover, AlphaTensor discovers efficient algorithms for multiply-
ing matrices in standard arithmetic; for example, AlphaTensor finds 
a rank-76 decomposition of 4,5,5T , improving over the previous 
state-of-the-art complexity of 80 multiplications. See Extended 
Data Figs. 1 and 2 for examples.

AlphaTensor generates a large database of matrix multiplication 
algorithms—up to thousands of algorithms for each size. We exploit 
this rich space of algorithms by combining them recursively, with the 
aim of decomposing larger matrix multiplication tensors. We refer 
to refs. 25,26 and Appendix H in Supplementary Information for more 
details. Using this approach, we improve over the state-of-the-art 
results for more than 70 matrix multiplication tensors (with 
n, m, p ≤ 12). See Fig. 3 (right) and Extended Data Table 1 for the results.

A crucial aspect of AlphaTensor is its ability to learn to transfer knowl-
edge between targets (despite providing no prior knowledge on their 
relationship). By training one agent to decompose various tensors, 
AlphaTensor shares learned strategies among these, thereby improv-
ing the overall performance (see Supplementary Information for 
analysis). Finally, it is noted that AlphaTensor scales beyond current 
computational approaches for decomposing tensors. For example, to 
our knowledge, no previous approach was able to handle T4, which has 
an action space 1010 times larger than T3. Our agent goes beyond this 
limit, discovering decompositions matching or surpassing 
state-of-the-art for large tensors such as 5T .

AlphaTensor rank
Modular Standard

Size
(n, m, p)

Best method
known

Best rank
known

(2, 2, 2) (Strassen, 1969)2 7 7 7
(3, 3, 3) (Laderman, 1976)15 23 23 23

49 47 49

98 96 98

(2, 2, 3) 11 11 11
(2, 2, 4) 14 14 14
(2, 2, 5) 18 18 18
(2, 3, 3) 15 15 15
(2, 3, 4) 20 20 20
(2, 3, 5) 25 25 25
(2, 4, 4) 26 26 26
(2, 4, 5) 33 33 33
(2, 5, 5) 40 40 40
(3, 3, 4) (Smirnov, 2013)18 29 29 29
(3, 3, 5) 36 36 36
(3, 4, 4) 38 38 38
(3, 4, 5) 48 47 47
(3, 5, 5) 58 58 58
(4, 4, 5) 64 63 63
(4, 5, 5) 80 76 76 200 400 600 800 1,000
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Fig. 3 | Comparison between the complexity of previously known matrix 
multiplication algorithms and the ones discovered by AlphaTensor. Left: 
column (n, m, p) refers to the problem of multiplying n × m with m × p matrices. 
The complexity is measured by the number of scalar multiplications (or 
equivalently, the number of terms in the decomposition of the tensor). ‘Best 
rank known’ refers to the best known upper bound on the tensor rank (before 
this paper), whereas ‘AlphaTensor rank’ reports the rank upper bounds 
obtained with our method, in modular arithmetic (Z2) and standard arithmetic. 

In all cases, AlphaTensor discovers algorithms that match or improve over 
known state of the art (improvements are shown in red). See Extended Data 
Figs. 1 and 2 for examples of algorithms found with AlphaTensor. Right: results 
(for arithmetic in R) of applying AlphaTensor-discovered algorithms on larger 
tensors. Each red dot represents a tensor size, with a subset of them labelled. 
See Extended Data Table 1 for the results in table form. State-of-the-art results 
are obtained from the list in ref. 64.
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Analysing the symmetries of matrix multiplication algorithms
From a mathematical standpoint, the diverse algorithms discovered 
by AlphaTensor show that the space is richer than previously known. 
For example, while the only known rank-49 factorization decomposing 
T T T= ⊗4 2 2 before this paper conforms to the product structure (that 
is, it uses the factorization of T2 twice, which we refer to as Strassen- 
square2), AlphaTensor finds more than 14,000 non-equivalent fac-
torizations (with standard arithmetic) that depart from this scheme, 
and have different properties (such as matrix ranks and sparsity—see 
Supplementary Information). By non-equivalent, we mean that it is 
not possible to obtain one from another by applying a symmetry trans-
formation (such as permuting the factors). Such properties of matrix 
multiplication tensors are of great interest, as these tensors represent 
fundamental objects in algebraic complexity theory3,5,7. The study of 
matrix multiplication symmetries can also provide insight into the 
asymptotic complexity of matrix multiplication5. By exploring this rich 
space of algorithms, we believe that AlphaTensor will be useful for 
generating results and guiding mathematical research. See Supple-
mentary Information for proofs and details on the symmetries of 
factorizations.

