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Identifying unreliable predictions in clinical risk models
Paul D. Myers1, Kenney Ng 2, Kristen Severson2, Uri Kartoun2, Wangzhi Dai1, Wei Huang3, Frederick A. Anderson3 and
Collin M. Stultz 1,4,5*

The ability to identify patients who are likely to have an adverse outcome is an essential component of good clinical care. Therefore,
predictive risk stratification models play an important role in clinical decision making. Determining whether a given predictive
model is suitable for clinical use usually involves evaluating the model’s performance on large patient datasets using standard
statistical measures of success (e.g., accuracy, discriminatory ability). However, as these metrics correspond to averages over
patients who have a range of different characteristics, it is difficult to discern whether an individual prediction on a given patient
should be trusted using these measures alone. In this paper, we introduce a new method for identifying patient subgroups where a
predictive model is expected to be poor, thereby highlighting when a given prediction is misleading and should not be trusted. The
resulting “unreliability score” can be computed for any clinical risk model and is suitable in the setting of large class imbalance, a
situation often encountered in healthcare settings. Using data from more than 40,000 patients in the Global Registry of Acute
Coronary Events (GRACE), we demonstrate that patients with high unreliability scores form a subgroup in which the predictive
model has both decreased accuracy and decreased discriminatory ability.
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INTRODUCTION
A necessary condition for the success of any predictive or
classification model is that it achieves an accuracy that is superior
to existing methods that are designed to accomplish the same
task. In the healthcare sphere, however, accuracy alone does not
ensure that a model will gain clinical acceptance. Unlike problems
outside of the medical domain, poor performance for clinical
models can have deleterious consequences for patients. The fact
that a model may classify many patients correctly is certainly
reassuring, but when the consequence of a misclassification is
myocardial infarction, congestive heart failure, or death—typical
outcomes of interest in the cardiovascular domain—it is important
for clinicians to have some sense of when the predictive model
will yield incorrect results. The accuracy, sensitivity, and specificity
of a risk model provide information that can be used to estimate
how often the model is likely to yield an incorrect result. However,
as these metrics are calculated by evaluating the model’s
performance on a range of patients, it is difficult to know how
to leverage these data to identify specific patients or particular
patient subgroups where model performance is likely to be
reduced.
Accuracy reports the average performance on a dataset that

contains a range of patient characteristics. High accuracy,
however, does not ensure that the model will have adequate
performance on distinct patient cohorts. For example, although
the Framingham risk score—a widely used method to quantify the
risk of developing atherosclerotic heart disease—has high
accuracy overall, it may underestimate the risk of subclinical
atherosclerosis in some women.1 Consequently, in this study, our
goal is to identify a method that could identify, a priori, when a
given patient belongs to a subgroup where the predictive model
in question has reduced performance. We define predictions on
patients who belong to these poorly performing subgroups as

unreliable because they correspond to misleading statements
about a given patient’s risk.
Previous methods that aspire to estimate prediction reliability

can be grouped into two broad classes: model-dependent and
model-independent approaches.2 Model-dependent methods
generally report prediction confidence intervals that generally
are calculated via least squares estimation or by estimating the
uncertainty in learned model parameters.3–6 Some neural network
models evaluate whether there are sufficient data in the training
set to make a prediction for a test sample or whether the test
sample is similar to a region of the training set where the model
has poor performance.7 The drawback of these approaches is that
they mandate the use of a particular type of classifier. Model-
independent approaches, as the name implies, can be used with a
variety of different predictive models, irrespective of the approach
used to develop/train the model. Most model-independent
approaches involve retraining the predictive model using an
enhanced dataset that contains the original training set supple-
mented with new, unclassified data examples, where class labels
for the unlabeled data are assigned based on the model’s
predictions. The model’s performance before and after retraining
are used to estimate the reliability of the predicted classes for the
new data.2,8,9 New data that are similar to the original training
data will therefore be more reliable in this framework, as adding
data that are very similar to the training data will not yield a
significantly different model. A disadvantage of these approaches
is that, in practice, clinical datasets that are used to develop
clinical risk scores are generally not available to users who would
like to evaluate the reliability of a new prediction. Hence,
retraining a model with new data (or directly assessing how
different a new patient is from the training examples) is generally
not possible, given the rightful concerns over guarding patient
privacy. These approaches can therefore only be implemented by
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those who have access to the original dataset used to train the risk
model in question. More importantly, even if such data were
available, retraining complex models can be computationally
expensive, thereby making this approach infeasible for the
average user who has access to limited computational resources,
or who requires some estimate of the reliability of a given
patient’s prediction within a short time frame. A recently proposed
model-independent approach, the “trust score”, does not require
that the classifier be retrained.10 Nonetheless, to be computed it
still requires access to the original training data, which may not be
available to all health care providers who will use this metric.
Furthermore, none of these approaches, neither model-
dependent nor model-independent, have been evaluated in the
setting of significant class imbalance. This is important because
many clinical classification problems are associated with large
class imbalance as the outcome of interest typically occurs in a
small minority of patients.
Our goal was to develop a patient-specific metric that identifies

