
Nature  |  Vol 610  |  6 October 2022  |  47

Article

Discovering faster matrix multiplication
algorithms with reinforcement learning

Alhussein Fawzi1,2 ✉, Matej Balog1,2, Aja Huang1,2, Thomas Hubert1,2,
Bernardino Romera-Paredes1,2, Mohammadamin Barekatain1, Alexander Novikov1,
Francisco J. R. Ruiz1, Julian Schrittwieser1, Grzegorz Swirszcz1, David Silver1, Demis Hassabis1
& Pushmeet Kohli1

Improving the efficiency of algorithms for fundamental computations can have a
widespread impact, as it can affect the overall speed of a large amount of computations.
Matrix multiplication is one such primitive task, occurring in many systems—from
neural networks to scientific computing routines. The automatic discovery of
algorithms using machine learning offers the prospect of reaching beyond human
intuition and outperforming the current best human-designed algorithms. However,
automating the algorithm discovery procedure is intricate, as the space of possible
algorithms is enormous. Here we report a deep reinforcement learning approach
based on AlphaZero1 for discovering efficient and provably correct algorithms for the
multiplication of arbitrary matrices. Our agent, AlphaTensor, is trained to play a
single-player game where the objective is finding tensor decompositions within a
finite factor space. AlphaTensor discovered algorithms that outperform the state-
of-the-art complexity for many matrix sizes. Particularly relevant is the case of 4 × 4
matrices in a finite field, where AlphaTensor’s algorithm improves on Strassen’s two-
level algorithm for the first time, to our knowledge, since its discovery 50 years ago2.
We further showcase the flexibility of AlphaTensor through different use-cases:
algorithms with state-of-the-art complexity for structured matrix multiplication and
improved practical efficiency by optimizing matrix multiplication for runtime on
specific hardware. Our results highlight AlphaTensor’s ability to accelerate the
process of algorithmic discovery on a range of problems, and to optimize for different
criteria.

We focus on the fundamental task of matrix multiplication, and use
deep reinforcement learning (DRL) to search for provably correct and
efficient matrix multiplication algorithms. This algorithm discovery
process is particularly amenable to automation because a rich space of
matrix multiplication algorithms can be formalized as low-rank decom-
positions of a specific three-dimensional (3D) tensor2, called the matrix
multiplication tensor3–7. This space of algorithms contains the stand-
ard matrix multiplication algorithm and recursive algorithms such as
Strassen’s2, as well as the (unknown) asymptotically optimal algorithm.
Although an important body of work aims at characterizing the com-
plexity of the asymptotically optimal algorithm8–12, this does not yield
practical algorithms5. We focus here on practical matrix multiplication
algorithms, which correspond to explicit low-rank decompositions of
the matrix multiplication tensor. In contrast to two-dimensional matri-
ces, for which efficient polynomial-time algorithms computing the rank
have existed for over two centuries13, finding low-rank decompositions
of 3D tensors (and beyond) is NP-hard14 and is also hard in practice.
In fact, the search space is so large that even the optimal algorithm
for multiplying two 3 × 3 matrices is still unknown. Nevertheless, in a
longstanding research effort, matrix multiplication algorithms have

been discovered by attacking this tensor decomposition problem using
human search2,15,16, continuous optimization17–19 and combinatorial
search20. These approaches often rely on human-designed heuristics,
which are probably suboptimal. We instead use DRL to learn to recog-
nize and generalize over patterns in tensors, and use the learned agent
to predict efficient decompositions.

We formulate the matrix multiplication algorithm discovery pro-
cedure (that is, the tensor decomposition problem) as a single-player
game, called TensorGame. At each step of TensorGame, the player
selects how to combine different entries of the matrices to multiply.
A score is assigned based on the number of selected operations required
to reach the correct multiplication result. This is a challenging game
with an enormous action space (more than 1012 actions for most inter-
esting cases) that is much larger than that of traditional board games
such as chess and Go (hundreds of actions). To solve TensorGame and
find efficient matrix multiplication algorithms, we develop a DRL agent,
AlphaTensor. AlphaTensor is built on AlphaZero1,21, where a neural net-
work is trained to guide a planning procedure searching for efficient
matrix multiplication algorithms. Our framework uses a single agent
to decompose matrix multiplication tensors of various sizes, yielding

https://doi.org/10.1038/s41586-022-05172-4

Received: 2 October 2021

Accepted: 2 August 2022

Published online: 5 October 2022

Open access

 Check for updates

1DeepMind, London, UK. 2These authors contributed equally: Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert and Bernardino Romera-Paredes. ✉e-mail: afawzi@deepmind.com

https://doi.org/10.1038/s41586-022-05172-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-022-05172-4&domain=pdf
mailto:afawzi@deepmind.com

48  |  Nature  |  Vol 610  |  6 October 2022

Article

transfer of learned decomposition techniques across various tensors.
To address the challenging nature of the game, AlphaTensor uses a
specialized neural network architecture, exploits symmetries of the
problem and makes use of synthetic training games.

AlphaTensor scales to a substantially larger algorithm space than
what is within reach for either human or combinatorial search. In fact,
AlphaTensor discovers from scratch many provably correct matrix
multiplication algorithms that improve over existing algorithms in
terms of number of scalar multiplications. We also adapt the algo-
rithm discovery procedure to finite fields, and improve over Strassen’s
two-level algorithm for multiplying 4 × 4 matrices for the first time, to
our knowledge, since its inception in 1969. AlphaTensor also discovers a
diverse set of algorithms—up to thousands for each size—showing that
the space of matrix multiplication algorithms is richer than previously
thought. We also exploit the diversity of discovered factorizations to
improve state-of-the-art results for large matrix multiplication sizes.
Through different use-cases, we highlight AlphaTensor’s flexibility
and wide applicability: AlphaTensor discovers efficient algorithms
for structured matrix multiplication improving over known results,
and finds efficient matrix multiplication algorithms tailored to spe-
cific hardware, by optimizing for actual runtime. These algorithms
multiply large matrices faster than human-designed algorithms on
the same hardware.

Algorithms as tensor decomposition
As matrix multiplication (A, B) ↦ AB is bilinear (that is, linear in both
arguments), it can be fully represented by a 3D tensor: see Fig. 1a for
how to represent the 2 × 2 matrix multiplication operation as a 3D ten-
sor of size 4 × 4 × 4, and refs. 3,5,7 for more details. We write nT for the
tensor describing n × n matrix multiplication. The tensor Tn is fixed
(that is, it is independent of the matrices to be multiplied), has entries
in {0, 1}, and is of size n2 × n2 × n2. More generally, we use n m p, ,T to
describe the rectangular matrix multiplication operation of size n × m
with m × p (note that =n n n n, ,T T). By a decomposition of Tn into R
rank-one terms, we mean

T ∑= ⊗ ⊗ , (1)n
r

R
r r r

=1

() () ()u v w

where ⊗ denotes the outer (tensor) product, and u(r), v(r) and w(r) are all
vectors. If a tensor T can be decomposed into R rank-one terms, we say
the rank of T is at most R, or RRank () ≤T . This is a natural extension
from the matrix rank, where a matrix is decomposed into ∑ ⊗r

R r r
=1

() ()u v .

A decomposition of Tn into R rank-one terms provides an algorithm
for multiplying arbitrary n × n matrices using R scalar multiplications
(see Algorithm 1). We refer to Fig. 1b,c for an example algorithm mul-
tiplying 2 × 2 matrices with R = 7 (Strassen’s algorithm).

Crucially, Algorithm 1 can be used to multiply block matrices. By using
this algorithm recursively, one can multiply matrices of arbitrary size, with
the rank R controlling the asymptotic complexity of the algorithm. In par-
ticular, N × N matrices can be multiplied with asymptotic complexity
O N()Rlog ()n ; see ref. 5 for more details.

DRL for algorithm discovery
We cast the problem of finding efficient matrix multiplication algo-
rithms as a reinforcement learning problem, modelling the environ-
ment as a single-player game, TensorGame. The game state after step
t is described by a tensor St, which is initially set to the target tensor
we wish to decompose: S T= n0 . In each step t of the game, the player
selects a triplet (u(t), v(t), w(t)), and the tensor St is updated by subtract-
ing the resulting rank-one tensor: ← − ⊗ ⊗t t

t t t
−1

() () ()S S u v w . The goal
of the player is to reach the zero tensor 0=tS by applying the smallest
number of moves. When the player reaches the zero tensor, the
sequence of selected factors satisfies u v wT = ∑ ⊗ ⊗n t

R t t t
=1

() () () (where
R denotes the number of moves), which guarantees the correctness of
the resulting matrix multiplication algorithm. To avoid playing unnec-
essarily long games, we limit the number of steps to a maximum value,
Rlimit.

