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Multi-task deep learning for cardiac rhythm detection in

wearable devices

Jessica Torres-Soto(®' and Euan A. Ashley @™

Wearable devices enable theoretically continuous, longitudinal monitoring of physiological measurements such as step count,
energy expenditure, and heart rate. Although the classification of abnormal cardiac rhythms such as atrial fibrillation from wearable
devices has great potential, commercial algorithms remain proprietary and tend to focus on heart rate variability derived from
green spectrum LED sensors placed on the wrist, where noise remains an unsolved problem. Here we develop DeepBeat, a
multitask deep learning method to jointly assess signal quality and arrhythmia event detection in wearable photoplethysmography
devices for real-time detection of atrial fibrillation. The model is trained on approximately one million simulated unlabeled
physiological signals and fine-tuned on a curated dataset of over 500 K labeled signals from over 100 individuals from 3 different
wearable devices. We demonstrate that, in comparison with a single-task model, our architecture using unsupervised transfer
learning through convolutional denoising autoencoders dramatically improves the performance of atrial fibrillation detection from
a F1 score of 0.54 to 0.96. We also include in our evaluation a prospectively derived replication cohort of ambulatory participants
where the algorithm performed with high sensitivity (0.98), specificity (0.99), and F1 score (0.93). We show that two-stage training
can help address the unbalanced data problem common to biomedical applications, where large-scale well-annotated datasets are

hard to generate due to the expense of manual annotation, data acquisition, and participant privacy.
npj Digital Medicine (2020)3:116; https://doi.org/10.1038/s41746-020-00320-4

INTRODUCTION

Wearable devices are increasingly used in cardiology for out-of-
the-clinic healthcare monitoring'. The use of wearable devices in
physical activity applications has allowed measurements of
physiological parameters like ECG, heart rate, heart rhythm, to
occur with greater frequency, convenience, and improved
accuracy>’. The fast expansion of these wearable device
functionalities in a healthcare setting can help engage individuals
in understanding disease progression and may allow for the
detection of early disease trajectories'. Wrist-based smartwatch
sensing for healthcare has generally been focused on photo-
plethysmography (PPG) for the detection of heart rate and heart
rhythm. Of the abnormal heart rhythms, atrial fibrillation (AF),
characterized by a disorganized chaotic electrical activity of the
atria, has received the most attention. The incentive for studying
AF detection methods in wearable devices is substantial. AF can
often go unnoticed and yet is a risk factor for stroke; early AF
detection may allow interventions that could decrease stroke risk.
In addition, in the decades to come, the aging population will lead
to a doubling in the prevalence of AF. There will be an increasing
public health need for cost-effective methods for AF detection
and monitoring to prevent disparities in care.

Given this potential for wearable devices to impact AF, correctly
estimating and managing signal input quality is critical for AF
detection methods. Historically, event detection for abnormal
cardiac events relied on explicit rules and domain expert
knowledge to craft features with high discriminatory power.
However, noise in wrist-worn wearable devices remains an
unsolved problem®. Inaccurate heart rate estimation and mis-
detection of AF are largely caused by poor signal quality>®. Recent
work in developing an optimal signal quality index (SQI) relies on
manually selected features to try to distinguish high-quality PPG

signals from poor or corrupted signals”®. The limitations of
manually selected features include the challenge of designing
consistent descriptors/features for diverse PPG environments,
across different individuals, while maintaining high discriminatory
power’. Published methods include Root Mean Square of the
Successive Difference of peak-to-peak intervals (RMSSD), Shannon
entropy (ShE), Poincaré plot analysis (PPA), dynamic time warping
for shape analysis, and spectral analysis®'?. These methods
generally rely on distance-based metrics, which in many situations
have been shown to yield unreliable results’.

Recently, convolutional neural networks (CNN), a class of
artificial neural networks with a strong capability in feature
extraction, have achieved great success in computer vision
medical tasks'*"'®. Features are no longer hand-derived but
learned by models trained through backpropagation'. CNN's
have become the dominant choice for many machine learning
tasks due to their high discriminatory power in supervised
machine learning settings, a facet that relies on large quantities
of manually labeled data for building high-quality models. There
are, however, limitations to CNNs including their sensitivity to
weight initialization and their dependency on large-scale labeled
training data. In some domains, like biomedical applications, it is
very difficult to construct large-scale well-annotated datasets due
to the cost of manual annotation, data acquisition, and patient
privacy. This can limit development and accessibility. Thus, the
ability to learn effectively from smaller datasets or unlabeled
observations is critical to alleviating the bottlenecks in the
advancement of this paradigm for improving healthcare.

