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Autonomous chemical research with large 
language models

Daniil A. Boiko1, Robert MacKnight1, Ben Kline2 & Gabe Gomes1,3,4 ✉

Transformer-based large language models are making significant strides in various 
fields, such as natural language processing1–5, biology6,7, chemistry8–10 and computer 
programming11,12. Here, we show the development and capabilities of Coscientist, an 
artificial intelligence system driven by GPT-4 that autonomously designs, plans and 
performs complex experiments by incorporating large language models empowered 
by tools such as internet and documentation search, code execution and experimental 
automation. Coscientist showcases its potential for accelerating research across six 
diverse tasks, including the successful reaction optimization of palladium-catalysed 
cross-couplings, while exhibiting advanced capabilities for (semi-)autonomous 
experimental design and execution. Our findings demonstrate the versatility, efficacy 
and explainability of artificial intelligence systems like Coscientist in advancing 
research.

Large language models (LLMs), particularly transformer-based models, 
are experiencing rapid advancements in recent years. These models 
have been successfully applied to various domains, including natural 
language1–5, biological6,7 and chemical research8–10 as well as code gen-
eration11,12. Extreme scaling of models13, as demonstrated by OpenAI, 
has led to significant breakthroughs in the field1,14. Moreover, tech-
niques such as reinforcement learning from human feedback15 can 
considerably enhance the quality of generated text and the models’  
capability to perform diverse tasks while reasoning about their  
decisions16.

On 14 March 2023, OpenAI released their most capable LLM to date, 
GPT-414. Although specific details about the model training, sizes and 
data used are limited in GPT-4’s technical report, OpenAI research-
ers have provided substantial evidence of the model’s exceptional 
problem-solving abilities. Those include—but are not limited to—high 
percentiles on the SAT and BAR examinations, LeetCode challenges 
and contextual explanations from images, including niche jokes14. 
Moreover, the technical report provides an example of how the model 
can be used to address chemistry-related problems.

Simultaneously, substantial progress has been made toward the auto-
mation of chemical research. Examples range from the autonomous 
discovery17,18 and optimization of organic reactions19 to the develop-
ment of automated flow systems20,21 and mobile platforms22.

The combination of laboratory automation technologies with power-
ful LLMs opens the door to the development of a sought-after system 
that autonomously designs and executes scientific experiments. To 
accomplish this, we intended to address the following questions. What 
are the capabilities of LLMs in the scientific process? What degree of 
autonomy can we achieve? How can we understand the decisions made 
by autonomous agents?

In this work, we present a multi-LLMs-based intelligent agent (here-
after simply called Coscientist) capable of autonomous design, plan-
ning and performance of complex scientific experiments. Coscientist 

can use tools to browse the internet and relevant documentation, 
use robotic experimentation application programming interfaces 
(APIs) and leverage other LLMs for various tasks. This work has 
been done independently and in parallel to other works on autono-
mous agents23–25, with ChemCrow26 serving as another example in 
the chemistry domain. In this paper, we demonstrate the versatil-
ity and performance of Coscientist in six tasks: (1) planning chemi-
cal syntheses of known compounds using publicly available data; 
(2) efficiently searching and navigating through extensive hardware 
documentation; (3) using documentation to execute high-level com-
mands in a cloud laboratory; (4) precisely controlling liquid han-
dling instruments with low-level instructions; (5) tackling complex 
scientific tasks that demand simultaneous use of multiple hardware 
modules and integration of diverse data sources; and (6) solving 
optimization problems requiring analyses of previously collected  
experimental data.