For every step taken, we provide a reward of −1 to encourage finding
the shortest path to the zero tensor. If the game terminates with a
non-zero tensor (after Rlimit steps), the agent receives an additional
terminal reward equal to γ− ()R limit

S , where γ()R limit
S is an upper bound

on the rank of the terminal tensor. Although this reward optimizes for
rank (and hence for the complexity of the resulting algorithm), other
reward schemes can be used to optimize other properties, such as
practical runtime (see ‘Algorithm discovery results’). Besides, as our
aim is to find exact matrix multiplication algorithms, we constrain
{u(t), v(t), w(t)} to have entries in a user-specified discrete set of coeffi-
cients F (for example, F = {−2, −1, 0, 1, 2}). Such discretization is com-
mon practice to avoid issues with the finite precision of floating
points15,18,20.

To play TensorGame, we propose AlphaTensor (Fig. 2), an agent based
on AlphaZero1, which achieved tabula rasa superhuman performance
in the classical board games of Go, chess and shogi, and on its extension
to handle large action spaces Sampled AlphaZero21. Similarly to
AlphaZero, AlphaTensor uses a deep neural network to guide a Monte

c1 c2

c3 c4

=
a1 a2

a3 a4

·
b1 b2

b3 b4

a

U =

1 0 1 0 1 0

0 0 0 0 1 1

0 1 0 0 0 0

1 1 0 1 0 –1

V =

1 0

0 0 0

0 1 1

1 0 1

W =

1 0 0 1 1

0 0 1 0 1 0

0 1 0 1 0 0

1 0 0a1 a2 a3 a4

b1

b2

b3

b4

c1

c3

c2

c4

b c

–1

0

1

0

1 0

0 1

0 0

0 –1

–1 0 1

0 1

0 0

1 0

–1 1 0

0

0

0

1

–1

m1 = (a1 + a4)(b1 + b4)

m2 = (a3 + a4) b1

m3 = a1 (b2 – b4)

m4 = a4 (b3 – b1)

m5 = (a1 + a2) b4

m6 = (a3 – a1)(b1 + b2)

m7 = (a2 – a4)(b3 + b4)

c1 = m1 + m4 – m5 + m7

c2 = m3 + m5

c3 = m2 + m4

c4 = m1 – m2 + m3 + m6

Fig. 1 | Matrix multiplication tensor and algorithms. a, Tensor T2 representing
the multiplication of two 2 × 2 matrices. Tensor entries equal to 1 are depicted
in purple, and 0 entries are semi-transparent. The tensor specifies which entries
from the input matrices to read, and where to write the result. For example,
as c1 = a1b1 + a2b3, tensor entries located at (a1, b1, c1) and (a2, b3, c1) are set to 1.

b, Strassen's algorithm2 for multiplying 2 × 2 matrices using 7 multiplications.
c, Strassen's algorithm in tensor factor representation. The stacked factors
U, V and W (green, purple and yellow, respectively) provide a rank-7
decomposition of 2T (equation (1)). The correspondence between arithmetic
operations (b) and factors (c) is shown by using the aforementioned colours.

Nature  |  Vol 610  |  6 October 2022  |  49

Carlo tree search (MCTS) planning procedure. The network takes as
input a state (that is, a tensor tS to decompose), and outputs a policy
and a value. The policy provides a distribution over potential actions.
As the set of potential actions (u(t), v(t), w(t)) in each step is enormous,
we rely on sampling actions rather than enumerating them21,22. The
value provides an estimate of the distribution z of returns (cumulative
reward) starting from the current state tS . With the above reward
scheme, the distribution z models the agent’s belief about the rank of
the tensor St. To play a game, AlphaTensor starts from the target tensor
(nT) and uses the MCTS planner at each step to choose the next action.
Finished games are used as feedback to the network to improve the
network parameters.

Overcoming the challenges posed by TensorGame—namely, an enor-
mous action space, and game states described by large 3D tensors
representing an abstract mathematical operation—requires multiple
advances. All these components, described briefly below, substantially

improve the overall performance over a plain AlphaZero agent (see
Methods and Supplementary Information for details).

Neural network architecture
We propose a transformer-based23 architecture that incorporates
inductive biases for tensor inputs. We first project the S × S × S input
tensor into three S × S grids of feature vectors by using linear layers
applied to the three cyclic transpositions of the tensor. The main part of
the model comprises a sequence of attention operations, each applied
to a set of features belonging to a pair of grids (Extended Data Figs. 3
and 4). This generalizes axial attention24 to multiple grids, and is both
more efficient and yields better results than naive self-attention. The
proposed architecture, which disregards the order of rows and columns
in the grids, is inspired by the invariance of the tensor rank to slice
reordering. The final feature representation of the three matrices is
passed both to the policy head (an autoregressive model) and the value
head (a multilayer perceptron).

Synthetic demonstrations
Although tensor decomposition is NP-hard, the inverse task of con-
structing the tensor from its rank-one factors is elementary. Hence,
we generate a large dataset of tensor-factorization pairs (synthetic
demonstrations) by first sampling factors u v w{(, ,)}r r r

r
R() () ()

=1 at random,
and then constructing the tensor = ∑ ⊗ ⊗r

R r r r
=1

() () ()D u v w . We train the
network on a mixture of supervised loss (that is, to imitate synthetic
demonstrations) and standard reinforcement learning loss (that is,
learning to decompose a target tensor nT) (Fig. 2). This mixed training
strategy—training on the target tensor and random tensors— substan-
tially outperforms each training strategy separately. This is despite
randomly generated tensors having different properties from the tar-
get tensors.

Change of basis
 nT (Fig. 1a) is the tensor representing the matrix multiplication bilinear
operation in the canonical basis. The same bilinear operation can be
expressed in other bases, resulting in other tensors. These different

Algorithm 1
A meta-algorithm parameterized by =u v w{ , , }r r r() () ()

r
R

1 for computing
the matrix product C = AB. It is noted that R controls the number of
multiplications between input matrix entries.

Parameters: =u v w{ , , }r r r() () ()
r
R

1: length-n2 vectors such that
Tn

r r r() () ()
r
R

1= ∑ ⊗ ⊗= u v w
Input: A, B: matrices of size n × n
Output: C = AB
(1) for r = 1, …, R do
(2) ← + + + +� �m u a u a v b v b() ()r n n1 1

r
n
r r

n
r

1
() ()

1
() ()

2 22 2

(3) for i = 1, …, n2 do
(4) �c w m w mi R1i i

R(1) ()← + +
return C

Change of basis

Pre-generated
synthetic

demonstrations

Played games
buffer

Played
game

Sample
random state

Neural network

Policy head

Value head

Acting

...

LearningUpdated
model

Network inputTraining labels

(u, v, w)

(u(1), v(1), w(1)) (u(2), v(2), w(2)) (u(3), v(3), w(3))

Fig. 2 | Overview of AlphaTensor. The neural network (bottom box) takes
as input a tensor St, and outputs samples (u, v, w) from a distribution
over potential next actions to play, and an estimate of the future returns
(for example, of S−Rank ()t). The network is trained on two data sources:

previously played games and synthetic demonstrations. The updated network
is sent to the actors (top box), where it is used by the MCTS planner to generate
new games.

50  |  Nature  |  Vol 610  |  6 October 2022

Article

tensors are equivalent: they have the same rank, and decompositions
obtained in a custom basis can be mapped to the canonical basis, hence
obtaining a practical algorithm of the form in Algorithm 1. We leverage
this observation by sampling a random change of basis at the beginning
of every game, applying it to Tn, and letting AlphaTensor play the game
in that basis (Fig. 2). This crucial step injects diversity into the games
played by the agent.

Data augmentation
From every played game, we can extract additional tensor-factorization
pairs for training the network. Specifically, as factorizations are
order invariant (owing to summation), we build an additional
tensor-factorization training pair by swapping a random action with
the last action from each finished game.

Algorithm discovery results
Discovery of matrix multiplication algorithms
We train a single AlphaTensor agent to find matrix multiplication algo-
rithms for matrix sizes n × m with m × p, where n, m, p ≤ 5. At the begin-
ning of each game, we sample uniformly a triplet (n, m, p) and train
AlphaTensor to decompose the tensor Tn m p, , . Although we consider
tensors of fixed size (Tn m p, , has size nm × mp × pn), the discovered algo-
rithms can be applied recursively to multiply matrices of arbitrary size.
We use AlphaTensor to find matrix multiplication algorithms over
different arithmetics—namely, modular arithmetic (that is, multiplying
matrices in the quotient ring 2Z), and standard arithmetic (that is, mul-
tiplying matrices in R).

Figure 3 (left) shows the complexity (that is, rank) of the algo-
rithms discovered by AlphaTensor. AlphaTensor re-discovers the
best algorithms known for multiplying matrices (for example,

Strassen’s2 and Laderman’s15 algorithms). More importantly, AlphaT-
ensor improves over the best algorithms known for several matrix
sizes. In particular, AlphaTensor finds an algorithm for multiplying
4 × 4 matrices using 47 multiplications in 2Z , thereby outperforming
Strassen’s two-level algorithm2, which involves 72 = 49 multiplica-
tions. By applying this algorithm recursively, one obtains a practical
matrix multiplication algorithm in Z2 with complexity O N()2.778 .
Moreover, AlphaTensor discovers efficient algorithms for multiply-
ing matrices in standard arithmetic; for example, AlphaTensor finds
a rank-76 decomposition of 4,5,5T , improving over the previous
state-of-the-art complexity of 80 multiplications. See Extended
Data Figs. 1 and 2 for examples.