Beyond standard matrix multiplication
Tensors can represent any bilinear operation, such as structured matrix 
multiplication, polynomial multiplication or more custom bilinear 
operations used in machine learning27,28. We demonstrate here a 
use-case where AlphaTensor finds a state-of-the-art algorithm for 
multiplying an n x n skew-symmetric matrix  with a vector of length n. 
Figure 4a shows the obtained decompositions for small instance sizes n.  
We observe a pattern that we generalize to arbitrary n, and prove that 
this yields a general algorithm for the skew-symmetric matrix-vector 
product (Fig. 4b). This algorithm, which uses n n n( − 1)( + 2)/2 ~ 1

2
2  

multiplications (where ∼ indicates asymptotic similarity), outperforms 
the previously known algorithms using  asymptotically n2 multiplica-
tions29, and is asymptotically optimal. See Supplementary Information 

for a proof, and for another use-case showing AlphaTensor’s ability 
to re-discover the Fourier basis (see also Extended Data Table 2). This 
shows that AlphaTensor can be applied to custom bilinear operations, 
and yield efficient algorithms leveraging the problem structure.

Rapid tailored algorithm discovery
We show a use-case where AlphaTensor finds practically efficient matrix 
multiplication algorithms, tailored to specific hardware, with zero 
prior hardware knowledge. To do so, we modify the reward of AlphaT-
ensor: we provide an additional reward at the terminal state (after the 
agent found a correct algorithm) equal to the negative of the runtime 
of the algorithm when benchmarked on the target hardware. That is, 
we set r r λb′ = +t t t, where rt is the reward scheme described in ‘DRL for 
algorithm discovery’, bt is the benchmarking reward (non-zero only at 
the terminal state) and λ is a user-specified coefficient. Aside from the 
different reward, the exact same formulation of TensorGame is used.

We train AlphaTensor to search for efficient algorithms to multiply 
4 × 4 block matrices, and focus on square matrix multiplication of size 
8,192 (each block is hence of size 2,048) to define the benchmarking 
reward. AlphaTensor searches for the optimal way of combining the 
16 square blocks of the input matrices on the considered hardware. We 
do not apply the 4 × 4 algorithm recursively, to leverage the efficient 
implementation of matrix multiplication on moderate-size matrices 
(2,048 × 2,048 in this case). We study two hardware devices commonly 
used in machine learning and scientific computing: an Nvidia V100 
graphics processing unit (GPU) and a Google tensor processing unit 
(TPU) v2. The factorization obtained by AlphaTensor is transformed 
into JAX30 code, which is compiled ( just in time) before benchmarking.

Figure 5a,b shows the efficiency of the AlphaTensor-discovered 
algorithms on the GPU and the TPU, respectively. AlphaTensor dis-
covers algorithms that outperform the Strassen-square algorithm, 
which is a fast algorithm for large square matrices31,32. Although 
the discovered algorithm has the same theoretical complexity as 
Strassen-square, it outperforms it in practice, as it is optimized for 
the considered hardware. Interestingly, AlphaTensor finds algorithms 
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Fig. 4 | Algorithm discovery beyond standard matrix multiplication.  
a, Decompositions found by AlphaTensor for the tensors of size n n× ×n n( − 1)

2
 

(with n = 3, 4, 5, 6) representing the skew-symmetric matrix-vector multiplication. 
The red pixels denote 1, the blue pixels denote −1 and the white pixels denote 0. 

Extrapolation to n = 10 is shown in the rightmost figure. b, Skew-symmetric 
matrix-by-vector multiplication algorithm, obtained from the examples solved 
by AlphaTensor. The wij and qi terms in steps 3 and 5 correspond to the mr terms 
in Algorithm 1. It is noted that steps 6–9 do not involve any multiplications.



52  |  Nature  |  Vol 610  |  6 October 2022

Article

with a larger number of additions compared with Strassen-square (or 
equivalently, denser decompositions), but the discovered algorithms 
generate individual operations that can be efficiently fused by the 
specific XLA33 grouping procedure and thus are more tailored towards 
the compiler stack we use. The algorithms found by AlphaTensor also 
provide gains on matrix sizes larger than what they were optimized 
for. Finally, Fig. 5c shows the importance of tailoring to particular 
hardware, as algorithms optimized for one hardware do not perform 
as well on other hardware.