Coscientist system architecture
Coscientist acquires the necessary knowledge to solve a complex 
problem by interacting with multiple modules (web and documen-
tation search, code execution) and by performing experiments. 
The main module (‘Planner’) has the goal of planning, based on the 
user input by invoking the commands defined below. The Planner 
is a GPT-4 chat completion instance serving the role of an assistant. 
The initial user input along with command outputs are treated as 
user messages to the Planner. System prompts (static inputs defin-
ing the LLMs’ goals) for the Planner are engineered1,27 in a modular 
fashion, described as four commands that define the action space: 
‘GOOGLE’, ‘PYTHON’, ‘DOCUMENTATION’ and ‘EXPERIMENT’. The 
Planner calls on each of these commands as needed to collect knowl-
edge. The GOOGLE command is responsible for searching the inter-
net with the ‘Web searcher’ module, which is another LLM itself.  
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The PYTHON command allows the Planner to perform calculations to 
prepare the experiment using a ‘Code execution’ module. The EXPERI-
MENT command actualizes ‘Automation’ through APIs described by 
the DOCUMENTATION module. Like GOOGLE, the DOCUMENTA-
TION command provides information to the main module from a 
source, in this case documentation concerning the desired API. In 
this study, we have demonstrated the compatibility with the Open-
trons Python API and the Emerald Cloud Lab (ECL) Symbolic Lab  
Language (SLL). Together, these modules make up Coscientist, which 
receives a simple plain text input prompt from the user (for example, 
“perform multiple Suzuki reactions”). This architecture is depicted  
in Fig. 1.

Furthermore, some of the commands can use subactions. The 
GOOGLE command is capable of transforming prompts into appro-
priate web search queries, running them against the Google Search 
API, browsing web pages and funneling answers back to the Planner. 
Similarly, the DOCUMENTATION command performs retrieval and sum-
marization of necessary documentation (for example, robotic liquid 
handler or a cloud laboratory) for Planner to invoke the EXPERIMENT  
command.

The PYTHON command performs code execution (not reliant upon 
any language model) using an isolated Docker container to protect the 
users’ machine from any unexpected actions requested by the Planner. 
Importantly, the language model behind the Planner enables code to be 
fixed in case of software errors. The same applies to the EXPERIMENT 
command of the Automation module, which executes generated code 
on corresponding hardware or provides the synthetic procedure for 
manual experimentation.

Web search module
To demonstrate one of the functionalities of the Web Searcher 
module, we designed a test set composed of seven compounds to 
synthesize, as presented in Fig. 2a. The Web Searcher module ver-
sions are represented as ‘search-gpt-4’ and ‘search-gpt-3.5-turbo’. 
Our baselines include OpenAI’s GPT-3.5 and GPT-4, Anthropic’s 
Claude 1.328 and Falcon-40B-Instruct29—considered one of the best 
open-source models at the time of this experiment as per the OpenLLM  
leaderboard30.

We prompted every model to provide a detailed compound synthesis, 
ranking the outputs on the following scale (Fig. 2):
•	5 for a very detailed and chemically accurate procedure description
•	4 for a detailed and chemically accurate description but without 

reagent quantities
•	3 for a correct chemistry description that does not include step- 

by-step procedure
•	2 for extremely vague or unfeasible descriptions
•	 1 for incorrect responses or failure to follow instructions
•	All scores below 3 indicate task failure. It is important to note that 

all answers between 3 and 5 are chemically correct but offer varying 
levels of detail. Despite our attempts to better formalize the scale, 
labelling is inherently subjective and so, may be different between 
the labelers.
Across non-browsing models, the two versions of the GPT-4 model 

performed best, with Claude v.1.3 demonstrating similar performance. 
GPT-3 performed significantly worse, and Falcon 40B failed in most 
cases. All non-browsing models incorrectly synthesized ibuprofen 
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(Fig. 2c). Nitroaniline is another example; although some generaliza-
tion of chemical knowledge might inspire the model to propose direct 
nitration, this approach is not experimentally applicable as it would 
produce a mixture of compounds with a very minor amount of the 
product (Fig. 2b). Only the GPT-4 models occasionally provided the 
correct answer.