AlphaTensor generates a large database of matrix multiplication
algorithms—up to thousands of algorithms for each size. We exploit
this rich space of algorithms by combining them recursively, with the
aim of decomposing larger matrix multiplication tensors. We refer
to refs. 25,26 and Appendix H in Supplementary Information for more
details. Using this approach, we improve over the state-of-the-art
results for more than 70 matrix multiplication tensors (with
n, m, p ≤ 12). See Fig. 3 (right) and Extended Data Table 1 for the results.

A crucial aspect of AlphaTensor is its ability to learn to transfer knowl-
edge between targets (despite providing no prior knowledge on their
relationship). By training one agent to decompose various tensors,
AlphaTensor shares learned strategies among these, thereby improv-
ing the overall performance (see Supplementary Information for
analysis). Finally, it is noted that AlphaTensor scales beyond current
computational approaches for decomposing tensors. For example, to
our knowledge, no previous approach was able to handle T4, which has
an action space 1010 times larger than T3. Our agent goes beyond this
limit, discovering decompositions matching or surpassing
state-of-the-art for large tensors such as 5T .

AlphaTensor rank
Modular Standard

Size
(n, m, p)

Best method
known

Best rank
known

(2, 2, 2) (Strassen, 1969)2 7 7 7
(3, 3, 3) (Laderman, 1976)15 23 23 23

49 47 49

98 96 98

(2, 2, 3) 11 11 11
(2, 2, 4) 14 14 14
(2, 2, 5) 18 18 18
(2, 3, 3) 15 15 15
(2, 3, 4) 20 20 20
(2, 3, 5) 25 25 25
(2, 4, 4) 26 26 26
(2, 4, 5) 33 33 33
(2, 5, 5) 40 40 40
(3, 3, 4) (Smirnov, 2013)18 29 29 29
(3, 3, 5) 36 36 36
(3, 4, 4) 38 38 38
(3, 4, 5) 48 47 47
(3, 5, 5) 58 58 58
(4, 4, 5) 64 63 63
(4, 5, 5) 80 76 76 200 400 600 800 1,000

Best rank known

0

5

10

15

20

25

30

Im
p

ro
ve

m
en

t
in

 r
an

k

(9, 9, 9)

(9, 9, 11)

(9, 10, 10)

(9, 11, 11)

(10, 10, 10)

(10, 11, 12)

(10, 12, 12)

(11, 11, 11)

(11, 12, 12)

(Strassen, 1969)2

(Hopcroft and Kerr, 1971)16

(Hopcroft and Kerr, 1971)16

(Hopcroft and Kerr, 1971)16

(Hopcroft and Kerr, 1971)16

(Hopcroft and Kerr, 1971)16

(Smirnov, 2013)18

(Smirnov, 2013)18

(Smirnov, 2013)18

(Sedoglavic and Smirnov, 2021)19

(3, 5, 5) + (2, 5, 5)
(2, 2, 2) ^ (2, 2, 2)

(2, 2, 2) + (2, 2, 1)
(2, 2, 2) + (2, 2, 2)
(2, 2, 2) + (2, 2, 3)

(4, 4, 2) + (4, 4, 3)
(2, 5, 5) ^ (2, 1, 1)

(4, 4, 4)

(5, 5, 5)

(Hopcroft and Kerr, 1971)16

Fig. 3 | Comparison between the complexity of previously known matrix
multiplication algorithms and the ones discovered by AlphaTensor. Left:
column (n, m, p) refers to the problem of multiplying n × m with m × p matrices.
The complexity is measured by the number of scalar multiplications (or
equivalently, the number of terms in the decomposition of the tensor). ‘Best
rank known’ refers to the best known upper bound on the tensor rank (before
this paper), whereas ‘AlphaTensor rank’ reports the rank upper bounds
obtained with our method, in modular arithmetic (Z2) and standard arithmetic.

In all cases, AlphaTensor discovers algorithms that match or improve over
known state of the art (improvements are shown in red). See Extended Data
Figs. 1 and 2 for examples of algorithms found with AlphaTensor. Right: results
(for arithmetic in R) of applying AlphaTensor-discovered algorithms on larger
tensors. Each red dot represents a tensor size, with a subset of them labelled.
See Extended Data Table 1 for the results in table form. State-of-the-art results
are obtained from the list in ref. 64.

Nature  |  Vol 610  |  6 October 2022  |  51

Analysing the symmetries of matrix multiplication algorithms
From a mathematical standpoint, the diverse algorithms discovered
by AlphaTensor show that the space is richer than previously known.
For example, while the only known rank-49 factorization decomposing
T T T= ⊗4 2 2 before this paper conforms to the product structure (that
is, it uses the factorization of T2 twice, which we refer to as Strassen-
square2), AlphaTensor finds more than 14,000 non-equivalent fac-
torizations (with standard arithmetic) that depart from this scheme,
and have different properties (such as matrix ranks and sparsity—see
Supplementary Information). By non-equivalent, we mean that it is
not possible to obtain one from another by applying a symmetry trans-
formation (such as permuting the factors). Such properties of matrix
multiplication tensors are of great interest, as these tensors represent
fundamental objects in algebraic complexity theory3,5,7. The study of
matrix multiplication symmetries can also provide insight into the
asymptotic complexity of matrix multiplication5. By exploring this rich
space of algorithms, we believe that AlphaTensor will be useful for
generating results and guiding mathematical research. See Supple-
mentary Information for proofs and details on the symmetries of
factorizations.

Beyond standard matrix multiplication
Tensors can represent any bilinear operation, such as structured matrix
multiplication, polynomial multiplication or more custom bilinear
operations used in machine learning27,28. We demonstrate here a
use-case where AlphaTensor finds a state-of-the-art algorithm for
multiplying an n x n skew-symmetric matrix with a vector of length n.
Figure 4a shows the obtained decompositions for small instance sizes n.
We observe a pattern that we generalize to arbitrary n, and prove that
this yields a general algorithm for the skew-symmetric matrix-vector
product (Fig. 4b). This algorithm, which uses n n n(− 1)(+ 2)/2 ~ 1

2
2

multiplications (where ∼ indicates asymptotic similarity), outperforms
the previously known algorithms using asymptotically n2 multiplica-
tions29, and is asymptotically optimal. See Supplementary Information

for a proof, and for another use-case showing AlphaTensor’s ability
to re-discover the Fourier basis (see also Extended Data Table 2). This
shows that AlphaTensor can be applied to custom bilinear operations,
and yield efficient algorithms leveraging the problem structure.

Rapid tailored algorithm discovery
We show a use-case where AlphaTensor finds practically efficient matrix
multiplication algorithms, tailored to specific hardware, with zero
prior hardware knowledge. To do so, we modify the reward of AlphaT-
ensor: we provide an additional reward at the terminal state (after the
agent found a correct algorithm) equal to the negative of the runtime
of the algorithm when benchmarked on the target hardware. That is,
we set r r λb′ = +t t t, where rt is the reward scheme described in ‘DRL for
algorithm discovery’, bt is the benchmarking reward (non-zero only at
the terminal state) and λ is a user-specified coefficient. Aside from the
different reward, the exact same formulation of TensorGame is used.

We train AlphaTensor to search for efficient algorithms to multiply
4 × 4 block matrices, and focus on square matrix multiplication of size
8,192 (each block is hence of size 2,048) to define the benchmarking
reward. AlphaTensor searches for the optimal way of combining the
16 square blocks of the input matrices on the considered hardware. We
do not apply the 4 × 4 algorithm recursively, to leverage the efficient
implementation of matrix multiplication on moderate-size matrices
(2,048 × 2,048 in this case). We study two hardware devices commonly
used in machine learning and scientific computing: an Nvidia V100
graphics processing unit (GPU) and a Google tensor processing unit
(TPU) v2. The factorization obtained by AlphaTensor is transformed
into JAX30 code, which is compiled (just in time) before benchmarking.

Figure 5a,b shows the efficiency of the AlphaTensor-discovered
algorithms on the GPU and the TPU, respectively. AlphaTensor dis-
covers algorithms that outperform the Strassen-square algorithm,
which is a fast algorithm for large square matrices31,32. Although
the discovered algorithm has the same theoretical complexity as
Strassen-square, it outperforms it in practice, as it is optimized for
the considered hardware. Interestingly, AlphaTensor finds algorithms

n = 3
Extrapolationa

(n – 1)(n + 2)

2
multiplications.