Discussion
Trained from scratch, AlphaTensor discovers matrix multiplication 
algorithms that are more efficient than existing human and 
computer-designed algorithms. Despite improving over known 
algorithms, we note that a limitation of AlphaTensor is the need 
to pre-define a set of potential factor entries F, which discretizes 
the search space but can possibly lead to missing out on efficient 
algorithms. An interesting direction for future research is to adapt 
AlphaTensor to search for F. One important strength of AlphaTensor 
is its flexibility to support complex stochastic and non-differentiable 
rewards (from the tensor rank to practical efficiency on specific hard-
ware), in addition to finding algorithms for custom operations in a 
wide variety of spaces (such as finite fields). We believe this will spur 
applications of AlphaTensor towards designing algorithms that opti-
mize metrics that we did not consider here, such as numerical stability 
or energy usage.

The discovery of matrix multiplication algorithms has far-reaching 
implications, as matrix multiplication sits at the core of many com-
putational tasks, such as matrix inversion, computing the determi-
nant and solving linear systems, to name a few7. We also note that our 
methodology can be extended to tackle related primitive mathemati-
cal problems, such as computing other notions of rank (for example, 
border rank—see Supplementary Information), and NP-hard matrix 
factorization problems (for example, non-negative factorization). By 
tackling a core NP-hard computational problem in mathematics using 
DRL—the computation of tensor ranks—AlphaTensor demonstrates the 
viability of DRL in addressing difficult mathematical problems, and 
potentially assisting mathematicians in discoveries.
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Methods

TensorGame
TensorGame is played as follows. The start position S0 of the game 
corresponds to the tensor T  representing the bilinear operation of 
interest, expressed in some basis. In each step t of the game, the player 
writes down three vectors (u(t), v(t), w(t)), which specify the rank-1 tensor 
u(t) ⊗ v(t) ⊗ w(t), and the state of the game is updated by subtracting the 
newly written down factor:

S S u v w← − ⊗ ⊗ . (2)t t
t t t

−1
( ) ( ) ( )

The game ends when the state reaches the zero tensor, 0=RS . This 
means that the factors written down throughout the game form a 
factorization of the start tensor S0, that is, = ∑ ⊗ ⊗t

R t t t
0 =1

( ) ( ) ( )S u v w . 
This factorization is then scored. For example, when optimizing for 
asymptotic time complexity the score is −R, and when optimizing  
for practical runtime the algorithm corresponding to the factorization 
{( , , )}t t t

t
R( ) ( ) ( )

=1u v w  is constructed (see Algorithm 1) and then bench-
marked on the fly (see Supplementary Information).

In practice, we also impose a limit Rlimit on the maximum number of 
moves in the game, so that a weak player is not stuck in unnecessarily 
(or even infinitely) long games. When a game ends  because it has run 
out of moves, a penalty score is given so that it is never advantageous 
to deliberately exhaust the move limit. For example, when optimizing 
for asymptotic time complexity, this penalty is derived from an upper 
bound on the tensor rank of the final residual tensor R limit

S . This upper 
bound on the tensor rank is obtained by summing the matrix ranks of 
the slices of the tensor.

TensorGame over rings. We say that the decomposition of nT  in equa-
tion (1) is in a ring E  (defining the arithmetic operations) if each of the 
factors u(t), v(t) and w(t) has entries belonging to the set E, and additions 
and multiplications are interpreted according to E. The tensor rank 
depends, in general, on the ring. At each step of TensorGame, the ad-
ditions and multiplications in equation (2) are interpreted in E . For 
example, when working in 2Z , (in this case, the factors u(t), v(t) and w(t) 
live in F = {0, 1}), a modulo 2 operation is applied after each state update 
(equation (2)).

We note that integer-valued decompositions u(t), v(t) and w(t) lead to 
decompositions in arbitrary rings E. Hence, provided F only contains 
integers, algorithms we find in standard arithmetic apply more gener-
ally to any ring.

AlphaTensor
AlphaTensor builds on AlphaZero1 and its extension Sampled 
AlphaZero21, combining a deep neural network with a sample-based 
MCTS search algorithm.