when a given prediction is unreliable. In our view, a clinically
useful prediction unreliability metric should: (1) first and foremost,
identify patient subgroups that are associated with poor model
performance; (2) be model independent; (3) not require retraining
or access to the precise training dataset used to develop the
original clinical risk model, thereby enabling the method to be
implemented by practitioners who do not have access to the
original data; and (4) be useful in the setting of significant class
imbalance.

RESULTS
Prediction unreliability is a function of class imbalance

The unreliability metric, Uðx*Þ, is a function of the risk model, f ðx*Þ,
the prevalence of the outcome of interest in the overall
population, P(y= 1), and the relative likelihood ratio of the
positive and negative classes arising from the generative models,
β
x
* (see Methods and Supplementary Methods). To understand

how each of these quantities affects the unreliability estimate, we

computed Uðx*Þ for a range of input parameters and then

calculated the average value of Uðx*Þ as a function of the risk
model prediction. We consider two limiting cases: (i) when there is
no class imbalance in the training data (Pðy ¼ 1Þ ¼ 0:5, Fig. 1a),
and (ii) when the positive class (y= 1) is in the minority
(Pðy ¼ 1Þ ¼ 0:01, Fig. 1b). When there is no class imbalance on
average, values of the clinical risk score that are close to 0 or 1 are
slightly more unreliable than values close to 0.5, which is equal to

the prevalence of the outcome in the population (Fig. 1a). By
contrast, on average, when there is significant class imbalance,
unreliable predictions are more likely to occur in patients who are
predicted to be at high risk (Fig. 1b). In other words, when there is
a relatively small number of patients who belong to the positive
class, and consequently few positive examples for the clinical
model to learn from, positive predictions are, on average, more

likely to have high values of Uðx*Þ.

Performance of the GRACE score in an unreliable subgroup
We hypothesize that patients with high unreliability scores form a
subgroup in which it is particularly difficult to correctly assess their
risk, and that the clinical risk model under scrutiny would
therefore have decreased accuracy in cohorts enriched with
patients who have unreliable predictions.
To test whether unreliable predictions result in decreased

accuracy, we computed Uðx*Þ for an established, and widely used,
clinical risk score. Using the Global Registry of Acute Coronary
Events (GRACE) risk score, which quantifies the risk of death
6 months after presenting with an acute coronary syndrome,11 our

goal was to compute Uðx*Þ for patients in the GRACE registry,
identify the most unreliable predictions in this cohort, and
evaluate the performance of the GRACE score on this “unreliable”
subgroup.
We computed Uðx*Þ for all patients in the GRACE test set and

evaluated the accuracy of predictions that have high unreliability
relative to those who have a lower unreliability score. First, we
note that, consistent with the data shown in Fig. 1b, as there is
considerable class imbalance in the GRACE dataset, patients who
are predicted to be high risk are more likely, on average, to have
high unreliability scores (Fig. 2a and Supplementary Fig. 1).
Calibration curves demonstrate that patients within the upper
50% of unreliability values tend to overestimate a patient’s risk of
death (Fig. 2a, red curve), while predictions within the lower 50%
of unreliability values are well calibrated (Fig. 2a, black curve).
To more quantitatively assess the accuracy of predictions arising

from the GRACE score in unreliable patient subgroups, we rely on
the Brier score—a popular metric that quantifies the expected
classification error.12,13 Formally, the Brier score is the mean
square error between the prediction and the true class label; i.e.,
lower Brier scores indicate more accurate predictions. However,
the Brier score itself is dependent on the prevalence of the
outcome of interest, and consequently can be difficult to interpret
when assessing the performance of a classifier on subgroups that
have different expected outcome rates; i.e., the Brier score tends