(2)

(3) wij = aij (bj – bi) Computing the �rst (n – 2)(n + 1)/2 intermediate products

(4)

(5) qi = bi
n
j=1 aji

(7)

(8)

(9)

Input: n × n skew-symmetric matrix A, vector b.
Output: The resulting vector c = Ab computed in
(1) for i = 1, . . . , n − 2 do

for j = i + 1, . . . , n do

(4) for i = 1, . . . , n do

Σ
(6) for i = 1, . . . , n − 2 do

Computing the �nal n intermediate products

ci = i–1
j=1 wji +Σ n

j=i+1wij – qiΣ
cn–1 = – n–2

i=1Σ wij –
n–2
j=i+1Σ wjn +

n–2
j=1Σ qi

n
i=1,i≠n–1Σ

cn = – n–1
i=1Σ wij +

n
j=i+1Σ qi

n–1
i=1Σ

b

W
V

U

n = 4 n = 5 n = 6 n = 10

Fig. 4 | Algorithm discovery beyond standard matrix multiplication.
a, Decompositions found by AlphaTensor for the tensors of size n n× ×n n(− 1)

2

(with n = 3, 4, 5, 6) representing the skew-symmetric matrix-vector multiplication.
The red pixels denote 1, the blue pixels denote −1 and the white pixels denote 0.

Extrapolation to n = 10 is shown in the rightmost figure. b, Skew-symmetric
matrix-by-vector multiplication algorithm, obtained from the examples solved
by AlphaTensor. The wij and qi terms in steps 3 and 5 correspond to the mr terms
in Algorithm 1. It is noted that steps 6–9 do not involve any multiplications.

52  |  Nature  |  Vol 610  |  6 October 2022

Article

with a larger number of additions compared with Strassen-square (or
equivalently, denser decompositions), but the discovered algorithms
generate individual operations that can be efficiently fused by the
specific XLA33 grouping procedure and thus are more tailored towards
the compiler stack we use. The algorithms found by AlphaTensor also
provide gains on matrix sizes larger than what they were optimized
for. Finally, Fig. 5c shows the importance of tailoring to particular
hardware, as algorithms optimized for one hardware do not perform
as well on other hardware.

Discussion
Trained from scratch, AlphaTensor discovers matrix multiplication
algorithms that are more efficient than existing human and
computer-designed algorithms. Despite improving over known
algorithms, we note that a limitation of AlphaTensor is the need
to pre-define a set of potential factor entries F, which discretizes
the search space but can possibly lead to missing out on efficient
algorithms. An interesting direction for future research is to adapt
AlphaTensor to search for F. One important strength of AlphaTensor
is its flexibility to support complex stochastic and non-differentiable
rewards (from the tensor rank to practical efficiency on specific hard-
ware), in addition to finding algorithms for custom operations in a
wide variety of spaces (such as finite fields). We believe this will spur
applications of AlphaTensor towards designing algorithms that opti-
mize metrics that we did not consider here, such as numerical stability
or energy usage.

The discovery of matrix multiplication algorithms has far-reaching
implications, as matrix multiplication sits at the core of many com-
putational tasks, such as matrix inversion, computing the determi-
nant and solving linear systems, to name a few7. We also note that our
methodology can be extended to tackle related primitive mathemati-
cal problems, such as computing other notions of rank (for example,
border rank—see Supplementary Information), and NP-hard matrix
factorization problems (for example, non-negative factorization). By
tackling a core NP-hard computational problem in mathematics using
DRL—the computation of tensor ranks—AlphaTensor demonstrates the
viability of DRL in addressing difficult mathematical problems, and
potentially assisting mathematicians in discoveries.

Online content
Any methods, additional references, Nature Research reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-022-05172-4.

1.	 Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science 362, 1140–1144 (2018).

2.	 Strassen, V. Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969).
3.	 Bürgisser, P., Clausen, M. & Shokrollahi, A. Algebraic Complexity Theory Vol. 315 (Springer

Science & Business Media, 2013).
4.	 Bläser, M. Fast matrix multiplication. Theory Comput. 5, 1–60 (2013).
5.	 Landsberg, J. M. Geometry and Complexity Theory 169 (Cambridge Univ. Press, 2017).
6.	 Pan, V. Y. Fast feasible and unfeasible matrix multiplication. Preprint at https://arxiv.org/

abs/1804.04102 (2018).
7.	 Lim, L.-H. Tensors in computations. Acta Numer. 30, 555–764 (2021).
8.	 Schönhage, A. Partial and total matrix multiplication. SIAM J. Comput. 10, 434–455 (1981).
9.	 Coppersmith, D. & Winograd, S. Matrix multiplication via arithmetic progressions. In ACM

Symposium on Theory of Computing 1–6 (ACM, 1987).
10.	 Strassen, V. The asymptotic spectrum of tensors and the exponent of matrix

multiplication. In 27th Annual Symposium on Foundations of Computer Science 49–54
(IEEE, 1986).

11.	 Le Gall, F. Powers of tensors and fast matrix multiplication. In International Symposium on
Symbolic and Algebraic Computation 296–303 (ACM, 2014).

12.	 Alman, J. & Williams, V. V. A refined laser method and faster matrix multiplication. In
ACM-SIAM Symposium on Discrete Algorithms 522–539 (SIAM, 2021).

13.	 Gauss, C. F. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solum
Ambientium (Perthes and Besser, 1809).

14.	 Hillar, C. J. & Lim, L.-H. Most tensor problems are NP-hard. J. ACM 60, 1–39 (2013).
15.	 Laderman, J. D. A noncommutative algorithm for multiplying 3 × 3 matrices using 23

multiplications. Bull. Am. Math. Soc. 82, 126–128 (1976).
16.	 Hopcroft, J. E. & Kerr, L. R. On minimizing the number of multiplications necessary for

matrix multiplication. SIAM J. Appl. Math. 20, 30–36 (1971).
17.	 Vervliet, N., Debals, O., Sorber, L., Van Barel, M. & De Lathauwer, L. Tensorlab 3.0 (2016);

https://www.tensorlab.net/
18.	 Smirnov, A. V. The bilinear complexity and practical algorithms for matrix multiplication.

Comput. Math. Math. Phys. 53, 1781–1795 (2013).
19.	 Sedoglavic, A. & Smirnov, A. V. The tensor rank of 5x5 matrices multiplication is bounded

by 98 and its border rank by 89. In Proc. 2021 on International Symposium on Symbolic
and Algebraic Computation 345–351 (ACM, 2021).

20.	 Heule, M. J., Kauers, M. & Seidl, M. New ways to multiply 3 × 3-matrices. J. Symb. Comput.
104, 899–916 (2021).

21.	 Hubert, T. et al. Learning and planning in complex action spaces. In International
Conference on Machine Learning 4476–4486 (PMLR, 2021).

22.	 Zhang, W. & Dietterich, T. G. A reinforcement learning approach to job-shop scheduling.
In International Joint Conferences on Artificial Intelligence Vol. 95, 1114–1120
(Morgan Kaufmann Publishers, 1995).

8,192

10,240

12,288

14,336

16,384

18,432

20,480

M
at

rix
 s

iz
e

4.3%

8.5%

6.8%

10.7%

10.1%

13.3%

16.1%

19.6%

13.8%
16.6%

15.3%

17.9%

21.3%
23.9%

AlphaTensor

8,192

10,240

12,288

14,336

16,384

18,432

20,480

M
at

rix
 s

iz
e

6.6%
10.3%

9.0%
12.4%

8.9%
13.9%

9.2%
13.4%

7.2%
11.2%

6.9%
12.3%

8.4%
13.9%

TPU

GPU

B
en

ch
m

ar
k

d
ev

ic
e

10.3%

2.8%

4.4%

8.5%

Optimized for TPU

Optimized for GPU

Speed-up on Nvidia V100 GPU Speed-up on TPU v2 Speed-up of tailored agorithms
on both devices

a b c

Strassen-square
AlphaTensor
Strassen-square

Fig. 5 | Speed-ups of the AlphaTensor-discovered algorithm. a,b, Speed-ups
(%) of the AlphaTensor-discovered algorithms tailored for a GPU (a) and a TPU
(b), optimized for a matrix multiplication of size 8,192 × 8,192. Speed-ups are
measured relative to standard (for example, cuBLAS for the GPU) matrix
multiplication on the same hardware. Speed-ups are reported for various

matrix sizes (despite optimizing the algorithm only on one matrix size). We also
report the speed-up of the Strassen-square algorithm. The median speed-up is
reported over 200 runs. The standard deviation over runs is <0.4 percentage
points (see Supplementary Information for more details). c, Speed-up of both
algorithms (tailored to a GPU and a TPU) benchmarked on both devices.

https://doi.org/10.1038/s41586-022-05172-4
https://arxiv.org/abs/1804.04102
https://arxiv.org/abs/1804.04102
https://www.tensorlab.net/

Nature  |  Vol 610  |  6 October 2022  |  53

23.	 Vaswani, A. Attention is all you need. In International Conference on Neural Information
Processing Systems Vol 30, 5998–6008 (Curran Associates, 2017).