Transfer learning aims to solve the problem of insufficient
training data. In transfer learning the goal is to build models that
adapt and generalize well, even when distributions between
datasets used for training and testing differ. With the expansion of
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deep learning to medical applications, transfer learning has
become integral to its success. Standard practice includes taking
pretrained existing architectures commonly designed for natural
images and fine-tuning it on a medical image dataset of interest.
For 1-dimensional datasets, options for selecting pretrained
architectures and fine-tuning that model on a dataset of interest
are limited. As a result of this void in available pretrained 1-
dimensional models, the ability to effectively train from smaller
datasets or unlabeled observations becomes a critical task.
Researchers have applied deep CNN to the problem of AF event
detection®'”"2'. Shashikumar et al.'” developed a blended
approach, combining the output of a CNN with other selected
features derived from beat-to-beat variability and signal quality.
This method required experts to define appropriate and critical
features needed for success. Tison et al.'® proposed using
averaged heart rates, step count, and time lapse as input for
passive detection of AF using a neural network consisting of 8
layers, each of which had 128 hidden units. Last, Poh et al.®
proposed a method for dense CNN to distinguish between noise,
sinus rhythm, ectopic rhythms, and AF across an ensemble of
three simultaneously collected PPG signals. These AF classification
methodologies do not consider joint estimations of signal quality
assessment or explore transfer learning to boost discriminatory
power. Providing a quality assessment score with each rhythm
classification allows for high-quality scores to signify that a rhythm
classification is more reliable. In addition, exploring transfer
learning for AF detection appeals to biomedical research given
the common challenge of limited access to large labeled cohorts.
To address this gap, we present DeepBeat, a method for the
detection of AF from wrist-based PPG sensing. Our method
combats the unique noise artifact problem common in AF
detection by utilizing a multitask CNN architecture, transfer
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learning (TL), and an auxiliary signal quality estimation task for
AF event detection from spatially segmented physiological PPG
signals. Our main contributions are: [1] We propose that using a
multitask learner for two correlated tasks, rhythm estimation and
signal quality estimation, allows for collaborative learning and
increased performance. [2] We evaluate the use of convolutional
denoising autoencoders (CDAE) for unsupervised learning as a
pretraining technique, part of a hybrid approach where pretrained
weights are used in the foundational layers of DeepBeat. [3] Given
the limited data often available in biomedical studies, we assess
whether using simulated data as a pretraining technique leads to
better distinction in learned class representations. [4] While
examining our model in a prospective external validation study,
we find that DeepBeat is robust to data acquired from different
sources while maintaining high AF discriminatory power.

RESULTS

Training the model

Training was broken into two phases: pretraining using CDAE on
over one million simulated physiological signals and fine-tuning
using transfer learning on a collected set of real-world data, Fig. 1.
The real-world dataset is composed of data collected at Stanford
University from participants undergoing elective cardioversions or
elective stress tests and supplemented with a publicly available
dataset from the IEEE Signal Processing Cup 2015 (Table 1). The
data were split into training, validation, and test sets with no
participants’ overlap between sets. The quantitative comparison of
our models’ performance was evaluated on three datasets. The
first is the held-out test set, the second is a publicly available pulse
oximetry benchmark dataset, and the third is an external

Decoder
S B
53 Blsat
0 x D x 0
] L
£ £/
£
) c o ¥
28 £ ¢ ¢
5 R
s§ "o
3E. P:=E.
223 @ee3 Quality Assesment
25871925 S
G S = © O
0 ®0T [OAle]
e — | fo]

Rhythm Classification

DeepBeat model architecture. The proposed model architecture for DeepBeat, two tasks are shown: (top) unsupervised pretraining

and (bottom) supervised learning through fine-tuning. The top represents the pretraining process on the unlabeled simulated data, and the
bottom represents the multitask fine-tuning process on the labeled data. The trained encoder weights serve as the foundational layers of the

multitask model.

Table 1.

Demographics of study participants collected for DeepBeat development.