Fig. 1 Unreliability scores are a function of class imbalance. a Average unreliability as a function of the classifier prediction, f ðx*Þ, when
there is no class imbalance in the data, Pðy ¼ 1Þ ¼ 0:5. b Average unreliability for different predictions, f ðx*Þ, in the setting of large class
imbalance, Pðy ¼ 1Þ ¼ 0:01. Calculated expected values assume a uniform distribution for β

x
*.
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to be lower when the incidence of the outcome is low.14

Therefore, we normalize the Brier score by a Briernull model, which
corresponds to the scenario where every patient is predicted to
have a risk equal to the prevalence of the outcome in that
respective subgroup. Similar approaches have been used to assess
the performance of prediction models in the setting of class

imbalance.14,15 Predictions corresponding to the top 50% of Uðx*Þ
values have a modest, yet statistically significant, reduced
accuracy, as measured via a normalized Brier score, relative to

predictions that fall within the lower 50% of Uðx*Þ values (Fig. 2b,
and inset).
As high unreliability scores are associated with decreased

predictive accuracy, we hypothesize that the clinical risk model
under scrutiny would also have poor discriminatory ability in
cohorts enriched with patients with unreliable predictions. Hence,
we computed the AUC (or C-statistic) for patients to assess the
discriminatory ability of both the GRACE and Stroke risk scores
patients who have unreliable predictions. The GRACE score
similarly has relatively poor discriminatory ability in predictions

that fall within the top 50% of Uðx*Þ values (Fig. 2c).

The most unreliable GRACE predictions have significantly reduced
performance
In light of these data, we evaluated the relative performance of
predictions that have very high unreliability values. Calibration
curves for predictions that fall within the top 1% of Uðx*Þ values

(henceforth referred to as the “most unreliable predictions”)
similarly underestimate the actual risk of death (Fig. 3a, red curve).
It is important to note that while Uðx*Þ, on average, tends to assign
high values to high-risk predictions, not all high-risk predictions
are assigned to the most unreliable subgroup (Fig. 3a). The
method preferentially identifies those predictions that most differ
from the observed risk.
Similarly, the prediction error, measured via a normalized Brier

score, for the subgroup consisting of the most unreliable
predictions is significantly higher than the error associated with
all other patients in the dataset (Fig. 3b). The AUC for the most
unreliable subgroup is also significantly reduced relative to the
AUC of the remainder of the test data set, suggesting that
predictions for the most unreliable subgroup have significantly
reduced discriminatory ability relative to the remainder of the
dataset (Fig. 3c).
To assess whether these findings are unique to our unreliability

metric, or whether they generalize to other metrics that strive to
quantify the reliability in a given risk prediction, we computed an
alternate metric that purports to quantify when a given classifier’s
result should be trusted. The trust score measures the agreement
between the classifier and a nearest-neighbor classifier on a
testing example. At a high level, the score measures the distance
between a given test set example and training examples in each
class; i.e., the set consisting of training examples that have the
outcome of interest and the set of training examples that do not.
For a binary classification problem, the trust score is the ratio
between the distance to the alternate class and the distance

Fig. 2 Prediction scores in the upper 50th percentile of unreliability (top 50% of Uðx*Þ values) have worse performance. a Calibration
curves, b Normalized Brier scores (inset shows expanded region corresponding to 0:89 � Brier=Briernull � 0:912), and c Average AUCs for
predicting the outcome of all-cause death within 6 months of presentation for predictions in the upper 50th percentile (red) and those within
the lower 50th percentile (black). *p < 0.05; **p << 0.0001. Error bars are from 100 bootstrap splits and show one standard deviation (a) or one
standard error of the mean (b and c).