24.	 Ho, J., Kalchbrenner, N., Weissenborn, D. & Salimans, T. Axial attention in
multidimensional transformers. Preprint at https://arxiv.org/abs/1912.12180 (2019).

25.	 Drevet, C.-É., Islam, M. N. & Schost, É. Optimization techniques for small matrix
multiplication. Theor. Comput. Sci. 412, 2219–2236 (2011).

26.	 Sedoglavic, A. A non-commutative algorithm for multiplying (7 × 7) matrices using 250
multiplications. Preprint at https://arxiv.org/abs/1712.07935 (2017).

27.	 Battaglia, P. W. et al. Relational inductive biases, deep learning, and graph networks.
Preprint at https://arxiv.org/abs/1806.01261 (2018).

28.	 Balog, M., van Merriënboer, B., Moitra, S., Li, Y. & Tarlow, D. Fast training of sparse graph
neural networks on dense hardware. Preprint at https://arxiv.org/abs/1906.11786 (2019).

29.	 Ye, K. & Lim, L.-H. Fast structured matrix computations: tensor rank and Cohn–Umans
method. Found. Comput. Math. 18, 45–95 (2018).

30.	 Bradbury, J. et al. JAX: composable transformations of Python+NumPy programs. GitHub
http://github.com/google/jax (2018).

31.	 Benson, A. R. & Ballard, G. A framework for practical parallel fast matrix multiplication.
ACM SIGPLAN Not. 50, 42–53 (2015).

32.	 Huang, J., Smith, T. M., Henry, G. M. & Van De Geijn, R. A. Strassen’s algorithm reloaded.
In International Conference for High Performance Computing, Networking, Storage and
Analysis 690–701 (IEEE, 2016).

33.	 Abadi, M. et al. Tensorflow: a system for large-scale machine learning. In USENIX
Symposium On Operating Systems Design And Implementation 265–283 (USENIX,
2016).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

https://arxiv.org/abs/1912.12180
https://arxiv.org/abs/1712.07935
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1906.11786
http://github.com/google/jax
http://creativecommons.org/licenses/by/4.0/

Article
Methods

TensorGame
TensorGame is played as follows. The start position S0 of the game
corresponds to the tensor T representing the bilinear operation of
interest, expressed in some basis. In each step t of the game, the player
writes down three vectors (u(t), v(t), w(t)), which specify the rank-1 tensor
u(t) ⊗ v(t) ⊗ w(t), and the state of the game is updated by subtracting the
newly written down factor:

S S u v w← − ⊗ ⊗ . (2)t t
t t t

−1
() () ()

The game ends when the state reaches the zero tensor, 0=RS . This
means that the factors written down throughout the game form a
factorization of the start tensor S0, that is, = ∑ ⊗ ⊗t

R t t t
0 =1

() () ()S u v w .
This factorization is then scored. For example, when optimizing for
asymptotic time complexity the score is −R, and when optimizing
for practical runtime the algorithm corresponding to the factorization
{(, ,)}t t t

t
R() () ()

=1u v w is constructed (see Algorithm 1) and then bench-
marked on the fly (see Supplementary Information).

In practice, we also impose a limit Rlimit on the maximum number of
moves in the game, so that a weak player is not stuck in unnecessarily
(or even infinitely) long games. When a game ends because it has run
out of moves, a penalty score is given so that it is never advantageous
to deliberately exhaust the move limit. For example, when optimizing
for asymptotic time complexity, this penalty is derived from an upper
bound on the tensor rank of the final residual tensor R limit

S . This upper
bound on the tensor rank is obtained by summing the matrix ranks of
the slices of the tensor.

TensorGame over rings. We say that the decomposition of nT in equa-
tion (1) is in a ring E (defining the arithmetic operations) if each of the
factors u(t), v(t) and w(t) has entries belonging to the set E, and additions
and multiplications are interpreted according to E. The tensor rank
depends, in general, on the ring. At each step of TensorGame, the ad-
ditions and multiplications in equation (2) are interpreted in E . For
example, when working in 2Z , (in this case, the factors u(t), v(t) and w(t)
live in F = {0, 1}), a modulo 2 operation is applied after each state update
(equation (2)).

We note that integer-valued decompositions u(t), v(t) and w(t) lead to
decompositions in arbitrary rings E. Hence, provided F only contains
integers, algorithms we find in standard arithmetic apply more gener-
ally to any ring.

AlphaTensor
AlphaTensor builds on AlphaZero1 and its extension Sampled
AlphaZero21, combining a deep neural network with a sample-based
MCTS search algorithm.

The deep neural network, fθ(s) = (π, z) parameterized by θ, takes as
input the current state s of the game and outputs a probability distribu-
tion π(⋅∣s) over actions and z(⋅∣s) over returns (sum of future rewards) G.
The parameters θ of the deep neural network are trained by reinforce-
ment learning from self-play games and synthetic demonstrations.
Self-play games are played by actors, running a sample-based MCTS
search at every state st encountered in the game. The MCTS search
returns an improved probability distribution over moves from which
an action at is selected and applied to the environment. The sub-tree
under at is reused for the subsequent search at st+1. At the end of the
game, a return G is obtained and the trajectory is sent to the learner to
update the neural network parameters θ. The distribution over returns
z(⋅∣st) is learned through distributional reinforcement learning using
the quantile regression distributional loss34, and the network policy
π(⋅∣st) is updated using a Kullback–Leibler divergence loss, to maximize
its similarity to the search policy for self-play games or to the next
action for synthetic demonstrations. We use the Adam optimizer35

with decoupled weight decay36 to optimize the parameters θ of the
neural network.

Sample-based MCTS search. The sample-based MCTS search is very
similar to the one described in Sampled AlphaZero. Specifically, the
search consists of a series of simulated trajectories of TensorGame that
are aggregated in a tree. The search tree therefore consists of nodes
representing states and edges representing actions. Each state-action
pair (s, a) stores a set of statistics N s a Q s a π s a(,), (,), ˆ(,), where N(s, a)
is the visit count, Q(s, a) is the action value and π s aˆ(,) is the empirical
policy probability. Each simulation traverses the tree from the root
state s0 until a leaf state sL is reached by recursively selecting in each
state s an action a that has not been frequently explored, has high em-
pirical policy probability and high value. Concretely, actions within
the tree are selected by maximizing over the probabilistic upper con-
fidence tree bound21,37

∑
Q s a c s π s a

N s b

N s a
argmax (,) + () ⋅ ˆ(,)

(,)

1 + (,)
,

a

b

where c(s) is an exploration factor controlling the influence of the
empirical policy π s aˆ(,) relative to the values Q(s, a) as nodes are visited
more often. In addition, a transposition table is used to recombine
different action sequences if they reach the exact same tensor. This
can happen particularly often in TensorGame as actions are commuta-
tive. Finally, when a leaf state sL is reached, it is evaluated by the neural
network, which returns K actions {ai} sampled from π(a∣sL), alongside
the empirical distribution ∑π a s δˆ() = K i a aL

1
, i

 and a value v(sL) con-
structed from z(⋅∣sL). Differently from AlphaZero and Sampled Alp-
haZero, we chose v not to be the mean of the distribution of returns
z(⋅∣sL) as is usual in most reinforcement learning agents, but instead to
be a risk-seeking value, leveraging the facts that TensorGame is a deter-
ministic environment and that we are primarily interested in finding
the best trajectory possible. The visit counts and values on the simu-
lated trajectory are then updated in a backward pass as in Sampled
AlphaZero.

Policy improvement. After simulating N(s) trajectories from state s
using MCTS, the normalized visit counts of the actions at the root of
the search tree N(s, a)/N(s) form a sample-based improved policy. Dif-
ferently from AlphaZero and Sampled AlphaZero, we use an adaptive
temperature scheme to smooth the normalized visit counts distribution
as some states can accumulate an order of magnitude more visits than
others because of sub-tree reuse and transposition table. Concretely,
we define the improved policy as π s a N s a N s bˆ(,) = (,)/ ∑ (,)τ s

b
τ s1/ () 1/ ()I

where τ s N s N N N() = log ()/log if > and 1 otherwise, with N being a
hyperparameter. For training, we use Iπ̂ directly as a target for the
network policy π. For acting, we additionally discard all actions that
have a value lower than the value of the most visited action, and sample
proportionally to π̂I among those remaining high-value actions.

Learning one agent for multiple target tensors. We train a single
agent to decompose the different tensors n m p, ,T in a given arithmetic
(standard or modular). As the network works with fixed-size inputs, we
pad all tensors (with zeros) to the size of the largest tensor we consider
(5T , of size 25 × 25 × 25). At the beginning of each game, we sample uni-
formly at random a target n m p, ,T , and play TensorGame. Training a sin-
gle agent on different targets leads to better results thanks to the trans-
fer between targets. All our results reported in Fig. 3 are obtained using
multiple runs of this multi-target setting. We also train a single agent
to decompose tensors in both arithmetics. Owing to learned transfer
between the two arithmetics, this agent discovers a different distribu-
tion of algorithms (of the same ranks) in standard arithmetic than the
agent trained on standard arithmetic only, thereby increasing the over-
all diversity of discovered algorithms.