The deep neural network, fθ(s) = (π, z) parameterized by θ, takes as 
input the current state s of the game and outputs a probability distribu-
tion π(⋅∣s) over actions and z(⋅∣s) over returns (sum of future rewards) G. 
The parameters θ of the deep neural network are trained by reinforce-
ment learning from self-play games and synthetic demonstrations. 
Self-play games are played by actors, running a sample-based MCTS 
search at every state st encountered in the game. The MCTS search 
returns an improved probability distribution over moves from which 
an action at is selected and applied to the environment. The sub-tree 
under at is reused for the subsequent search at st+1. At the end of the 
game, a return G is obtained and the trajectory is sent to the learner to 
update the neural network parameters θ. The distribution over returns 
z(⋅∣st) is learned through distributional reinforcement learning using 
the quantile regression distributional loss34, and the network policy 
π(⋅∣st) is updated using a Kullback–Leibler divergence loss, to maximize 
its similarity to the search policy for self-play games or to the next 
action for synthetic demonstrations. We use the Adam optimizer35 

with decoupled weight decay36 to optimize the parameters θ of the 
neural network.

Sample-based MCTS search. The sample-based MCTS search is very 
similar to the one described in Sampled AlphaZero. Specifically, the 
search consists of a series of simulated trajectories of TensorGame that 
are aggregated in a tree. The search tree therefore consists of nodes 
representing states and edges representing actions. Each state-action 
pair (s, a) stores a set of statistics N s a Q s a π s a( , ), ( , ), ˆ( , ), where N(s, a) 
is the visit count, Q(s, a) is the action value and π s aˆ( , ) is the empirical 
policy probability. Each simulation traverses the tree from the root 
state s0 until a leaf state sL is reached by recursively selecting in each 
state s an action a that has not been frequently explored, has high em-
pirical policy probability and high value. Concretely, actions within 
the tree are selected by maximizing over the probabilistic upper con-
fidence tree bound21,37

∑
Q s a c s π s a

N s b

N s a
argmax ( , ) + ( ) ⋅ ˆ( , )

( , )

1 + ( , )
,

a

b

where c(s) is an exploration factor controlling the influence of the 
empirical policy π s aˆ( , ) relative to the values Q(s, a) as nodes are visited 
more often. In addition, a transposition table is used to recombine 
different action sequences if they reach the exact same tensor. This 
can happen particularly often in TensorGame as actions are commuta-
tive. Finally, when a leaf state sL is reached, it is evaluated by the neural 
network, which returns K actions {ai} sampled from π(a∣sL), alongside 
the empirical distribution ∑π a s δˆ( ) = K i a aL

1
, i

 and a value v(sL) con-
structed from z(⋅∣sL). Differently from AlphaZero and Sampled Alp-
haZero, we chose v not to be the mean of the distribution of returns 
z(⋅∣sL) as is usual in most reinforcement learning agents, but instead to 
be a risk-seeking value, leveraging the facts that TensorGame is a deter-
ministic environment and that we are primarily interested in finding 
the best trajectory possible. The visit counts and values on the simu-
lated trajectory are then updated in a backward pass as in Sampled 
AlphaZero.

Policy improvement. After simulating N(s) trajectories from state s 
using MCTS, the normalized visit counts of the actions at the root of 
the search tree N(s, a)/N(s) form a sample-based improved policy. Dif-
ferently from AlphaZero and Sampled AlphaZero, we use an adaptive 
temperature scheme to smooth the normalized visit counts distribution 
as some states can accumulate an order of magnitude more visits than 
others because of sub-tree reuse and transposition table. Concretely, 
we define the improved policy as π s a N s a N s bˆ( , ) = ( , )/ ∑ ( , )τ s

b
τ s1/ ( ) 1/ ( )I  

where τ s N s N N N( ) = log ( )/log if >  and 1 otherwise, with N  being a 
hyperparameter. For training, we use Iπ̂  directly as a target for the 
network policy π. For acting, we additionally discard all actions that 
have a value lower than the value of the most visited action, and sample 
proportionally to π̂I  among those remaining high-value actions.

Learning one agent for multiple target tensors. We train a single 
agent to decompose the different tensors n m p, ,T  in a given arithmetic 
(standard or modular). As the network works with fixed-size inputs, we 
pad all tensors (with zeros) to the size of the largest tensor we consider 
( 5T , of size 25 × 25 × 25). At the beginning of each game, we sample uni-
formly at random a target n m p, ,T , and play TensorGame. Training a sin-
gle agent on different targets leads to better results thanks to the trans-
fer between targets. All our results reported in Fig. 3 are obtained using 
multiple runs of this multi-target setting. We also train a single agent 
to decompose tensors in both arithmetics. Owing to learned transfer 
between the two arithmetics, this agent discovers a different distribu-
tion of algorithms (of the same ranks) in standard arithmetic than the 
agent trained on standard arithmetic only, thereby increasing the over-
all diversity of discovered algorithms.