Fig. 3 The most unreliable predictions (predictions within the top 1% of Uðx*Þ values) in the GRACE risk model are associated worse
performance. a Calibration curves, b normalized Brier scores, and (c) AUCs for the most unreliable predictions (red) and those that fall within

the bottom 99% of Uðx*Þ values (black). **p << 0.0001. Error bars are from 100 bootstrap splits and show one standard deviation (a) or one
standard error of the mean (b and c). Error bars are truncated at 1.
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between the predicted class. Unlike our unreliability metric, which
associates high values of Uðx*Þ with unreliable predictions, low
trust scores denote predictions that are untrustworthy as they are
more similar to training examples in the class that is different from
the one that the model predicts.10

Calibration curves for the most untrustworthy predictions (i.e.,
predictions within the lowest 1% of trust values) demonstrate that
the method identifies inaccurate predictions. Predictions within
the top 1% of trust score values underestimate the actual patient
risk (Fig. 4a, red curve). However, predictions in the remainder of
the dataset tend to overestimate patient risk (Fig. 4a, black curve).
Moreover, normalized Brier scores suggest that the most
untrustworthy predictions have errors that are similar to that of
predictions in the remainder of the dataset (Fig. 4b). Calculated
AUCs of both subgroups suggest that the discriminatory ability of
the classifier is similar in both the most untrustworthy subgroup
and in the subgroup containing all other remaining patients.

Unreliable predictions in a stroke risk model
To determine whether our findings generalize to other outcomes
and risk scores, we developed a model to predict the risk of in-
hospital stroke in patients presenting with an acute coronary
syndrome. Unreliability scores were again computed for all patients
using Eq. (2). The most unreliable patients form a subgroup whose
risk is underestimated by the model (Fig. 5a), while the model is well
calibrated for all other patients in the dataset. The average error for
patients in the most unreliable subgroup is larger than the average
error for other patients in the dataset, as expected, although this

difference is not statistically significant (Fig. 5b and inset). The
discriminatory ability of the classifier is reduced in the most
unreliable cohort, relative to the classifier’s discriminatory ability in
the remainder of the data (Fig. 5c).
We again computed trust score values for the Stroke risk model

predictions and evaluated the performance of the subgroup
consisting of the most untrustworthy predictions. Similar to what
was observed with the trust calculations on the GRACE risk model,
predictions with the highest trust score underestimate the overall
risk of stroke (Fig. 6a). However, the average prediction error
associated with this untrustworthy subgroup is lower than that of
the other patients in the dataset, and the corresponding
difference is statistically significant (Fig. 6b and inset). Moreover,
the discriminatory ability of the stroke risk score is actually higher
in the untrustworthy subgroup (Fig. 6c).

DISCUSSION
While a great deal of effort has been devoted in recent years to
constructing clinical classifiers that have improved discriminatory
ability, relatively little work had been devoted to developing
methods that help health care providers determine when a given
prediction is likely to be useful. While the overall accuracy and the
AUC are important measures that gauge a model’s performance,
these metrics are obtained by averaging over a range of patients
in a pre-specified dataset. Identifying subgroups where model
performance is reduced is inherently challenging using these
standard statistical metrics of success alone. Nevertheless, under-
standing when the output from a prediction model can be trusted

Fig. 4 Untrustworthy predictions in the GRACE risk model using the trust score. a Calibration curves, b normalized Brier scores, and c AUCs
for the most untrustworthy predictions (red) and those that fall within the bottom 99% trust score values (black). Error bars are from 100
bootstrap splits and show one standard deviation (a) or one standard error of the mean (b and c). Error bars are truncated at 1.

Fig. 5 Unreliable predictions in the Stroke risk model. a Calibration curves, b normalized Brier scores (inset shows expanded region
corresponding to 0:95 � Brier=Briernull � 1:02), and c AUCs for the most untrustworthy predictions (red) and those that fall within the bottom

99% Uðx*Þ values (black). **p « 0.0001. Error bars are from 100 bootstrap splits and show one standard deviation (a) or one standard error of the
mean (b and c).
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is an important clinical problem in itself. Demonstrably good
overall performance on a specified dataset helps to ensure that
the risk model will, on average, perform well. This does not,
however, help the clinical provider identify patient subgroups
where the predictive model is expected to perform poorly.
In this work, we developed a method that identifies cohorts that

are associated with poor model performance. Our approach
identifies unreliable predictions by comparing a given prediction
for a patient, using the predictive model of interest, to another
prediction arising from an alternate risk model that was derived
from the same training data. If the two predictions disagree, then
we say that the training data are insufficient to yield a robust
prediction for that patient. Hence, the method infers the adequacy
of the training set for making predictions about a given patient.
Our method is model independent, in that it can be used on