Cardioversion cohort

Exercise stress test cohort Ambulatory cohort

Number of subjects 107
Number of subjects with atrial fibrillation 107
Mean age 68
Sex (M/F) 85/22

41 15

0 4
56 67
26/14 11/4
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evaluation dataset collected from a different commercial device.
The test dataset is reflective of the training set in terms of data
acquisition in a controlled environment. The pulse oximetry
dataset is currently the only PPG-based benchmark dataset
publicly available. Although it measures respiratory rate and
consists of non-AF monitoring from pulse oximetry, it can serve as
an out-of-distribution estimation of false-positive rates. The
external evaluation dataset represents real-world use, where the
signals are recorded over longer periods of time and may include
a higher degree of artifact due to uncontrollable environmental
variation. We provide a comparison of all datasets in Supplemen-
tary Tables 1 and 2.

Performance evaluation criteria

DeepBeat takes pre-specified windowed physiological signal data
of time length t (25 s) as input and performs two prediction tasks,
signal quality assessment, and AF rhythm classification. Figure 2
provides examples of physiological signals and quality assessment
scores that were used to train and evaluate the method. We
systematically compare the performance of the model on both a
held-out test data, publicly available dataset and the external
evaluation dataset. Table 2 reports the test performance of all
models explored. All evaluation metrics were calculated using the
weighted macro-averaged of the following: sensitivity/recall (the
fraction of the expert diagnoses that are successfully retrieved),
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Fig. 2 Example of rhythm and quality assessments of training
data. Examples of physiological signals grouped by assessment
scores used to train and evaluate the DeepBeat model. From top to
bottom, quality assessment scores of excellent, acceptable, and
poor. Left column are signals from participants in normal sinus
rhythm and the right column are signals from participants in atrial
fibrillation.
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specificity (the fraction of predicted negatives that match the true
negatives), false-negative rate (the conditional probability of a
positive result given an event that was not present), false-positive
rate (the conditional probability of a negative result given that the
event is present), and F1 (the harmonic mean of precision and
recall). While accuracy is classically used for evaluating overall
performance, we chose not to consider it here due to class
imbalance, F1 score is a more appropriate metric for ascertaining
detection rates for rare AF detection.

Multitask learning is essential for high classification accuracy of AF
observations

Training a single model on multiple tasks with shared encoding
can improve a model’s performance on all tasks, as different tasks
serve as implicit regularization to prevent the model from
overfitting to a particular task?>. We conducted experiments to
study the effect of a single-task learner (STL) against multitask
learner (MTL). For a STL, only AF detection is predicted per input
window, in the case of MTLs, AF detection and signal quality
assessment are both predicted per window. Table 2 shows the
model performances on the held-out test set of a STL versus MTL.
First, we see that MTL has a profound effect on the performance of
sensitivity rates, which increase from 0.49 to 0.97. Next, we see a
decrease in false-negative rates from 0.51 to 0.3, the additional QA
auxiliary task in the MTL method permits signal QA thresholding
to occur consequently removing false-negative signals attributed
to poor signal quality.

Pretraining using CDAE increases classification accuracy

In order to evaluate the effects of using CDAE as a pretraining
method and examine its impact on performance, we system-
atically compare the DeepBeat architecture with CDAE pretraining
and without. For both model versions, pretrained with CDAE and
random initialization, training was conducted under similar
conditions and under the same parameters. The results in Table
2 suggest that using the extracted encoder from the trained CDAE
as a form of unsupervised pretraining results in substantially
higher performance across all metrics. The false-positive rates
dramatically decrease from 0.11 to 0.01 and specificity increases
from 0.89 to 0.99. These results show that the proposed multitask
DeepBeat, pretrained with CDAE achieves high performance and
using only a subset of these components, only single-task learning
or only pretraining, leads to poorer test performance. For the sake
of completeness, we also consider a random forest method and an
adapted 1D version of the standard architecture for natural
images, the VGG12 architecture, for a baseline comparison against
Deepbeat. The details of the two additional models are provided
in the Supplementary Notes 1 and 2. Results from those methods
are also highlighted in Table 2 and each performs significantly less
well than DeepBeat.

Table 2. Performance of classification models.