The GPT-4-powered Web Searcher significantly improves on synthe-
sis planning. It reached maximum scores across all trials for acetami-
nophen, aspirin, nitroaniline and phenolphthalein (Fig. 2b). Although 
it was the only one to achieve the minimum acceptable score of three 
for ibuprofen, it performed lower than some of the other models for 
ethylacetate and benzoic acid, possibly because of the widespread 
nature of these compounds. These results show the importance of 
grounding LLMs to avoid ‘hallucinations’31. Overall, the performance 
of GPT-3.5-enabled Web Searcher trailed its GPT-4 competition, mainly 
because of its failure to follow specific instructions regarding output 
format.

Extending the Planner’s action space to leverage reaction data-
bases, such as Reaxys32 or SciFinder33, should significantly enhance 
the system’s performance (especially for multistep syntheses). 
Alternatively, analysing the system’s previous statements is another 
approach to improving its accuracy. This can be done through advanced 
prompting strategies, such as ReAct34, Chain of Thought35 and Tree of  
Thoughts36.

Documentation search module
Addressing the complexities of software components and their inter-
actions is crucial for integrating LLMs with laboratory automation. A 
key challenge lies in enabling Coscientist to effectively utilize technical 
documentation. LLMs can refine their understanding of common APIs, 
such as the Opentrons Python API37, by interpreting and learning from 
relevant technical documentation. Furthermore, we show how GPT-4 
can learn how to programme in the ECL SLL.

Our approach involved equipping Coscientist with essential docu-
mentation tailored to specific tasks (as illustrated in Fig. 3a), allowing 
it to refine its accuracy in using the API and improve its performance 
in automating experiments.

Information retrieval systems are usually based on two candidate 
selection approaches: inverted search index and vector database38–41. 
For the first one, each unique word in the search index is mapped to the 
documents containing it. At inference time, all documents containing 
words from a query are selected and ranked based on various manually 
defined formulas42. The second approach starts by embedding the 
documents with neural networks or as term frequency–inverse docu-
ment frequency embedding vectors43, followed by the construction 
of a vector database. Retrieval of similar vectors from this database 
occurs at inference time, usually using one of the approximate nearest 
neighbour search algorithms44. When strategies such as Transformer 
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models are used, there are more chances to account for synonyms 
natively without doing synonym-based query expansion, as would be 
done in the first approach45.

Following the second approach, all sections of the OT-2 API documen-
tation were embedded using OpenAI’s ada model. To ensure proper use 
of the API, an ada embedding for the Planner’s query was generated, 
and documentation sections are selected through a distance-based 
vector search. This approach proved critical for providing Coscientist 
with information about the heater–shaker hardware module necessary 
for performing chemical reactions (Fig. 3b).

A greater challenge emerges when applying this approach to a 
more diverse robotic ecosystem, such as the ECL. Nonetheless, we can 
explore the effectiveness of providing information about the ECL SLL, 
which is currently unknown to the GPT-4 model. We conducted three 
separate investigations concerning the SLL: (1) prompt-to-function;  
(2) prompt-to-SLL; and (3) prompt-to-samples. Those investigations 
are detailed in Supplementary Information section ‘ECL experiments’.

For investigation 1, we provide the Docs searcher with a documenta-
tion guide from ECL pertaining to all available functions for running 
experiments46. Figure 3c summarizes an example of the user provid-
ing a simple prompt to the system, with the Planner receiving rele-
vant ECL functions. In all cases, functions are correctly identified for  
the task.

Figure 3c,d continues to describe investigation 2, the prompt-to-SLL 
investigation. A single appropriate function is selected for the task, 
and the documentation is passed through a separate GPT-4 model to 
perform code retention and summarization. After the complete docu-
mentation has been processed, the Planner receives usage information 
to provide EXPERIMENT code in the SLL. For instance, we provide a 
simple example that requires the ‘ExperimentHPLC’ function. Proper 
use of this function requires familiarity with specific ‘Models’ and 
‘Objects’ as they are defined in the SLL. Generated code was success-
fully executed at ECL; this is available in Supplementary Information. 
The sample was a caffeine standard sample. Other parameters (column, 
mobile phases, gradients) were determined by ECL’s internal software 
(a high-level description is in Supplementary Information section 
‘HPLC experiment parameter estimation’). Results of the experiment 
are provided in Supplementary Information section ‘Results of the 
HPLC experiment in the cloud lab’. One can see that the air bubble 