Synthetic demonstrations. The synthetic demonstrations buffer  
contains tensor-factorization pairs, where the factorizations 

u v w{( , , )}r r r
r
R( ) ( ) ( )

=1 are first generated at random, after which the tensor 
u v w= ∑ ⊗ ⊗r

R r r r
=1

( ) ( ) ( )D  is formed. We create a dataset containing  
5 million such tensor-factorization pairs. Each element in the factors 
is sampled independently and identically distributed (i.i.d.) from a 
given categorical distribution over F (all possible values that can be 
taken). We discarded instances whose decompositions were clearly 
suboptimal (contained a factor with u = 0, v = 0, or w = 0).

In addition to these synthetic demonstrations, we further add to 
the demonstration buffer previous games that have achieved large 
scores to reinforce the good moves made by the agent in these games.

Change of basis. The rank of a bilinear operation does not depend on 
the basis in which the tensor representing it is expressed, and for any 
invertible matrices A, B and C we have Rank ( ) = Rank ( )( , , )T T A B C , where 

( , , )A B CT  is the tensor after change of basis given by

∑ ∑ ∑= . (3)ijk
a

S

b

S

c

S

ia jb kc abc
( , , )

=1 =1 =1
T TA B CA B C

Hence, exhibiting a rank-R decomposition of the matrix multiplica-
tion tensor nT  expressed in any basis proves that the product of two 
n × n matrices can be computed using R scalar multiplications. Moreo-
ver, it is straightforward to convert such a rank-R decomposition into 
a rank-R decomposition in the canonical basis, thus yielding a practical 
algorithm of the form shown in Algorithm 1. We leverage this observa-
tion by expressing the matrix multiplication tensor nT  in a large number 
of randomly generated bases (typically 100,000) in addition to the 
canonical basis, and letting AlphaTensor play games in all bases in 
parallel.

This approach has three appealing properties: (1) it provides a natural 
exploration mechanism as playing games in different bases automati-
cally injects diversity into the games played by the agent; (2) it exploits 
properties of the problem as the agent need not succeed in all bases—it 
is sufficient to find a low-rank decomposition in any of the bases; (3) 
it enlarges coverage of the algorithm space because a decomposition 
with entries in a finite set F = {−2, −1, 0, 1, 2} found in a different basis 
need not have entries in the same set when converted back into the 
canonical basis.

In full generality, a basis change for a 3D tensor of size S × S × S is 
specified by three invertible S × S matrices A, B and C. However, in our 
procedure, we sample bases at random and impose two restrictions: 
(1) A = B = C, as this performed better in early experiments, and (2) 
unimodularity ( Adet ∈ {−1, + 1}), which ensures that after converting 
an integral factorization into the canonical basis it still contains integer 
entries only (this is for representational convenience and numerical 
stability of the resulting algorithm). See Supplementary Information 
for the exact algorithm.

Signed permutations. In addition to playing (and training on) games in 
different bases, we also utilize a data augmentation mechanism when-
ever the neural network is queried in a new MCTS node. At acting time, 
when the network is queried, we transform the input tensor by applying 
a change of basis—where the change of basis matrix is set to a random 
signed permutation. We then query the network on this transformed 
input tensor, and finally invert the transformation in the network’s 
policy predictions. Although this data augmentation procedure can 
be applied with any generic change of basis matrix (that is, it is not 
restricted to signed permutation matrices), we use signed permuta-
tions mainly for computational efficiency. At training time, whenever 
the neural network is trained on an (input, policy targets, value target) 
triplet (Fig. 2), we apply a randomly chosen signed permutation to 
both the input and the policy targets, and train the network on this 

transformed triplet. In practice, we sample 100 signed permutations 
at the beginning of an experiment, and use them thereafter.

Action canonicalization. For any λ1, λ2, λ3 ∈ {−1, +1} such that λ1λ2λ3 = 1, 
the actions (λ1u, λ2v, λ3w) and (u, v, w) are equivalent because they lead 
to the same rank-one tensor (λ1u) ⊗ (λ2v) ⊗ (λ3w) = u ⊗ v ⊗ w. To pre-
vent the network from wasting capacity on predicting multiple equiva-
lent actions, during training we always present targets (u, v, w) for the 
policy head in a canonical form, defined as having the first non-zero 
element of u and the first non-zero element of v strictly positive. This is 
well defined because u or v cannot be all zeros (if they are to be part of 
a minimal rank decomposition), and for any (u, v, w) there are unique 
λ1, λ2, λ3 ∈ {−1, +1} (with λ1λ2λ3 = 1) that transform it into canonical form. 
In case the network predicts multiple equivalent actions anyway, we 
merge them together (summing their empirical policy probabilities) 
before inserting them into the MCTS tree.