any clinical risk model, irrespective of the method used to derive
the model. In addition, the method does not require access to the
precise training data to assess model reliability—only summary
statistics from the training data are needed. Moreover, in the
setting of significant class imbalance, subgroups enriched with
unreliable predictions, on average, form a heterogeneous cohort
of patients (see Supplementary Table 1 and Supplementary Figs 1
and 2), which is more likely to contain patients that the risk model
believes to be high risk (Fig. 1b, and Supplementary Fig. 1). This is
appropriate because a dearth of examples in the minority class
means that the risk model has relatively few examples to “learn”
the relationship between prognostic features and patient risk.
High unreliability scores identify patient subgroups where: (1)

the predicted outcome rates differ from the corresponding
observed outcome rates in the data, and (2) the predictive model
has decreased accuracy and poor discriminatory ability relative to
predictions that have lower unreliability. To determine whether
our findings are unique to our method, or whether they generalize
to other methods that strive to predict prediction reliability, we
compared our method to a recently described approach—the
trust score—for identifying trustworthy predictions.10 The most
untrustworthy predictions, identified using the trust score, for the
GRACE and Stroke risk models correspond to patients whose risk is
underestimated by the relevant risk model (Figs 4a and 6a).
However, for the GRACE score, predictions that are more
trustworthy tend to overestimate patient risk (Fig. 4a), and
the overall accuracy and discriminatory ability of the trust score
for the least trustworthy predictions is similar to, or better than,
more trustworthy predictions (Figs 4c, 6c). By contrast, unreliable
predictions, identified using our unreliability score, form sub-
groups where the predictive model has reduced discriminatory
ability in all of the patient subgroups that we studied.

In principle, a risk model will have poor discriminatory
performance on a given dataset when: (1) the model itself is
incorrect (e.g., the model parameters are wrong) or (2) the model
is applied to a cohort that has a distribution of patient
characteristics that is very different from the distribution of data
in the original training/development dataset.16 More precisely, a
given training/development set is drawn from some underlying
distribution of clinical interest (e.g., patients who present an acute
coronary syndrome). While an accurate model will perform well,
on average, when applied to a large number of patients drawn
from this distribution, it is not guaranteed to perform well when
applied to a cohort that has a very different distribution of
characteristics; i.e., poor performance on a given subgroup does
not necessarily mean that the model is “wrong” for the original
patient distribution. Nevertheless, predictions arising from risk
models applied to cohorts drawn from a different distribution of
patient characteristics should likewise not be trusted. In future
applications, especially with risk models that have not been
extensively validated on different external datasets, additional
studies may be required to clarify whether model correctness vs.
changes in the underlying patient distribution is most responsible
for the reduced performance.16,17

A limitation of our method is that only large values of Uðx*Þ are
informative; i.e., large values of Uðx*Þ are associated with
decreased accuracy and discriminatory ability. By contrast, small

values of Uðx*Þ do not necessarily mean that f ðx*Þ accurately
predicts the risk of an adverse outcome for a patient with

prognostic features, x
*
. In particular, Uðx*Þ ¼ 0 when the risk model

agrees with the prediction from the prediction arising from the

alternate model; i.e., f ðx*Þ ¼ PG y ¼ 1jŷð Þ. If the set of prognostic

features for a given patient, x
*
, does a poor job of distinguishing

between the positive and negative classes, then f ðx*Þwill be a poor
classifier for this patient, even when Uðx*Þ ¼ 0. Large values of

Uðx*Þ are of interest because they suggested that the risk model in
question is likely to be less useful than one would gauge from an
analysis of the model’s performance on a large dataset. Health
care providers should therefore view predictions with unreliability

scores above the 1 percentile (Uðx*Þ>0:11 for GRACE) with care
and obtain additional data, possibly arising from other risk metrics,
to arrive at a more accurate assessment of that patient’s risk.
Another limitation of our study is that the cohorts used to validate
the method were derived from a common data resource, GRACE.
While GRACE is large registry that contains patients who have a
wide range of clinical characteristics, it, like all other registries, has
its own biases. For example, in both the ACS and Stroke cohorts,

Fig. 6 Untrustworthy predictions in the Stroke risk model using the trust score. a Calibration curves, b normalized Brier scores (inset shows
expanded region corresponding to 0:95 � Brier=Briernull � 1:0), and c AUCs for the most untrustworthy predictions (red) and those that fall

within the bottom 99% Uðx*Þ values (black). *p < 0.05, **p « 0.0001. Error bars are from 100 bootstrap splits and show one standard deviation
(a) or one standard error of the mean (b and c).
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only ~30% of the patients are women (Table 1). Application to
additional datasets will help to clarify the types of outcomes and
data that are most relevant to our method. Nevertheless, our
results highlight the promise of our approach for evaluating the
reliability of predictions arising from models designed to quantify
the risk of adverse cardiovascular outcomes.
In this work, we used a multivariate normal (MVN) distribution

as our generative model to calculate the relative likelihood, β
x
*.