was injected along with the analyte’s solution. This demonstrates 
the importance of development of automated techniques for qual-
ity control in cloud laboratories. Follow-up experiments leveraging 
web search to specify and/or refine additional experimental param-
eters (column chemistry, buffer system, gradient and so on) would be 
required to optimize the experimental results. Further details on this 
investigation are in Supplementary Information section ‘Analysis of 
ECL documentation search results’.

A separate prompt-to-samples investigation, investigation 3, was 
conducted by providing a catalogue of available samples, enabling the 
identification of relevant stock solutions that are on ECL’s shelves. To 
showcase this feature, we provide the Docs searcher module with all 
1,110 Model samples from the catalogue. By simply providing a search 
term (for example, ‘Acetonitrile’), all relevant samples are returned. 
This is also available in Supplementary Information.

Controlling laboratory hardware
Access to documentation enables us to provide sufficient information 
for Coscientist to conduct experiments in the physical world. To initiate 
the investigation, we chose the Opentrons OT-2, an open-source liquid 
handler with a well-documented Python API. The ‘Getting Started’ 
page from its documentation was supplied to the Planner in the system 
prompt. Other pages were vectorized using the approach described 
above. For this investigation, we did not grant access to the internet 
(Fig. 4a).

We started with simple plate layout-specific experiments. Straight-
forward prompts in natural language, such as “colour every other line 
with one colour of your choice”, resulted in accurate protocols. When 
executed by the robot, these protocols closely resembled the requested 
prompt (Fig. 4b–e).

Ultimately, we aimed to assess the system’s ability to integrate multi-
ple modules simultaneously. Specifically, we provided the ‘UVVIS’ com-
mand, which can be used to pass a microplate to plate reader working 
in the ultraviolet–visible wavelength range. To evaluate Coscientist’s 
capabilities to use multiple hardware tools, we designed a toy task; in 
3 wells of a 96-well plate, three different colours are present—red, yellow 
and blue. The system must determine the colours and their positions 
on the plate without any prior information.
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The Coscientist’s first action was to prepare small samples of the 
original solutions (Extended Data Fig. 1). Ultraviolet-visible meas-
urements were then requested to be performed by the Coscientist 
(Supplementary Information section ‘Solving the colours problem’ 
and Supplementary Fig. 1). Once completed, Coscientist was pro-
vided with a file name containing a NumPy array with spectra for each 
well of the microplate. Coscientist subsequently generated Python 
code to identify the wavelengths with maximum absorbance and 
used these data to correctly solve the problem, although it required 
a guiding prompt asking it to think through how different colours  
absorb light.

Integrated chemical experiment design
We evaluated Coscientist’s ability to plan catalytic cross-coupling 
experiments by using data from the internet, performing the neces-
sary calculations and ultimately, writing code for the liquid handler. To 
increase complexity, we asked Coscientist to use the OT-2 heater–shaker 
module released after the GPT-4 training data collection cutoff. The 
available commands and actions supplied to the Coscientist are shown 
in Fig. 5a. Although our setup is not yet fully automated (plates were 
moved manually), no human decision-making was involved.

The test challenge for Coscientist’s complex chemical experimen-
tation capabilities was designed as follows. (1) Coscientist is pro-
vided with a liquid handler equipped with two microplates (source 
and target plates). (2) The source plate contains stock solutions of 
multiple reagents, including phenyl acetylene and phenylboronic 
acid, multiple aryl halide coupling partners, two catalysts, two bases 
and the solvent to dissolve the sample (Fig. 5b). (3) The target plate 
is installed on the OT-2 heater–shaker module (Fig. 5c). (4) Coscien-
tist’s goal is to successfully design and perform a protocol for Suzuki–
Miyaura and Sonogashira coupling reactions given the available  
resources.