Synthetic demonstrations. The synthetic demonstrations buffer
contains tensor-factorization pairs, where the factorizations

u v w{(, ,)}r r r
r
R() () ()

=1 are first generated at random, after which the tensor
u v w= ∑ ⊗ ⊗r

R r r r
=1

() () ()D is formed. We create a dataset containing
5 million such tensor-factorization pairs. Each element in the factors
is sampled independently and identically distributed (i.i.d.) from a
given categorical distribution over F (all possible values that can be
taken). We discarded instances whose decompositions were clearly
suboptimal (contained a factor with u = 0, v = 0, or w = 0).

In addition to these synthetic demonstrations, we further add to
the demonstration buffer previous games that have achieved large
scores to reinforce the good moves made by the agent in these games.

Change of basis. The rank of a bilinear operation does not depend on
the basis in which the tensor representing it is expressed, and for any
invertible matrices A, B and C we have Rank () = Rank ()(, ,)T T A B C , where

(, ,)A B CT is the tensor after change of basis given by

∑ ∑ ∑= . (3)ijk
a

S

b

S

c

S

ia jb kc abc
(, ,)

=1 =1 =1
T TA B CA B C

Hence, exhibiting a rank-R decomposition of the matrix multiplica-
tion tensor nT expressed in any basis proves that the product of two
n × n matrices can be computed using R scalar multiplications. Moreo-
ver, it is straightforward to convert such a rank-R decomposition into
a rank-R decomposition in the canonical basis, thus yielding a practical
algorithm of the form shown in Algorithm 1. We leverage this observa-
tion by expressing the matrix multiplication tensor nT in a large number
of randomly generated bases (typically 100,000) in addition to the
canonical basis, and letting AlphaTensor play games in all bases in
parallel.

This approach has three appealing properties: (1) it provides a natural
exploration mechanism as playing games in different bases automati-
cally injects diversity into the games played by the agent; (2) it exploits
properties of the problem as the agent need not succeed in all bases—it
is sufficient to find a low-rank decomposition in any of the bases; (3)
it enlarges coverage of the algorithm space because a decomposition
with entries in a finite set F = {−2, −1, 0, 1, 2} found in a different basis
need not have entries in the same set when converted back into the
canonical basis.

In full generality, a basis change for a 3D tensor of size S × S × S is
specified by three invertible S × S matrices A, B and C. However, in our
procedure, we sample bases at random and impose two restrictions:
(1) A = B = C, as this performed better in early experiments, and (2)
unimodularity (Adet ∈ {−1, + 1}), which ensures that after converting
an integral factorization into the canonical basis it still contains integer
entries only (this is for representational convenience and numerical
stability of the resulting algorithm). See Supplementary Information
for the exact algorithm.

Signed permutations. In addition to playing (and training on) games in
different bases, we also utilize a data augmentation mechanism when-
ever the neural network is queried in a new MCTS node. At acting time,
when the network is queried, we transform the input tensor by applying
a change of basis—where the change of basis matrix is set to a random
signed permutation. We then query the network on this transformed
input tensor, and finally invert the transformation in the network’s
policy predictions. Although this data augmentation procedure can
be applied with any generic change of basis matrix (that is, it is not
restricted to signed permutation matrices), we use signed permuta-
tions mainly for computational efficiency. At training time, whenever
the neural network is trained on an (input, policy targets, value target)
triplet (Fig. 2), we apply a randomly chosen signed permutation to
both the input and the policy targets, and train the network on this

transformed triplet. In practice, we sample 100 signed permutations
at the beginning of an experiment, and use them thereafter.

Action canonicalization. For any λ1, λ2, λ3 ∈ {−1, +1} such that λ1λ2λ3 = 1,
the actions (λ1u, λ2v, λ3w) and (u, v, w) are equivalent because they lead
to the same rank-one tensor (λ1u) ⊗ (λ2v) ⊗ (λ3w) = u ⊗ v ⊗ w. To pre-
vent the network from wasting capacity on predicting multiple equiva-
lent actions, during training we always present targets (u, v, w) for the
policy head in a canonical form, defined as having the first non-zero
element of u and the first non-zero element of v strictly positive. This is
well defined because u or v cannot be all zeros (if they are to be part of
a minimal rank decomposition), and for any (u, v, w) there are unique
λ1, λ2, λ3 ∈ {−1, +1} (with λ1λ2λ3 = 1) that transform it into canonical form.
In case the network predicts multiple equivalent actions anyway, we
merge them together (summing their empirical policy probabilities)
before inserting them into the MCTS tree.

Training regime. We train AlphaTensor on a TPU v3, with a total batch
size of 2,048. We use 64 TPU cores, and train for 600,000 iterations.
On the actor side, the games are played on standalone TPU v4, and we
use 1,600 actors. In practice, the procedure takes a week to converge.

Neural network
The architecture is composed of a torso, followed by a policy head that
predicts a distribution over actions, and a value head that predicts a dis-
tribution of the returns from the current state (see Extended Data Fig. 3).

Input. The input to the network contains all the relevant information
of the current state and is composed of a list of tensors and a list of
scalars. The most important piece of information is the current 3D
tensor St of size S × S × S. (For simplicity, in the description here we
assume that all the three dimensions of the tensor are equal in size. The
generalization to different sizes is straightforward.) In addition, the
model is given access to the last h actions (h being a hyperparameter
usually set to 7), represented as h rank-1 tensors that are concatenated
to the input. The list of scalars includes the time index t of the current
action (where 0 ≤ t < Rlimit).

Torso. The torso of the network is in charge of mapping both scalars and
tensors from the input to a representation that is useful to both policy
and value heads. Its architecture is based on a modification of transform-
ers23, and its main signature is that it operates over three S × S grids pro-
jected from the S × S × S input tensors. Each grid represents two out of
the three modes of the tensor. Defining the modes of the tensor as

, ,U V W, the rows and columns of the first grid are associated to U and V,
respectively, the rows and columns of the second grid are associated to
W and U, and the rows and columns of the third grid are associated to V
and W. Each element of each grid is a feature vector, and its initial value
is given by the elements of the input tensors along the grid’s missing
mode. These feature vectors are enriched by concatenating an S × S × 1
linear projection from the scalars. This is followed by a linear layer pro-
jecting these feature vectors into a 512-dimensional space.

The rest of the torso is a sequence of attention-based blocks with the
objective of propagating information between the three grids. Each of
those blocks has three stages, one for every pair of grids. In each stage,
the grids involved are concatenated, and axial attention24 is performed
over the columns. It is noted that in each stage we perform in parallel S
self-attention operations of 2S elements in each. The representation
sent to the policy head corresponds to the 3S2 512-dimensional feature
vectors produced by the last layer of the torso. A detailed description
of the structure of the torso is specified in Extended Data Fig. 4 (top)
and Appendix A.1.1 in Supplementary Information.

Policy head. The policy head uses the transformer architecture23
to model an autoregressive policy. Factors are decomposed into k

Article
tokens of dimensionality d such that k × d = 3S. The transformer con-
ditions on the tokens already generated and cross-attends to the fea-
tures produced by the torso. At training time, we use teacher-forcing,
that is, the ground truth actions are decomposed into tokens and
taken as inputs into the causal transformer in such a way that the
prediction of a token depends only on the previous tokens. At infer-
ence time, K actions are sampled from the head. The feature repre-
sentation before the last linear layer of the initial step (that is, the
only step that is not conditioned on the ground truth) is used as an
input to the value head, described below. Details of the architecture
are presented in Extended Data Fig. 4 (centre) and Appendix A.1.2 in
Supplementary Information.

Value head. The value head is composed of a four-layer multilayer
perceptron whose last layer produces q outputs corresponding to the

, , …q q
q

q
1

2
3

2
2 − 1

2
 quantiles. In this way, the value head predicts the distri-

bution of returns from this state in the form of values predicted for the
aforementioned quantiles34. At inference time, we encourage the agent
to be risk-seeking by using the average of the predicted values for quan-
tiles over 75%. A detailed description of the value head is presented in
Extended Data Fig. 4 (bottom) and Appendix A.1.3 in Supplementary
Information.