Model Sensitivity Specificity False positive rate False-negative rate F1 score
Random forest 0.32 0.79 0.21 0.68 0.39
VGGI16: single task (AF) 0.92 0.71 0.29 0.08 0.64
DeepBeat: single task (AF) 0.49 0.90 0.10 0.51 0.54
DeepBeat: single task with pretraining (AF) 0.52 0.88 0.12 0.48 0.56
DeepBeat: multitask (AF + QA) 0.97 0.89 0.11 0.03 0.71
DeepBeat: multitask with pretraining (AF + QA) 0.98 0.99 0.01 0.02 0.96
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Fig. 3 Differences in class activation map by rhythm classification. Example of signals from held-out test dataset. The predicted class score
is mapped back to the last convolutional layer to generate the class activation maps (CAMs). The CAM highlights the class-specific
discriminative regions between sinus (top) and atrial fibrillation (bottom).

Interpreting model predictions

In order to improve our understanding of how DeepBeat classifies
AF events, we implemented a simple class activation map for
visualization. Heatmaps of class activations over input signals were
used to visualize how each data point within the signal influences
the model’s predictions.

We emphasize a set of AF and non-AF signals randomly chosen
from the test partition to highlight saliency scores; the higher the
saliency score, the lighter the color and the more influential the
region is to the model’s prediction, Fig. 3. From the figure, we
identify regions of the signal that are most discriminative for
classification. For example, there are clear global differences
between the AF and non-AF signals, with stark differences in the
upslope of PPG signals across the classes. Thus, we can infer the
regions of the upslope from the systolic phase to be informative
for AF class-specific predictions. In addition, we conducted
additional experiments to study the effect of transfer learning
for the learned representations of DeepBeat. We extract the
output of the last dense layer before rhythm prediction is made
and use UMAP? to visualize the learned distinction of non-AF
versus AF event windows in Fig. 4. As a baseline comparison we
also consider the learned representations from the extracted
output when training was performed from random initialization. In
the pretrained model visualisation, there is a clear distinction
between non-AF and AF event windows, whereas the contrast
between representations from the random initialization is not
clearly apparent.

DeepBeat achieves strong performance on external data

Achieving high discriminatory power on a test dataset originating
from the same population distribution as the training dataset is
critical. Transferring that same trained model to a different
population is a greater and much more relevant test with respect
to translation to practice. In order to determine the robustness of
DeepBeat, we evaluated the performance on two different
external datasets: the first is a freely available pulse oximetry
benchmark dataset, and the second is a prospective study of 15
free-living individuals. The pulse oximetry dataset, is currently the
only publicly available PPG-based dataset, and consists of non-AF
monitoring. It will be used as an out-of-distribution estimate of
false-positive rates. The second dataset was collected for this
study and comprised ambulatory PPG monitoring recorded over
the course of 1 week using an independently engineered wrist-
worn device while participants simultaneously wore an ECG
rhythm patch®®. Rhythm was determined by two cardiologists’
manual annotations following computerized reference ECG
algorithms. In the case that the two clinicians disagreed, a third
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Fig. 4 Visualization of learned rhythm class distinction. UMAP
representation from the last (Dense_18) layer of the DeepBeat
model. The two colors represent the two classes, respectively,
normal sinus rhythm as purple, and yellow as atrial fibrillation. Top
panel (a): pretrained network, bottom (b), random initialization. The
distinction between the two classes is clear in the pretrained
network compared to random initialization.

senior cardiologist was asked to review annotations. For both
datasets, the data from each individual was partitioned into 25-s
non-overlapping windows. Metrics were calculated for selected
windows meeting the excellent signal quality in Table 3. In the
pulse oximetry benchmark, due to the composition of only
individuals with non-AF events, we only consider specificity and
false-positive rates. For both specificity and false-positive rate,
DeepBeat correctly classified all signals as non-AF events, with no
false-positive cases. For the ambulatory cohort, 11 of the 15
monitored individuals had no confirmed AF episodes during their
1-week period. These individuals were used to estimate the false
positive rates this algorithm would have in an everyday
environment for high-risk populations (Table 3). Our results show
less than a 0.007 false-positive detection rate across these
individuals. Four individuals had a confirmed AF event during
the 2 weeks, resulting in a total of 929 25-s AF annotated episodes.
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Table 3. External evaluation of DeepBeat.