Training regime. We train AlphaTensor on a TPU v3, with a total batch 
size of 2,048. We use 64 TPU cores, and train for 600,000 iterations. 
On the actor side, the games are played on standalone TPU v4, and we 
use 1,600 actors. In practice, the procedure  takes a week to converge.

Neural network
The architecture is composed of a torso, followed by a policy head that 
predicts a distribution over actions, and a value head that predicts a dis-
tribution of the returns from the current state (see Extended Data Fig. 3).

Input. The input to the network contains all the relevant information 
of the current state and is composed of a list of tensors and a list of 
scalars. The most important piece of information is the current 3D 
tensor St  of size S × S × S. (For simplicity, in the description here we 
assume that all the three dimensions of the tensor are equal in size. The 
generalization to different sizes is straightforward.) In addition, the 
model is given access to the last h actions (h being a hyperparameter 
usually set to 7), represented as h rank-1 tensors that are concatenated 
to the input. The list of scalars includes the time index t of the current 
action (where 0 ≤ t < Rlimit).

Torso. The torso of the network is in charge of mapping both scalars and 
tensors from the input to a representation that is useful to both policy 
and value heads. Its architecture is based on a modification of transform-
ers23, and its main signature is that it operates over three S × S grids pro-
jected from the S × S × S input tensors. Each grid represents two out of 
the three modes of the tensor. Defining the modes of the tensor as 

, ,U V W, the rows and columns of the first grid are associated to U  and V, 
respectively, the rows and columns of the second grid are associated to 
W and U, and the rows and columns of the third grid are associated to V  
and W. Each element of each grid is a feature vector, and its initial value 
is given by the elements of the input tensors along the grid’s missing 
mode. These feature vectors are enriched by concatenating an S × S × 1 
linear projection from the scalars. This is followed by a linear layer pro-
jecting these feature vectors into a 512-dimensional space.

The rest of the torso is a sequence of attention-based blocks with the 
objective of propagating information between the three grids. Each of 
those blocks has three stages, one for every pair of grids. In each stage, 
the grids involved are concatenated, and axial attention24 is performed 
over the columns. It is noted that in each stage we perform in parallel S  
self-attention operations of 2S elements in each. The representation 
sent to the policy head corresponds to the 3S2 512-dimensional feature 
vectors produced by the last layer of the torso. A detailed description 
of the structure of the torso is specified in Extended Data Fig. 4 (top) 
and Appendix A.1.1 in Supplementary Information.

Policy head. The policy head uses the transformer architecture23 
to model an autoregressive policy. Factors are decomposed into k 
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tokens of dimensionality d such that k × d = 3S. The transformer con-
ditions on the tokens already generated and cross-attends to the fea-
tures produced by the torso. At training time, we use teacher-forcing, 
that is, the ground truth actions are decomposed into tokens and 
taken as inputs into the causal transformer in such a way that the 
prediction of a token depends only on the previous tokens. At infer-
ence time, K actions are sampled from the head. The feature repre-
sentation before the last linear layer of the initial step (that is, the 
only step that is not conditioned on the ground truth) is used as an 
input to the value head, described below. Details of the architecture 
are presented in Extended Data Fig. 4 (centre) and Appendix A.1.2 in 
Supplementary Information.

Value head. The value head is composed of a four-layer multilayer 
perceptron whose last layer produces q outputs corresponding to the 

, , …q q
q

q
1

2
3

2
2 − 1

2
 quantiles. In this way, the value head predicts the distri-

bution of returns from this state in the form of values predicted for the 
aforementioned quantiles34. At inference time, we encourage the agent 
to be risk-seeking by using the average of the predicted values for quan-
tiles over 75%. A detailed description of the value head is presented in 
Extended Data Fig. 4 (bottom) and Appendix A.1.3 in Supplementary 
Information.