However, our unreliability approach is agnostic to the specific
model used to calculate the relative likelihood and can leverage
any generative model. Assumptions made about the distribution
of the data are isolated to the choice of generative model and are
not fundamental to the method itself. More sophisticated models
for the positive and negative class may be required when the
training data are not well described by Gaussian probability
density functions.
We approached the problem of identifying unreliable predic-

tions by first identifying criteria that would maximize the clinical
utility of a potential unreliability metric. In our view, a clinically
useful unreliability metric should identify particular patient
subgroups where the accuracy, discriminatory ability, and calibra-
tion of the risk model are compromised. Risk models, for example,
that are unable to discriminate between high-risk and low-risk
patients within a particular subgroup, should not be used for
patients who belong to that subgroup, as such results are
potentially harmful to that patient. This model-independent
approach identifies patient subgroups where the model has
demonstrably reduced performance, and that directly relates

model unreliability to clinical metrics of performance using real
patient data. Such approaches will become increasingly important
as clinical risk metrics rely on more complex machine learning
methods that provide little clinical insight into how they arrive at a
particular result.

METHODS
A method for estimating unreliable predictions
Given a clinical risk stratification model that estimates the probability of an
adverse outcome for a patient with a set of prognostic features, our
strategy for identifying unreliable predictions is to construct a separate risk
metric using summary statistics from the same training data that were
used to develop the risk model under consideration. When the two
estimates disagree on a specific patient, we say that the training data are
unable to provide a reliable prediction for this patient. To make this
explicit, let:

● x
*

denote a random variable corresponding to a set of prognostic
characteristics (the feature vector);

● yϵ 0,1 denote a random variable designating the true patient outcome
(also known as the class label); i.e., we consider a binary classification
problem. For example, y= 1 if a patient dies within some specified
time after initial diagnosis (the positive class) and y= 0 otherwise (the
negative class);

● f ðx*Þ denote the clinical risk model that takes a feature vector as input
and outputs a risk score that can be used to estimate the probability of
the true class label. As clinical risk models generally report the
probability of an adverse event, or some score that can be translated
into a probability, via a nomogram, we consider the case where

0 � f ðx*Þ � 1.

The separate, alternate, risk metric, PGðy ¼ 1j x*Þ, is calculated using the

same data that were used to calculate f ðx*Þ. As we are interested in
developing a method that does not require training a new model using the

training data, our goal is to derive an expression for PGðy ¼ 1j x*Þ that is
straightforward to compute based only on summary statistics of the

training data. In our formalism, PGðy ¼ 1j x*Þ is calculated using
appropriately trained generative models where one model generates

feature vectors consistent with patients in the positive class, x
* jy ¼ 1, and

the other generates feature vectors consistent with patients in the

negative class, x
* jy ¼ 0 (hence the superscript G). With these conventions,

the corresponding unreliability metric can be represented as:

υðx*Þ ¼ PG y ¼ 1j x*
� �

� ŷ
���

���; (1)

where ŷ ¼ f ðx*Þ. It follows that 0 � υðx*Þ � 1, where the higher the value
of υðx*Þ the more unreliable the model prediction. In practice, we work
with an alternate form of υðx*Þ, which is similar to that presented in
equation,18 but that is easier to calculate:

Uðx*Þ ¼ PG y ¼ 1jŷð Þ � ŷ
�� ��; (2)

where PG y ¼ 1jŷð Þ is the probability that a patient actually belongs to the

y= 1 class, given that the clinical risk model, f ðx*Þ, assigns a score of ŷ to a

patient with prognostic features, x
*

(see Supplementary Methods). It is

straightforward to show that Uðx*Þ≠0 implies PGðy ¼ 1j x*Þ≠f ðx*Þ (see
Supplementary Methods).