Dataset Sensitivity Specificity False-positive rate False-negative rate F1 score
Ambulatory monitoring (n = 15) 0.98 0.99 0.007 0.01 0.93
Capnobase, pulse oximetry (n =42) n/a 1 0 n/a n/a

DeepBeat classified AF presence in all 4/4 individuals (Table 3),
detecting 925 episodes correctly for a combined sensitivity rate of
0.98. The results, in Table 3, suggest that DeepBeat’s performance
in accurately predicting AF event episodes was robust to different
populations, wearable devices, and hospital vs ambulatory
environments.

DISCUSSION
The primary contributions of this work are as follows:

(1) We introduce a multitask CNN method, DeepBeat, to model
the intrinsic properties of physiological PPG signals. The
proposed algorithm performs collaborative multitask feature
learning for two correlated tasks, input signal quality
assessment and event detection (AF presence).

(2) The model benefits from unsupervised transfer learning
from pretraining using convolutional denoising autoenco-
ders (CDAE) on simulated physiological signals. The ability of
CDAEs to extract repeating patterns in the input makes
them suitable to be used to extract true physiological
signals from noise-induced inputs.

(3) We visualize the differences of transfer learning versus
random initialization on the projected representations
learned by Deepbeat.

(4) Last, we explore the robustness of DeepBeat in two external
studies: a publicly available pulse-oximeter benchmark
dataset and a prospective study in free-living ambulatory
individuals monitored over a 1-week time span. We find that
DeepBeat maintains high discriminatory power in both
cohorts.

Reproducibility is a critical aspect of any clinical physiological
measurement. In this work, we show the utility of scoring and
incorporating signal quality assessment for event detection in a
jointly trained deep learning approach. Incorporating a quality
score allows for filtering of unusable signals and assists in
achieving high-performance metrics across sensitivity, specificity,
and F1 scores in a 25s sampling window. The performance
improvements could be attributed to two complementary
components of the method: (1) unsupervised transfer learning
through pretraining using a CDAE on a simulated dataset, and (2)
the use of a multitask learning architecture, which had different
capabilities in generalizing and adapting to different training
objectives.

CDAEs have been applied for unsupervised pretraining®? and
can be categorized as data-driven network initialization methods
or a special type of semi-supervised learning approach®>. To the
best of our knowledge, our study is the first to incorporate
simulated data in conjunction with transfer learning for AF
detection in wearable devices. With the rise of deep learning in
medical imaging applications, transfer learning has become
common. Large models pretrained on natural image datasets,
such as ImageNet, are fine-tuned on a medical image database of
choice. Large pretrained image models cannot be easily imported
to fine-tune on 1-dimensional data, leaving few options for non-
imaging data. We show that an adapted 1D VGG architecture had
significantly lower performance. Non-standard, smaller and
simpler convolutional networks have also been shown to perform
comparably to standard ImageNet models for medical datasets
despite having significantly worse accuracy on ImageNet®®. Raghu

Seoul National University Bundang Hospital

et al. argue the indication of strong performance metrics on
natural images is not necessarily a good indication of success on
limited medical datasets®®, a result confirmed with our analysis.
Given the considerable differences in 1D and 2D data, using
standard image-based networks may not be an appropriate
choice. Furthermore, large computationally expensive models
might be infeasible on mobile or wearable applications, furthering
the need for simple, lightweight models.

Following the success of other multitask learning neural
networks®’, DeepBeat’s architecture for AF event detection and
signal quality assessment was designed to leverage several
advantages that multitask learning neural networks offer. The
DeepBeat architecture utilizes low-level feature sharing by
allowing the signal quality assessment task and AF event-
detection task to collectively learn the same feature representa-
tion through the use of shared layers or hard parameter sharing.
This is motivated by the following: First, learned features for the
signal quality assessment task provide value for analyzing regions
for which AF events are present or absent. Second, shared layers
encourage a reduction in the number of parameters needed for
the network to generalize to a greater range of individuals. The
integration of signal context information is beneficial. Difficulties
arise when distinguishing between AF and non-AF events when
signals are corrupted by noise or artifact. One approach to
overcoming these obstacles involves the provision of context
information on signal quality so the learned features are tandem
with features predictive of AF events. The event-detection task
determines whether a window contains regions of AF events,
while the signal assessment task predicts the quality of the signal.
Preservation of important physiological signal information
throughout the model should not be translation invariant, i.e.,
the learned features from the signal assessment task should be
preserved in the AF detection outputs.