To start, Coscientist searches the internet for information on the 
requested reactions, their stoichiometries and conditions (Fig. 5d). 
The correct coupling partners are selected for the corresponding 
reactions. Designing and performing the requested experiments, the 
strategy of Coscientist changes among runs (Fig. 5f). Importantly, the 
system does not make chemistry mistakes (for instance, it never selects 
phenylboronic acid for the Sonogashira reaction). Interestingly, the 

base DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) is selected more often 
with the PEPPSI–IPr (PEPPSI, pyridine-enhanced precatalyst prepara-
tion stabilization and initiation; IPr, 1,3-bis(2,6-diisopropylphenyl)
imidazol-2-ylidene) complex, with that preference switching in Sonoga-
shira reaction experiments; likewise, bromobenzene is chosen more 
often for Suzuki than for Sonogashira couplings. Additionally, the 
model can provide justifications on specific choices (Fig. 5g), dem-
onstrating the ability to operate with concepts such as reactivity and 
selectivity (more details are in Supplementary Information section 
‘Analysis of behaviour across multiple runs’). This capability highlights 
a potential future use case to analyse the reasoning of the LLMs used by 
performing experiments multiple times. Although the Web Searcher 
visited various websites (Fig. 5h), overall Coscientist retrieves Wikipe-
dia pages in approximately half of cases; notably, American Chemical 
Society and Royal Society of Chemistry journals are amongst the top 
five sources.

Coscientist then calculates the required volumes of all reactants 
and writes a Python protocol for running the experiment on the 
OT-2 robot. However, an incorrect heater–shaker module method 
name was used. Upon making this mistake, Coscientist uses the Docs 
searcher module to consult the OT-2 documentation. Next, Coscientist 
modifies the protocol to a corrected version, which ran successfully 
(Extended Data Fig. 2). Subsequent gas chromatography–mass spec-
trometry analysis of the reaction mixtures revealed the formation of 
the target products for both reactions. For the Suzuki reaction, there 
is a signal in the chromatogram at 9.53 min where the mass spectra 
match the mass spectra for biphenyl (corresponding molecular ion 
mass-to-charge ratio and fragment at 76 Da) (Fig. 5i). For the Sonoga-
shira reaction, we see a signal at 12.92 min with a matching molecular 
ion mass-to-charge ratio; the fragmentation pattern also looks very 
close to the one from the spectra of the reference compound (Fig. 5j). 
Details are in Supplementary Information section ‘Results of the  
experimental study’.

Although this example requires Coscientist to reason on which rea-
gents are most suitable, our experimental capabilities at that point 
limited the possible compound space to be explored. To address this, 
we performed several computational experiments to evaluate how a 
similar approach can be used to retrieve compounds from large com-
pound libraries47. Figure 5e shows Coscientist’s performance across five 
common organic transformations, with outcomes depending on the 
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queried reaction and its specific run (the GitHub repository has more 
details). For each reaction, Coscientist was tasked with generating 
reactions for compounds from a simplified molecular-input line-entry 
system (SMILES) database. To achieve the task, Coscientist uses web 
search and code execution with the RDKit chemoinformatics package.

Chemical reasoning capabilities
The system demonstrates appreciable reasoning capabilities, enabling 
the request of necessary information, solving of multistep problems 
and generation of code for experimental design. Some researchers 

believe that the community is only starting to understand all the capa-
bilities of GPT-4 (ref. 48). OpenAI has shown that GPT-4 could rely on 
some of those capabilities to take actions in the physical world during 
their initial red team testing performed by the Alignment Research 
Center14.