Related work
The quest for efficient matrix multiplication algorithms started with
Strassen’s breakthrough in ref. 2, which showed that one can multiply
2 × 2 matrices using 7 scalar multiplications, leading to an algorithm
of complexity O n()2.81 . This led to the development of a very active field
of mathematics attracting worldwide interest, which studies the asymp-
totic complexity of matrix multiplication (see refs. 3–6). So far, the best
known complexity for matrix multiplication is n()2.37286O (ref. 12), which
improves over ref. 11, and builds on top of fundamental results in the
field8–10. However, this does not yield practical algorithms, as such
approaches become advantageous only for astronomical matrix sizes.
Hence, a significant body of work aims at exhibiting explicit factoriza-
tions of matrix multiplication tensors, as these factorizations provide
practical algorithms. After Strassen’s breakthrough showing that

Trank () ≤ 72 , efficient algorithms for larger matrix sizes were
found15,16,18,26,38. Most notably, Laderman showed in ref. 15 that 3 × 3
matrix multiplications can be performed with 23 scalar multiplications.
In addition to providing individual low-rank factorizations, an impor-
tant research direction aims at understanding the space of matrix
multiplication algorithms—as opposed to exhibiting individual
low-rank factorizations—by studying the symmetry groups and diver-
sity of factorizations (see ref. 5 and references therein). For example,
the symmetries of 2 × 2 matrix multiplication were studied in refs. 39–42,
where Strassen’s algorithm was shown to be essentially unique. The
case of 3 × 3 was studied in ref. 43, whereas a symmetric factorization
for all n is provided in ref. 44.

On the computational front, continuous optimization has been the
main workhorse for decomposing tensors17,45,46, and in particular matrix
multiplication tensors. Such continuous optimization procedures (for
example, alternating least squares), however, yield approximate solu-
tions, which correspond to inexact matrix multiplication algorithms
with floating point operations. To circumvent this issue, regularization
procedures have been proposed, such as ref. 18, to extract exact decom-
positions. Unfortunately, such approaches often require substantial
human intervention and expertise to decompose large tensors. A dif-
ferent line of attack was explored in refs. 47,48, based on learning the
continuous weights of a two-layer network that mimics the structure
of the matrix multiplication operation. This method, which is trained
through supervised learning of matrix multiplication examples, finds
approximate solutions to 2 × 2 and 3 × 3 matrix multiplications.
In ref. 48, a quantization procedure is further used to obtain an exact
decomposition for 2 × 2. Unlike continuous optimization-based

approaches, AlphaTensor directly produces algorithms from the
desired set of valid algorithms, and is flexible in that it allows us to
optimize a wide range of (even non-differentiable) objectives. This
unlocks tackling broader settings (for example, optimization in finite
fields, optimization of runtime), as well as larger problems (for exam-
ple, T4 and T5) than those previously considered. Different from con-
tinuous optimization, a boolean satisfiability (SAT) based formulation
of the problem of decomposing 3 × 3 matrix multiplication was
recently proposed in ref. 20, which adds thousands of new decompo-
sitions of rank 23 to the list of known 3 × 3 factorizations. The approach
relies on a state-of-the-art SAT solving procedure, where several
assumptions and simplifications are made on the factorizations to
reduce the search space. As is, this approach is, however, unlikely to
scale to larger tensors, as the search space grows very quickly with
the size.

On the practical implementation front, ref. 31 proposed several ideas
to speed up implementation of fast matrix multiplication algorithms
on central processing units (CPUs). Different fast algorithms are then
compared and benchmarked, and the potential speed-up of such algo-
rithms is shown against standard multiplication. Other works focused
on getting the maximal performance out of a particular fast matrix
multiplication algorithm (Strassen’s algorithm with one or two levels
of recursion) on a CPU32 or a GPU49. These works show that, despite
popular belief, such algorithms are of practical value. We see writing
a custom low-level implementation of a given algorithm to be distinct
from the focus of this paper—developing new efficient algorithms—and
we believe that the algorithms we discovered can further benefit from
a more efficient implementation by experts.

Beyond matrix multiplication and bilinear operations, a growing
amount of research studies the use of optimization and machine learn-
ing to improve the efficiency of computational operations. There
are three levels of abstractions at which this can be done: (1) in the
hardware design, for example, chip floor planning50, (2) at the hard-
ware–software interface, for example, program super-optimization
of a reference implementation for specific hardware51, and (3) on the
algorithmic level, for example, program induction52, algorithm selec-
tion53 or meta-learning54. Our work focuses on the algorithmic level of
abstraction, although AlphaTensor is also flexible to discover efficient
algorithms for specific hardware. Different from previous works, we
focus on discovering matrix multiplication algorithms that are prov-
ably correct, without requiring initial reference implementations. We
conclude by relating our work broadly to existing reinforcement learn-
ing methods for scientific discovery. Within mathematics, reinforce-
ment learning was applied, for example, to theorem proving55–58, and
to finding counterexamples refuting conjectures in combinatorics and
graph theory59. Reinforcement learning was further shown to be useful
in many areas in science, such as molecular design60,61 and synthesis62
and optimizing quantum dynamics63.

Data availability
The data used to train the system were generated synthetically accord-
ing to the procedures explained in the paper. The algorithms discov-
ered by AlphaTensor are available for download at https://github.com/
deepmind/alphatensor.

Code availability
An interactive notebook with code to check the non-equivalence of algo-
rithms is provided. Moreover, the fast algorithms from the ‘Algorithm
discovery results’ section on a GPU and a TPU are provided. These are
available for download at https://github.com/deepmind/alphatensor.
A full description of the AlphaZero algorithm that this work is based
on is available in ref. 1, and the specific neural network architecture we
use is described using pseudocode in the Supplementary Information.

https://github.com/deepmind/alphatensor
https://github.com/deepmind/alphatensor
https://github.com/deepmind/alphatensor

34.	 Dabney, W., Rowland, M., Bellemare, M. & Munos, R. Distributional reinforcement learning
with quantile regression. In AAAI Conference on Artificial Intelligence Vol. 32, 2892–2901
(AAAI Press, 2018).

35.	 Kingma, D. P., & Ba, J. Adam: a method for stochastic optimization. In International
Conference on Learning Representations (ICLR) (2015).

36.	 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In International
Conference on Learning Representations (ICLR) (2019).

37.	 Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484–489 (2016).

38.	 Sedoglavic, A. A non-commutative algorithm for multiplying 5x5 matrices using 99
multiplications. Preprint at https://arxiv.org/abs/1707.06860 (2017).

39.	 de Groote, H. F. On varieties of optimal algorithms for the computation of bilinear
mappings II. optimal algorithms for 2 × 2-matrix multiplication. Theor. Comput. Sci. 7,
127–148 (1978).

40.	 Burichenko, V. P. On symmetries of the Strassen algorithm. Preprint at https://arxiv.org/
abs/1408.6273 (2014).

41.	 Chiantini, L., Ikenmeyer, C., Landsberg, J. M. & Ottaviani, G. The geometry of rank
decompositions of matrix multiplication I: 2 × 2 matrices. Exp. Math. 28, 322–327 (2019).

42.	 Grochow, J. A. & Moore, C. Designing Strassen’s algorithm. Preprint at https://arxiv.org/
abs/1708.09398 (2017).

43.	 Ballard, G., Ikenmeyer, C., Landsberg, J. M. & Ryder, N. The geometry of rank
decompositions of matrix multiplication II: 3 × 3 matrices. J. Pure Appl. Algebra 223,
3205–3224 (2019).

44.	 Grochow, J. A. & Moore, C. Matrix multiplication algorithms from group orbits. Preprint at
https://arxiv.org/abs/1612.01527 (2016).

45.	 Kolda, T. G. & Bader, B. W. Tensor decompositions and applications. SIAM Rev. 51,
455–500 (2009).

46.	 Bernardi, A., Brachat, J., Comon, P. & Mourrain, B. General tensor decomposition,
moment matrices and applications. J. Symb. Comput. 52, 51–71 (2013).

47.	 Elser, V. A network that learns Strassen multiplication. J. Mach. Learn. Res. 17, 3964–3976
(2016).

48.	 Tschannen, M., Khanna, A. & Anandkumar, A, StrassenNets: deep learning with a
multiplication budget. In International Conference on Machine Learning 4985–4994
(PMLR, 2018).

49.	 Huang, J., Yu, C. D. & Geijn, R. A. V. D. Strassen’s algorithm reloaded on GPUs. ACM Trans.
Math. Softw. 46, 1–22 (2020).

50.	 Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature 594,
207–212 (2021).

51.	 Bunel, R., Desmaison, A., Kohli, P., Torr, P. H. & Kumar, M. P. Learning to superoptimize
programs. In International Conference on Learning Representations (ICLR) (2017).

52.	 Li, Y., Gimeno, F., Kohli, P. & Vinyals, O. Strong generalization and efficiency in neural
programs. Preprint at https://arxiv.org/abs/2007.03629 (2020).

53.	 Lagoudakis, M. G. et al. Algorithm selection using reinforcement learning. In International
Conference on Machine Learning 511–518 (Morgan Kaufmann Publishers, 2000).

54.	 Schmidhuber, J. Evolutionary Principles in Self-Referential Learning. On Learning now to
Learn: The Meta-Meta-Meta...-Hook. Diploma thesis, Technische Univ. Munchen (1987).

55.	 Kaliszyk, C., Urban, J., Michalewski, H. & Olšák, M. Reinforcement learning of theorem
proving. In International Conference on Neural Information Processing Systems
8836–8847 (Curran Associates, 2018).