Previously, Poh et al® reported a method using dense
convolutional neural networks (DCNN) with lower sensitivity
(recall) of 95.2%, and PPV (precision) of 72.7% using single-
channel PPG as input to differentiate between AF and non-AF
signals. This study included a large number of participants, but a
very different methodological design. The authors consider noise
as an equally likely category as AF and non-AF. The DCNN
approach may limit the ability to disentangle the impact that
signal quality has on predicted AF versus non-AF states. In
addition, the DCNN architecture consisted of six dense blocks
resulting in a model with a total of 201 layers, significantly deeper
than the model we propose. Employing transfer learning with a
much shallower network as seen with DeepBeat can increase the
precision of AF events detected and an over-parameterized model
may not be necessary.

A substudy of the eHeart study evaluated the applicability of AF
detection using a smartwatch'®, The study design was broken into
three distinct phases in which the accuracy to detect AF was
moderate in the ambulatory stage. The sensitivity (0.98) for the
validation phase was comparable to the sensitivity of DeepBeat,
but DeepBeat outperforms on specificity. The reduced specificity
of that model could be contributed to by the input data, use of
averaged heart rates, step count, and time lapse. The ability to
correctly identify average heart rate is critical for high-
performance success and conditions such as high-intensity
motion or improper wear can greatly impact heart rate calcula-
tions. Our method is not based on calculated heart rate but
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instead infers rhythm directly from the raw waveform, reducing
the need to calculate heart rate and reducing possible error
propagation throughout the model.

The Apple Heart Study was focused on ambulatory AF detection
with a proprietary algorithm based on irregular tachograms
(periodic measurements of heart rate regularity). The study
enrolled 419,297 individuals and monitored for a median of
8 months. Among participants who were notified of an irregular
pulse, the positive predictive value was 0.84 (95% Cl, 0.76-0.92) for
observing AF on the ECG simultaneously with a subsequent
irregular pulse notification and 0.71 (97.5% Cl, 0.69-0.74) for
observing AF on the ECG simultaneously with a subsequent
irregular tachogram?®. While not directly comparable (overall
sensitivity is not estimable in the Apple Heart Study due to study
design), the performance of Deepbeat reported here would
suggest favorable performance when deployed at scale.

Our study has limitations. We only considered one abnormal
cardiac rhythm (albeit the most common one). The training data
derived were a mixture of healthy individuals and patients who
were hospitalized long term or for same day outpatient
procedures (i.e., taken from a population with a much higher
prevalence of arrhythmia than the general population). When
comparing reported evaluation metrics, our algorithm outper-
forms other deep learning methods that have been proposed so
far for AF event detection®'’~2'. However, a direct comparison of
prior published work is challenging due to the lack of published
code or availability of trained models and training data needed for
baseline neural network-based comparisons.

In summary, event detection of AF through the use of wearable
devices is possible with strong diagnostic performance metrics.
We achieve this through signal quality integration, data simulation
and the use of CDAEs which are highly suitable for deriving
features from noisy data. In light of the increased adoption of
wearable devices and the need for cost-effective out-of-clinic
patient monitoring, our method serves as a foundational step
toward future studies involving extended rhythm monitoring in
high-risk AF individuals or large-scale population AF screening.
Further studies will be needed to determine whether the benefits
of such diagnostic screening result in improved patient outcomes.

METHODS
Human studies

The source data used for training DeepBeat comprised a combination of a
novel data generated for this study and publicly available data. Pretraining
using CDAE was trained with a novel PPG simulated dataset, and DeepBeat
was developed using participants from three datasets, two from Stanford
hospital, first participants undergoing elective cardioversions and
secondly, participants performing elective stress tests. The third dataset
is a publicly accessible 2015 IEEE Signal Processing Cup Dataset was used
to supplement the Stanford dataset to provide out-of-institution examples.
For an additional evaluation, a pulse-oximeter benchmark data and a study
from an ambulatory cohort were used to evaluate algorithm performance.
The participant demographic summary can be found in Table 1. All studies
conducted at Stanford were conducted in accordance with the principles
outlined in the Declaration of Helsinki and approved by the Institutional
Review Board of Stanford University (protocol ID 35465, Euan Ashley). All
participants provided informed consent prior to the initiation of the study.