One of the possible strategies to evaluate an intelligent agent’s rea-
soning capabilities is to test if it can use previously collected data to 
guide future actions. Here, we focused on the multi-variable design 
and optimization of Pd-catalysed transformations, showcasing 
Coscientist’s abilities to tackle real-world experimental campaigns 
involving thousands of examples. Instead of connecting LLMs to an  

B1 B2 B3 B4

Reactivity/rates

Required for 
the reaction

All options 
are suitable

Commonly used

Availability

Leaving groups

Side reactions

Higher selectivity

Suzuki

B1 B2 B3 B4

Sonogashira

1 2 3 4

A

B

C

D

E

0% 100%

66% 30% 1% 0%

91% 8%

89% 6%

8%

Suzuki

1 2 3 4

A

B

C

D

E

100% 0%

84% 12% 0% 1%

84% 15%

75% 19%

10%

Sonogashira

C1 C2

D1

D2

92% 75%

8% 25%

C1 C2

D1

D2

93% 45%

7% 55%

0 0.5
Fraction of URLs

arkat-usa.org
semanticscholar.org

researchgate.net
reagents.acsgcipr.org

ncbi.nlm.nih.gov
hepatochem.com
encyclopedia.pub
sigmaaldrich.com

onlinelibrary.wiley.com
sciencedirect.com

pubs.rsc.org
pubs.acs.org

organic-chemistry.org
chem.libretexts.org

en.wikipedia.org

10 20
Time (min)

0

0.5

1.0
R

el
. i

nt
en

si
ty

TIC (standard)
TIC

0 100 200
m/z

0

0.5

1.0

R
el

. i
nt

en
si

ty Spectrum at
9.53 min

0 100 200
m/z

0

0.5

1.0

R
el

. i
nt

en
si

ty Spectrum of
biphenyl standard

10 20
Time (min)

0

0.5

1.0

R
el

. i
nt

en
si

ty

0 100 200
m/z

0

0.5

1.0

R
el

. i
nt

en
si

ty Spectrum at
12.92 min

0 100 200
m/z

0

0.5

1.0
R

el
. i

nt
en

si
ty Spectrum of

tolane standard

A1 A2

C1 C2

D1 D2

E1

B1 B2 B3 B4BB4444

User prompt

...

...

Web searcher

GOOGLE

Google Seach API

Source plate

The liquid handler 
setup scheme

Internet

a

d

b

c e

1 20 μl tips
2 300 μl tips
5 Source plate
        (deep 96-well)
10 Heater–shaker
        module with
        target plate

1 2 3

4 5 6

7 8 9

10 11
Planner’s output

...

...

...

Planner

Docs
searcher

Code
execution

EXPERIMENT

UVVIS

Open source
liquid handling system

UV-Vis
plate reader

“Getting started”
in system prompt

Vectorized tutorial
and API reference

DOCUMENTATION

PYTHON

Valid reaction number
standard deviation

Average

Total reaction number
standard deviation

hg ji

B
OHHO

Pd PPh3Ph3P

Cl

Cl N

N

DiPP

DiPP

Pd

Cl

Cl

N

N
N

N

Cl

X

R

left pipette,
20 μl single channel

right pipette,
300 μl single channel

f

0 0.5 1.0

Valid reactions

0

1

2

3

4

5

To
ta

l r
ea

ct
io

ns
 p

ro
p

os
ed

Diels–Alder reaction
Michael addition
Esteri�cation
Buchwald–Hartwig amination
Mizoroki–Heck reaction
Total number of reactions

0 0.05 0.10

Valid reactions

0

0.02

0.04

0.06

0.08

0.10

To
ta

l r
ea

ct
io

ns
 p

ro
p

os
ed

A1

C1 C2

D1 D2E1 — DMF

B1 — X = I, R = H
B2 — X = Br, R = H
B3 — X = Cl, R = H
B4 — X = I, R = NO2

A2

TIC (standard)
TIC

Fig. 5 | Cross-coupling Suzuki and Sonogashira reaction experiments 
designed and performed by Coscientist. a, Overview of Coscientist’s 
configuration. b, Available compounds (DMF, dimethylformamide; DiPP, 
2,6-diisopropylphenyl). c, Liquid handler setup. d, Solving the synthesis 
problem. e, Comparison of reagent selection performance with a large  
dataset. f, Comparison of reagent choices across multiple runs. g, Overview  
of justifications made when selecting various aryl halides. h, Frequency of 