Related work
The quest for efficient matrix multiplication algorithms started with 
Strassen’s breakthrough in ref. 2, which showed that one can multiply 
2 × 2 matrices using 7 scalar multiplications, leading to an algorithm 
of complexity O n( )2.81 . This led to the development of a very active field 
of mathematics attracting worldwide interest, which studies the asymp-
totic complexity of matrix multiplication (see refs. 3–6). So far, the best 
known complexity for matrix multiplication is n( )2.37286O  (ref. 12), which 
improves over ref. 11, and builds on top of fundamental results in the 
field8–10. However, this does not yield practical algorithms, as such 
approaches become advantageous only for astronomical matrix sizes. 
Hence, a significant body of work aims at exhibiting explicit factoriza-
tions of matrix multiplication tensors, as these factorizations provide 
practical algorithms. After Strassen’s breakthrough showing that 

Trank ( ) ≤ 72 , efficient algorithms for larger matrix sizes were 
found15,16,18,26,38. Most notably, Laderman showed in ref. 15 that 3 × 3 
matrix multiplications can be performed with 23 scalar multiplications. 
In addition to providing individual low-rank factorizations, an impor-
tant research direction aims at understanding the space of matrix 
multiplication algorithms—as opposed to exhibiting individual 
low-rank factorizations—by studying the symmetry groups and diver-
sity of factorizations (see ref. 5 and references therein). For example, 
the symmetries of 2 × 2 matrix multiplication were studied in refs. 39–42, 
where Strassen’s algorithm was shown to be essentially unique. The 
case of 3 × 3 was studied in ref. 43, whereas a symmetric factorization 
for all n is provided in ref. 44.

On the computational front, continuous optimization has been the 
main workhorse for decomposing tensors17,45,46, and in particular matrix 
multiplication tensors. Such continuous optimization procedures (for 
example, alternating least squares), however, yield approximate solu-
tions, which correspond to inexact matrix multiplication algorithms 
with floating point operations. To circumvent this issue, regularization 
procedures have been proposed, such as ref. 18, to extract exact decom-
positions. Unfortunately, such approaches often require  substantial 
human intervention and expertise to decompose large tensors. A dif-
ferent line of attack was explored in refs. 47,48, based on learning the 
continuous weights of a two-layer network that mimics the structure 
of the matrix multiplication operation. This method, which is trained 
through supervised learning of matrix multiplication examples, finds 
approximate solutions to 2 × 2 and 3 × 3 matrix multiplications.  
In ref. 48, a quantization procedure is further used to obtain an exact 
decomposition for 2 × 2. Unlike continuous optimization-based 

approaches, AlphaTensor directly produces algorithms from the 
desired set of valid algorithms, and is flexible in that it allows us to 
optimize a wide range of (even non-differentiable) objectives. This 
unlocks tackling broader settings (for example, optimization in finite 
fields, optimization of runtime), as well as larger problems (for exam-
ple, T4 and T5) than those previously considered. Different from con-
tinuous optimization, a boolean satisfiability (SAT) based  formulation 
of the problem of decomposing 3 × 3 matrix multiplication was 
recently proposed in ref. 20, which adds thousands of new decompo-
sitions of rank 23 to the list of known 3 × 3 factorizations. The approach 
relies on a state-of-the-art SAT solving procedure, where several 
assumptions and simplifications are made on the factorizations to 
reduce the search space. As is, this approach is, however, unlikely to 
scale to larger tensors, as the search space grows very quickly with 
the size.

On the practical implementation front, ref. 31 proposed several ideas 
to speed up implementation of fast matrix multiplication algorithms 
on central processing units (CPUs). Different fast algorithms are then 
compared and benchmarked, and the potential speed-up of such algo-
rithms is shown against standard multiplication. Other works focused 
on getting the maximal performance out of a particular fast matrix 
multiplication algorithm (Strassen’s algorithm with one or two levels 
of recursion) on a CPU32 or a GPU49. These works show that, despite 
popular belief, such algorithms are of practical value. We see writing 
a custom low-level implementation of a given algorithm to be distinct 
from the focus of this paper—developing new efficient algorithms—and 
we believe that the algorithms we discovered can further benefit from 
a more efficient implementation by experts.