Clinical risk models and data
All experiments were done using the GRACE dataset.11,19,20 GRACE was
designed to reflect an unbiased and generalizable sample of ACS patients
hospitalized from 1999 to 2007 in 94 hospitals in 14 countries. All methods
were carried out in accordance with relevant guidelines and regulations at
each participating site, and only patients ≥18 years of age were eligible to
be enrolled in the database.21 The GRACE protocol was approved by the
UMass Medical School institutional review board and participating
hospitals, where required, also received approval from their local ethics
or institutional review boards. Signed, informed consent for follow-up
contact was obtained from the patients at enrollment. For those sites using
active surveillance for case identification, verbal or written consent was
obtained from patients to review information contained in their medical

Table 1. Population characteristics in the subset of the GRACE dataset
used for all analyses.

Dataset for GRACE
risk model

Dataset for in-
hospital Stroke
risk model

Population size 43,063 16,618

Mortalities 3078 (7.15%) 85 (0.511%)

Demographics

Age in years (IDR) 66.1 (43.6–86.1) 65.1 (50.3–87.7)

Female 32.6% 31.8%

Height in cm (IDR) 170 (152–183) 169 (154–180)

Admission weight in
kg (IDR)

77.0 (53.0–109.4) 79.2 (50.0–99.5)

Medical history

Including cardiac risk factors (%)

Angina 51.9 42.3

Congestive heart
failure

10.5 10.1

Coronary artery
bypass graft

12.6 12.2

Diabetes 25.1 25.0

Hyperlipidemia 48.3 51.4

Hypertension 62.1 62.6

Myocardial Infarction 30.3 28.0

Percutaneous
coronary intervention

17.7 19.6

Peripheral artery
disease

9.7 9.3

Renal insufficiency 7.8 7.5

Smoking 57.7 58.1

TIA/Stroke 8.3 8.1

IDR interdecile range
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charts. Details of the GRACE design, recruitment, and data collection are
described elsewhere.11,21–24

We considered two risk models in this study: The GRACE score and a
Ridge Logistic Regression (Stroke risk) model that we trained on the GRACE
dataset to predict in-hospital stroke (the Stroke risk model or SRM).
We identified a subset of patients in the GRACE dataset consisting of

patients who have values for all features used in the GRACE risk model.
This dataset consists of a set that was used to develop the GRACE risk score
(i.e., the original GRACE training/development set) and an additional set of
patients that we use to evaluate the GRACE metric and our unreliability
score (i.e., the GRACE test set). The all-cause mortality rate within the
GRACE dataset was 7.15% (Table 1). To use the model, we converted the
raw GRACE score to a probability using the published nomogram. We
found that the GRACE score to be well calibrated over the entire dataset as
assessed using a Hosmer–Lemeshow test.
In addition to all-cause mortality, we constructed a separate dataset to

predict in-hospital stroke using a feature set distinct from the GRACE set of
predictive features. Features in this separate dataset included all available
information (198 features) during the first 24 h after hospital admission and
the patients with no missing values were selected. These features
collectively include laboratory data, patient demographic information, as
well medications administered during the first hospital day.

Calculating Uðx*Þ
To compute Uðx*Þ for a given patient, two quantities are required: f ðx*Þ and
PG y ¼ 1jŷð Þ. The classifier, f ðx*Þ, corresponds to either the GRACE score,
after converting it to a probability using a published nomogram,23 or the
output of the Stroke risk model. PG y ¼ 1jŷð Þ is calculated from Bayes’ rule
using the probabilities arising from a generative model (i.e., PG ŷjy ¼ 1ð Þ
and PG ŷjy ¼ 0ð Þ), and P(y= 1), which corresponds to the fraction of
patients in the dataset who have the outcome of interest (see
Supplementary Methods). In practice, we use the ratio of the likelihoods
from the generative model, β

x
* � P ŷjy¼1ð Þ

P ŷjy¼0ð Þ, a quantity we call the relative

likelihood (see Supplementary Methods). For these calculations, we used a
MVN distribution probability density function (PDF) to calculate generative
likelihoods as this provides an efficient, and widely used, mechanism for
likelihood estimation.
To estimate the relative likelihood, β

x
* , we separated the training data

into positive and negative patients, and then fit separate MVNs to the two
patient populations; the mean and covariance were estimated using the
sample mean and sample covariance, respectively. When calculating
PGðŷjy ¼ 1Þ and PGðŷjy ¼ 0Þ for the GRACE score, we calculated mean and
covariance matrices using a dataset consisting of those that were originally
used to develop the GRACE score (13,777 patients, 7.5% mortality rate). To
evaluate our unreliability score, we did bootstrapping by randomly
sampling 20% of the remaining patients (29,286 patients, 7.0% mortality
rate) to form the test sets. One-hundred bootstraps were performed to
obtain statistical measures of uncertainty. A MVN was also used to model
the positive and negative patient distributions for the Stroke risk model.
However, given the small event rate (~0.5%) in this dataset, we used three
bootstrapped test datasets.
For both the GRACE score and the Stroke risk model, PGðŷjy ¼ 1Þ and