The simulation of synthetic physiological signals was generated and
built upon RRest, a simulation framework?®. The simulation framework for
synthetic physiological signals was expanded to include a combination of
baseline wander and amplitude modulation for simulation of sinus rhythm
physiological signals. For simulations of an AF state, a combination of
frequency modulation, baseline wander, and amplitude modulation was
simulated. Frequency modulation was applied to specifically to mimic the
chaotic irregularity of an AF rhythm. This assumption was the foundation
for all simulations of AF signals. In addition to the expanded simulation
version, an additional noise component was added to the simulated
signals based on a Gaussian noise distribution. This provides the capability
to simulate high-quality signals in the presence of low noise and low-
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quality signals in the presence of high noise. We simulated sinus rhythm
and AF states under different levels of Gaussian noise to best represent
observed real-world scenarios, further details can be found in Supple-
mentary Fig. 1.

The collection of physiological signals before cardioversion were
extracted from a wrist-based PPG wearable device worn by participants
at Stanford hospital undergoing direct current cardioversion for the
treatment of AF. The study included participants with an AF diagnosis who
were scheduled for elective cardioversion. We included all adult
participants able to provide informed consent and willing to wear the
device before and after the CV procedure. We included all participants with
an implanted pacemaker or defibrillator and who also had planned or
unplanned transesophageal echocardiogram. In total, 132 participants
were recruited and monitored; data from 107 were of sufficient duration
and quality to be included in this study. The average monitoring time was
~20 min post and 20 min prior to the CV. All physiological signals were
sampled at 128 Hz and wirelessly transmitted via Wifi to a cloud-based
storage system.

The collection of physiological signals from exercise stress test were
extracted from a wrist-based PPG wearable device worn by participants at
Stanford hospital who were scheduled for an elective exercise stress test.
We included all adult participants who were able to provide informed
consent and willing to wear the device during an elective exercise stress
test. In total, 42 participants were monitored; data from all 42 participants
were included in this study. The average monitoring time was ~45 min. All
physiological signals were sampled at 128 Hz and wirelessly transmitted
via Wifi to a cloud-based storage system.

The PPG database from the 2015 IEEE Signal Processing Cup® was
included in this study to provide a source of data from healthy non-AF
participants. The dataset consists of two channels of PPG signals, three
channels of simultaneous acceleration signals, and one channel of
simultaneous ECG signal. PPG signals were recorded from a participant’s
wrist using PPG sensors built-in a wristband. The acceleration signals were
recorded using a tri-axial accelerometer built into the wristband. The ECG
signals were recorded using standard ECG sensors located on the chest of
participants. All signals were sampled at 125 Hz and wirelessly transmitted
via Bluetooth to a local computer.

The pulse-oximeter benchmark dataset was downloaded from the on-
line database CapnoBase.org. The dataset consists of individuals randomly
selected from a larger collection of physiological signals collected during
elective surgery and routine anesthesia for the purpose of development of
improved monitoring algorithms in adults and children®'. The PPG signals
were recorded at 100Hz with S/5 Collect software (Datex-Ohmeda,
Finland)*'.

A prospective cohort of 15 participants with paroxysmal AF were
recruited prospectively for a free-living ambulatory monitoring for an
average of 1 week. Participants wore a wrist-based PPG wearable device
together with an ECG reference device. During the monitoring period,
participants were asked to continue with their regular daily activities in
their normal environment. PPG signals were extracted from the device
after study was complete and clinically-annotated ECG rhythm annotations
were provided from the reference ECG device.

Data preprocessing

Preprocessing of the simulated physiological signals for CDAE consisted of
partitioning the data into training, validation, and test partitions. Simulated
physiological PPG signals consisted of 25s time frames. The collected
physiological signals were partitioned into training, validation, and test
partitions with no individual overlap between each set. We used
overlapping windows for the training set as a data augmentation
technique to increase the number of training examples. All signals were
standardized to [0, 1] bounds and bandpass filtered and downsampled by
a factor of 4. Supplementary Table 1 illustrates the number of signals for
each partition from the Stanford cardioversion, exercise stress test, and
IEEE signal challenge datasets.