56.	 Piotrowski, B. & Urban, J. ATPboost: learning premise selection in binary setting with ATP
feedback. In International Joint Conference on Automated Reasoning 566–574 (Springer,
2018).

57.	 Bansal, K., Loos, S., Rabe, M., Szegedy, C. & Wilcox, S. HOList: an environment for
machine learning of higher order logic theorem proving. In International Conference on
Machine Learning 454–463 (PMLR, 2019).

58.	 Zombori, Z., Urban, J. & Brown, C. E. Prolog technology reinforcement learning prover.
In International Joint Conference on Automated Reasoning 489–507 (Springer, 2020).

59.	 Wagner, A. Z. Constructions in combinatorics via neural networks. Preprint at https://
arxiv.org/abs/2104.14516 (2021).

60.	 Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug
design. Sci. Adv. 4, eaap7885 (2018).

61.	 Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of molecules via deep
reinforcement learning. Sci. Rep. 9, 10752 (2019).

62.	 Segler, M. H., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural
networks and symbolic AI. Nature 555, 604–610 (2018).

63.	 Dalgaard, M., Motzoi, F., Sørensen, J. J. & Sherson, J. Global optimization of quantum
dynamics with AlphaZero deep exploration. npj Quantum Inf. 6, 6 (2020).

64.	 Fast matrix multiplication algorithms catalogue. Université de Lille https://fmm.univ-
lille.fr/ (2021).

Acknowledgements We thank O. Fawzi, H. Fawzi, C. Ikenmeyer, J. Ellenberg, C. Umans and
A. Wigderson for the inspiring discussions on the use of machine learning for maths; A. Davies,
A. Gaunt, P. Mudigonda, R. Bunel and O. Ronneberger for their advice on early drafts of the
paper; A. Ruderman, M. Bauer, R. Leblond, R. Kabra and B. Winckler for participating in a
hackathon at the early stages of the project; D. Visentin, R. Tanburn and S. Noury for sharing
their expertise on TPUs; P. Wang and R. Zhao for their help on benchmarking algorithms;
G. Holland, A. Pierce, N. Lambert and C. Meyer for assistance coordinating the research; and
our colleagues at DeepMind for encouragement and support.

Author contributions A.F. conceived the project, with support from B.R.-P. and P.K.; T.H., A.H.
and J.S. developed the initial AlphaZero codebase, and B.R.-P., M. Balog, A.F., A.N., F.J.R.R. and
G.S. developed an early supervised network prototype. A.H., T.H., B.R.-P., M. Barekatain and
J.S. designed the network architecture used in the paper. T.H., J.S., A.H., M. Barekatain, A.F.,
M. Balog and F.J.R.R. developed the tensor decomposition environment and data generation
pipeline, and A.H., T.H., M. Barekatain, M. Balog, B.R.-P., F.J.R.R. and A.N. analysed the
experimental results and algorithms discovered by AlphaTensor. A.N., A.F. and T.H. developed
the benchmarking pipeline and experiments, and B.R.-P., F.J.R.R. and A.N. extended the
approach to structured tensors. A.F., B.R.-P., G.S. and A.N. proved the results in the paper.
D.S., D.H. and P.K. contributed technical advice and ideas. A.F., M. Balog, B.R.-P., F.J.R.R., A.N.
and T.H. wrote the paper. These authors contributed equally, and are listed alphabetically by last
name after the corresponding author: A.F., M. Balog, A.H., T.H., B.R.-P. These authors contributed
equally, and are listed alphabetically by last name: M. Barekatain, A.N., F.J.R.R., J.S. and G.S.

Competing interests The authors of the paper are planning to file a patent application relating
to subject matter contained in this paper in the name of DeepMind Technologies Limited.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-022-05172-4.
Correspondence and requests for materials should be addressed to Alhussein Fawzi.
Peer review information Nature thanks Grey Ballard, Jordan Ellenberg, Lek-Heng Lim, Michael
Littman and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://arxiv.org/abs/1707.06860
https://arxiv.org/abs/1408.6273
https://arxiv.org/abs/1408.6273
https://arxiv.org/abs/1708.09398
https://arxiv.org/abs/1708.09398
https://arxiv.org/abs/1612.01527
https://arxiv.org/abs/2007.03629
https://arxiv.org/abs/2104.14516
https://arxiv.org/abs/2104.14516
https://fmm.univ-lille.fr/
https://fmm.univ-lille.fr/
https://doi.org/10.1038/s41586-022-05172-4
http://www.nature.com/reprints

Article

Extended Data Fig. 1 | Algorithm for multiplying 4 × 4 matrices in modular arithmetic (2Z) with 47 multiplications. This outperforms the two-level Strassen’s
algorithm, which involves 72 = 49 multiplications.

Extended Data Fig. 2 | Algorithm for multiplying 4 × 5 by 5 × 5 matrices in standard arithmetic with 76 multiplications. This outperforms the previously best
known algorithm, which involves 80 multiplications.

Article

Extended Data Fig. 3 | AlphaTensor’s network architecture. The network
takes as input the list of tensors containing the current state and previous
history of actions, and a list of scalars, such as the time index of the current
action. It produces two kinds of outputs: one representing the value, and the

other inducing a distribution over the action space from which we can sample
from. The architecture of the network is accordingly designed to have a
common torso, and two heads, the value and the policy heads. c is set to 512 in
all experiments.

Extended Data Fig. 4 | Detailed view of AlphaTensor’s architecture, included torso, policy and value head. We refer to Algorithms A.1-A.11 in Supplementary
Information for the details of each component.

Article
Extended Data Table 1 | Rank results obtained by combining decompositions (in standard arithmetic)

The table shows the cases where we were able to obtain an improvement over state-of-the-art, for tensors Tn m p, , (with n, m, p≤12). The recipe column indicates the low-level matrix multiplica-
tion algorithms used to build the corresponding factorization. 〈n, m, p〉 denotes the best known bound on the rank of Tn m p, , ; see Appendix H in Supplementary Information for more details. For
tensors that were directly decomposed by AlphaTensor, the recipe shows a star mark, e.g. 〈3, 4, 5〉*. All the factorizations are made available.

Extended Data Table 2 | Result of applying AlphaTensor to the tensor representing the cyclic convolution operation

AlphaTensor finds the discrete Fourier matrix (DFT) and the inverse DFT matrix in finite fields. The figure shows the decompositions found by AlphaTensor of the n × n × n tensor representing the
cyclic convolution of two vectors, for three different values of n in the finite field of order 17. The action space, characterized by the number of possible factor triplets {u(r), v(r), w(r)}, is thus 173n,
which is of the order of 1029 for n = 8. Despite the huge action space, AlphaTensor finds the optimal rank-n decompositions for the three values of n. The factors in the figure are stacked vertically,
i.e., U = [u(1), …, u(n)]. For ease of visualization, the factor entries have been expressed in terms of powers of an n-th primitive root of unity in the finite field. Within each column, each colour
uniquely represents one element of the field (e.g., for the column n = 4, we have depicted in grey 40 = 44 = 4−4 = 1). By inspecting the patterns in the decompositions, one could extrapolate the
results for other values of n and other fields. Indeed, the factors u(r) and v(r) correspond to the DFT coefficients, since = =u v zkr

k
r

k
r() () , whereas the factors w(r) correspond to the inverse DFT, since

w z n/kr
k
r() = − for 0≤k, r < n, where z is an n-th primitive root of unity (i.e., zn = 1 and zj ≠ 1 for any 1≤j < n).

	Discovering faster matrix multiplication algorithms with reinforcement learning

	Algorithms as tensor decomposition

	Algorithm 1

	DRL for algorithm discovery

	Neural network architecture

	Synthetic demonstrations

	Change of basis

	Data augmentation

	Algorithm discovery results

	Discovery of matrix multiplication algorithms

	Analysing the symmetries of matrix multiplication algorithms

	Beyond standard matrix multiplication

	Rapid tailored algorithm discovery

	Discussion

	Online content

	Fig. 1 Matrix multiplication tensor and algorithms.
	Fig. 2 Overview of AlphaTensor.
	﻿Fig. 3 Comparison between the complexity of previously known matrix multiplication algorithms and the ones discovered by AlphaTensor.
	Fig. 4 Algorithm discovery beyond standard matrix multiplication.
	Fig. 5 Speed-ups of the AlphaTensor-discovered algorithm.
	Extended Data Fig. 1 Algorithm for multiplying 4 × 4 matrices in modular arithmetic () with 47 multiplications.
	Extended Data Fig. 2 Algorithm for multiplying 4 × 5 by 5 × 5 matrices in standard arithmetic with 76 multiplications.
	Extended Data Fig. 3 AlphaTensor’s network architecture.
	Extended Data Fig. 4 Detailed view of AlphaTensor’s architecture, included torso, policy and value head.
	Extended Data Table 1 Rank results obtained by combining decompositions (in standard arithmetic).
	Extended Data Table 2 Result of applying AlphaTensor to the tensor representing the cyclic convolution operation.