PGðŷjy ¼ 0Þ were numerically calculated by randomly sampling 106 feature
vectors, ~x, from each distribution, passing each vector through either the
GRACE or Stroke risk models to get a corresponding ŷ value for each
feature vector, and finally by constructing a histogram to estimate the
PDFs corresponding to PGðŷjy ¼ 1Þ and PGðŷjy ¼ 0Þ. Histograms were
constructed using bins of width 0.001; continuous features are normalized
to lie between 0 and 1 and binary features were treated as arising from an
underlying continuous distribution with thresholding. Although the GRACE
score does include three binary features and one categorical feature
(which is equivalent to including additional binary features using a one-hot
encoding), a MVN approximation adequately represents the feature space.
Indeed, using a MVN to model all of the GRACE score features (both binary
and continuous features) yields an AUC for PG y ¼ 1jŷð Þ of 0.8123, which
was similar to the AUC of the GRACE risk model (0.8124).
This process was repeated with another set of 106 samples, which were

combined with the previous 106 samples. If the combined histogram and
previous histogram were found to be different according to a two-sample
Kolmogorov–Smirnov (K–S) test, the process was repeated until there was
no change in the histogram according to the K–S test; the PDFs were then
said to have converged.

Trust score calculations
We evaluated the performance of an alternate metric for quantifying the
trustworthiness of a given prediction.10 The method involves: (1) pre-
processing the training set to first identify training examples in both
classes; i.e., patients that have the outcome of interest and the distance
from training examples that do not; (2) removing outliers from both
classes; and (3) measuring the distance of a given test set example from
both classes. The resulting trust score is a ratio of both distances.

Statistical analysis
For both the GRACE risk and Stroke risk models, bootstrapping (sampling
with replacement) was performed to obtain statistical measures of
performance. For both risk models, a bootstrapped set was 20% the size
of the test set and was stratified for the outcome of interest; i.e., all-cause
mortality for the GRACE risk model and in-hospital stroke for the Stroke risk
model. All statistical testes were two-sided, paired-sample t-tests among
the 100 bootstrapped datasets for calculations involving the GRACE score,
and among three bootstrapped datasets (due to the much smaller
prevalence of the outcome of interest) for calculations involving the Stroke
risk model. The average model error (also known as the Brier score) is

calculated using the formula B ¼ 1
N

PN
i¼1

ðyi � f ðx*
i
ÞÞ2, where yi is the true class

label. Brier scores are scaled by the average error of a model that predicts
every patient to have a risk equal to the prevalence of the outcome in the
population of interest. The normalized Brier score is equal to B/Bnull where

Bnull ¼ 1
N

PN
i¼1

ðyi � yÞ2 and y is the expected outcome prevalence in the

relevant patient subgroup. Unlike the Brier score, which is bounded by 0
and 1, normalized Brier scores can be greater than 1 (see Supplementary
Methods). Normalized Brier scores and AUCs for different subgroups are
shown as mean ± the standard error of the mean.
Calibration curves for the GRACE data were obtained by first binning the

predictions into 10 bins centered at 0.05,0.15,0.25…,0.95. The fraction of
patients who died was then computed for each bin. This process was
repeated for each of the 100 bootstraps for the GRACE risk model. For a
given bootstrap, the resulting calibration data correspond to the average
value of the prediction within each bin (x-axis) vs the fraction of patients,
who were assigned to that bin, who died (y-axis). Data for all bootstraps
are shown as the mean ± standard deviation. For the Stroke model, a
similar procedure was applied, except that the only difference was that
three equally spaced bins centered at 0.005, 0.015, and 0.025 (the
maximum value of the Stroke risk model output is ~0.03) were used for
each bootstrap because of the dearth of positive examples in the dataset,
and only three bootstraps were performed.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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