visited URLs. i, Total ion current (TIC) chromatogram of the Suzuki reaction 
mixture (top panel) and the pure standard, mass spectra at 9.53 min (middle 
panel) representing the expected reaction product and mass spectra of the 
pure standard (bottom panel). j, TIC chromatogram of the Sonogashira reaction 
mixture (top panel) and the pure standard, mass spectra at 12.92 min (middle 
panel) representing the expected reaction product and mass spectra of the 
pure standard (bottom panel). Rel., relative.



576 | Nature | Vol 624 | 21/28 December 2023

Article

optimization algorithm as previously done by Ramos et al.49, we aimed 
to use Coscientist directly.

We selected two datasets containing fully mapped reaction condi-
tion spaces where yield was available for all combinations of variables. 
One is a Suzuki reaction dataset collected by Perera et al.50, where these 
reactions were performed in flow with varying ligands, reagents/bases 
and solvents (Fig. 6a). Another is Doyle’s Buchwald–Hartwig reaction 

dataset51 (Fig. 6e), where variations in ligands, additives and bases were 
recorded. At this point, any reaction proposed by Coscientist would be 
within these datasets and accessible as a lookup table.

We designed the Coscientist’s chemical reasoning capabilities test 
as a game with the goal of maximizing the reaction yield. The game’s 
actions consisted of selecting specific reaction conditions with a 
sensible chemical explanation while listing the player’s observations 
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about the outcome of the previous iteration. The only hard rule was 
for the player to provide its actions written in JavaScript Object Nota-
tion ( JSON) format. If the JSON file could not be parsed, the player is 
alerted of its failure to follow the specified data format. The player had 
a maximum of 20 iterations (accounting for 5.2% and 6.9% of the total 
space for the first and second datasets, respectively) to finish the game.

We evaluate Coscientist’s performance using the normalized advan-
tage metric (Fig. 6b). Advantage is defined as the difference between a 
given iteration yield and the average yield (advantage over a random 
strategy). Normalized advantage measures the ratio between advantage 
and maximum advantage (that is, the difference between the maximum 
and average yield). The normalized advantage metric has a value of 
one if the maximum yield is reached, zero if the system exhibits com-
pletely random behaviour and less than zero if the performance at 
this step is worse than random. An increase in normalized advantage 
over each iteration demonstrates Coscientist’s chemical reasoning 
capabilities. The best result for a given iteration can be evaluated using 
the normalized maximum advantage (NMA), which is the normalized 
value of the maximum advantage achieved until the current step. As 
NMA cannot decrease, the valuable observations come in the form 
of the rate of its increase and its final point. Finally, during the first 
step, the values for NMA and normalized advantage equal each other, 
portraying the model’s prior knowledge (or lack thereof) without any 
data being collected.

For the Suzuki dataset, we compared three separate approaches: (1) 
GPT-4 with prior information included in the prompt (which consisted 
of 10 yields from random combinations of reagents); (2) GPT-4; or (3) 
GPT-3.5 without any prior information (Fig. 6c). When comparing GPT-4 
with the inclusion and exclusion of prior information, it is clear that 
the initial guess for the former scenario is better, which aligns with 
our expectations considering the provided information about the 
system’s reactivity. Notably, when excluding prior information, there 
are some poor initial guesses, whereas there are none when the model 
has prior information. However, at the limit, the models converge to 
the same NMA. The GPT-3.5 model plots have a very limited number 
of data points, primarily because of its inability to output messages 
in the correct JSON schema as requested in the prompt. It is unclear if 
the GPT-4 training data contain any information from these datasets. 
If so, one would expect that the initial model guess would be better 
than what we observed.