Beyond matrix multiplication and bilinear operations, a growing 
amount of research studies the use of optimization and machine learn-
ing to improve the efficiency of computational operations. There 
are three levels of abstractions at which this can be done: (1) in the 
hardware design, for example, chip floor planning50, (2) at the hard-
ware–software interface, for example, program super-optimization 
of a reference implementation for specific hardware51, and (3) on the 
algorithmic level, for example, program induction52, algorithm selec-
tion53 or meta-learning54. Our work focuses on the algorithmic level of 
abstraction, although AlphaTensor is also flexible to discover efficient 
algorithms for specific hardware. Different from previous works, we 
focus on discovering matrix multiplication algorithms that are prov-
ably correct, without requiring initial reference implementations. We 
conclude by relating our work broadly to existing reinforcement learn-
ing methods for scientific discovery. Within mathematics, reinforce-
ment learning was applied, for example, to theorem proving55–58, and 
to finding counterexamples refuting conjectures in combinatorics and 
graph theory59. Reinforcement learning was further shown to be useful 
in many areas in science, such as molecular design60,61 and synthesis62 
and optimizing quantum dynamics63.

Data availability
The data used to train the system were generated synthetically accord-
ing to the procedures explained in the paper. The algorithms discov-
ered by AlphaTensor are available for download at https://github.com/
deepmind/alphatensor.

Code availability
An interactive notebook with code to check the non-equivalence of algo-
rithms is provided. Moreover, the fast algorithms from the ‘Algorithm 
discovery results’ section on a GPU and a TPU are provided. These are 
available for download at https://github.com/deepmind/alphatensor.  
A full description of the AlphaZero algorithm that this work is based 
on is available in ref. 1, and the specific neural network architecture we 
use is described using pseudocode in the Supplementary Information. 
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Extended Data Fig. 1 | Algorithm for multiplying 4 × 4 matrices in modular arithmetic ( 2Z ) with 47 multiplications. This outperforms the two-level Strassen’s 
algorithm, which involves 72 = 49 multiplications.



Extended Data Fig. 2 | Algorithm for multiplying 4 × 5 by 5 × 5 matrices in standard arithmetic with 76 multiplications. This outperforms the previously best 
known algorithm, which involves 80 multiplications.
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Extended Data Fig. 3 | AlphaTensor’s network architecture. The network 
takes as input the list of tensors containing the current state and previous 
history of actions, and a list of scalars, such as the time index of the current 
action. It produces two kinds of outputs: one representing the value, and the 

other inducing a distribution over the action space from which we can sample 
from. The architecture of the network is accordingly designed to have a 
common torso, and two heads, the value and the policy heads. c is set to 512 in 
all experiments.



Extended Data Fig. 4 | Detailed view of AlphaTensor’s architecture, included torso, policy and value head. We refer to Algorithms A.1-A.11 in Supplementary 
Information for the details of each component.
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Extended Data Table 1 | Rank results obtained by combining decompositions (in standard arithmetic)

The table shows the cases where we were able to obtain an improvement over state-of-the-art, for tensors Tn m p, ,  (with n, m, p≤12). The recipe column indicates the low-level matrix multiplica-
tion algorithms used to build the corresponding factorization. 〈n, m, p〉 denotes the best known bound on the rank of Tn m p, , ; see Appendix H in Supplementary Information for more details. For 
tensors that were directly decomposed by AlphaTensor, the recipe shows a star mark, e.g. 〈3, 4, 5〉*. All the factorizations are made available.



Extended Data Table 2 | Result of applying AlphaTensor to the tensor representing the cyclic convolution operation

AlphaTensor finds the discrete Fourier matrix (DFT) and the inverse DFT matrix in finite fields. The figure shows the decompositions found by AlphaTensor of the n × n × n tensor representing the 
cyclic convolution of two vectors, for three different values of n in the finite field of order 17. The action space, characterized by the number of possible factor triplets {u(r), v(r), w(r)}, is thus 173n, 
which is of the order of 1029 for n = 8. Despite the huge action space, AlphaTensor finds the optimal rank-n decompositions for the three values of n. The factors in the figure are stacked vertically, 
i.e., U = [u(1), …, u(n)]. For ease of visualization, the factor entries have been expressed in terms of powers of an n-th primitive root of unity in the finite field. Within each column, each colour 
uniquely represents one element of the field (e.g., for the column n = 4, we have depicted in grey 40 = 44 = 4−4 = 1). By inspecting the patterns in the decompositions, one could extrapolate the 
results for other values of n and other fields. Indeed, the factors u(r) and v(r) correspond to the DFT coefficients, since = =u v zkr

k
r

k
r( ) ( ) , whereas the factors w(r) correspond to the inverse DFT, since 

w z n/kr
k
r( ) = −  for 0≤k, r < n, where z is an n-th primitive root of unity (i.e., zn = 1 and zj ≠ 1 for any 1≤j < n).
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