The normalized advantage values increase over time, suggesting that 
the model can effectively reuse the information obtained to provide 
more specific guidance on reactivity. Evaluating the derivative plots 
(Fig. 6d) does not show any significant difference between instances 
with and without the input of prior information.

There are many established optimization algorithms for chemical 
reactions. In comparison with standard Bayesian optimization52, both 
GPT-4-based approaches show higher NMA and normalized advantage 
values (Fig. 6c). A detailed overview of the exact Bayesian optimization 
strategy used is provided in Supplementary Information section ‘Bayes-
ian optimization procedure’. It is observed that Bayesian optimization’s 
normalized advantage line stays around zero and does not increase 
over time. This may be caused by different exploration/exploitation 
balance for these two approaches and may not be indicative of their 
performance. For this purpose, the NMA plot should be used. Changing 
the number of initial samples does not improve the Bayesian optimiza-
tion trajectory (Extended Data Fig. 3a). Finally, this performance trend 
is observed for each unique substrate pairings (Extended Data Fig. 3b).

For the Buchwald–Hartwig dataset (Fig. 6e), we compared a version 
of GPT-4 without prior information operating over compound names 
or over compound SMILES strings. It is evident that both instances 
have very similar performance levels (Fig. 6f). However, in certain 
scenarios, the model demonstrates the ability to reason about the 
reactivity of these compounds simply by being provided their SMILES 
strings (Fig. 6g).

Discussion
In this paper, we presented a proof of concept for an artificial intelligent 
agent system capable of (semi-)autonomously designing, planning and 
multistep executing scientific experiments. Our system demonstrates 
advanced reasoning and experimental design capabilities, addressing 
complex scientific problems and generating high-quality code. These 
capabilities emerge when LLMs gain access to relevant research tools, 
such as internet and documentation search, coding environments 
and robotic experimentation platforms. The development of more 
integrated scientific tools for LLMs has potential to greatly accelerate 
new discoveries.

The development of new intelligent agent systems and automated 
methods for conducting scientific experiments raises potential con-
cerns about the safety and potential dual-use consequences, particu-
larly in relation to the proliferation of illicit activities and security 
threats. By ensuring the ethical and responsible use of these pow-
erful tools, we are continuing to explore the vast potential of LLMs 
in advancing scientific research while mitigating the risks associ-
ated with their misuse. A brief dual-use study of Coscientist is pro-
vided in Supplementary Information section ‘Safety implications:  
Dual-use study’.
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Data availability
Examples of the experiments discussed in the text are provided in the 
Supplementary Information. Because of safety concerns, data, code 
and prompts will be only fully released after the development of US 
regulations in the field of artificial intelligence and its scientific appli-
cations. Nevertheless, the outcomes of this work can be reproduced 
using actively developed frameworks for autonomous agent develop-
ment. The reviewers had access to the web application and were able 
to verify any statements related to this work. Moreover, we provide a 
simpler implementation of the described approach, which, although 
it may not produce the same results, allows for deeper understanding 
of the strategies used in this work.

Code availability
Simpler implementation as well as generated outputs used for quan-
titative analysis are provided at https://github.com/gomesgroup/
coscientist.
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Extended Data Fig. 1 | Using UV-Vis and liquid handler to solve food colouring 
identification problem. Guiding prompt in the third message is shown in 
bold. In the first message the user prompt is provided, then code for sample 

preparation is generated, resulting data is provided as NumPy array, which is 
then analysed to give the final answer.



Extended Data Fig. 2 | Code, generated by Coscientist. The generated code 
can be split into the following steps: defining metadata for the method, loading 
labware modules, setting up the liquid handler, performing required reagent 

transfers, setting up the heater-shaker module, running the reaction, and 
turning the module off.
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Extended Data Fig. 3 | Additional results on comparison with Bayesian optimization. a, GPT-4 models compared with Bayesian optimization performed 
starting with different number of initial samples. b, Compound-by-compound comparison of differences between advantages.
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