Signal quality assessment

To train a multitask model assessing both signal quality and event
detection, signal quality labels were needed for each signal window. Event-
detection labels were known, given the datasets and timestamp the signal
originated from. To provide a signal quality assessment label for the
training set we created an expert scored dataset of PPG signals known as
the signal quality assessment dataset. For each time window set
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considered, 1000 randomly selected windows were scored and partitioned
into a train, validate and test sets. Each window was scored according to 1
of 3 categories (excellent, acceptable, and noise) in the concordance of
published recommendations for PPG signal quality’. The signal quality
classes were based on published standardized criteria (Elgendi quality
assessments’). A separate model for QA was trained using the scored
dataset as outcomes and used to predict quality labels for the remaining
unscored windows considered.

Algorithm

Pretraining was performed using unsupervised pretraining using convolu-
tional denoising autoencoders. Autoencoders are a type of neural network
that is composed of two parts, an encoder, and decoder. Given a set of
unlabeled training inputs, the encoder is trained to learn a compressed
approximation for the identity function so that the decoder can produce
output similar to that of the input, using backpropagation. Consider an
input x € R being mapped to a hidden compressed representation y €
R4 by the encoder function: Encoder: y = hg(x) = o(Wx + b), where W is
the weights matrix, b is the bias array, 6 ={W, b}, and o can be any
nonlinear function such as RelLu. The latent representation y is then
mapped back into a reconstruction z, with the same shape as input x using
a similar mapping: Decoder: z = o(W'y + b'). The reconstruction of the
autoencoder attempts to learn the function such that hggX) ~ X, to
minimize the mean-squared difference L(x,z) = > (x — hg(x))*. Convolu-
tional denoising autoencoders (CDAE) are a stochastic extension to
traditional autoencoders explained above. In CDAE, the initial input x is
corrupted to x by a stochastic mapping x = C(x|x), where C is a noise
generating function, which partially destroys the input data. The hidden
representation y of the kth feature map is represented by
yk = o(WK x x 4 b), where * denotes the 1D convolutional operation and
o is a nonlinear function. The decoder is denoted by
z= hg(x) = 0(> e,y m * W+ b), where m indicates the group of latent
feature maps and W is the flipped operation over the dimensions of W32,
Compared to traditional autoencoders, convolutional autoencoders can
utilize the full capability of CNN to exploit structure within the input with
weights shared among all input locations to help preserve local spatiality*>.

We simulated a training dataset for artifact induced PPG signals and its
corresponding clean/target signal. We use convolutional and pooling
layers in the encoder, and upsampling and convolutional layers in the
decoder. To obtain the optimal weights for W, weights were randomly
initiated according to He distribution®® and the gradient calculated by
using the chain rule to back-propagate error derivatives through the
decoder network and then the encoder network. Using a number of
hidden units lower than the inputs forces the autoencoder to learn a
compressed approximation. The loss function employed in pretraining was
mean-squared error (MSE) and was optimized using a back-propagation
algorithm. The input to the CDAE was the simulated signal dataset with a
Gaussian noise factor of 0.001, 0.5, 0.25, 0.75, 1, 2, and 5 added to corrupt
the simulated signals. The uncorrupted simulated signals are then used as
the target for reconstruction. We used three convolution layers and three
pooling layers for the encoder segment and three convolution layers and
three upsampling layers for the decoder segment of the CDAE,
Supplementary Table 3. ReLU was applied as the activation function and
Adam** is used as the optimization method. Each model was trained with
MSE loss for 200 epochs with a reduction in learning rate by 0.001 for every
25 epochs if validation loss did not improve. Further results from the CDAE
training can be found in the Supplementary Note 3, Supplementary Fig. 2,
and Supplementary Table 4.

Transfer learning is an appealing approach for problems where labeled
data is acutely scarce®. In general terms, transfer learning refers to the
process of first training a base network on a source dataset and task before
transferring the learned features (the network’s weights) to a second
network which is trained on an external and sometimes related dataset
and task. The power of transfer learning is rooted in its ability to deal with
domain mismatch. Fine-tuning pretrained weights on the new dataset is
implemented by continuing backpropagation. It has been shown that
transfer learning reduces the training time by reducing the number of
epochs needed for the network to converge on the training set®*. We
utilize transfer learning here by extracting the encoder weights from the
pretrained CDAE and copy the weights to the first three layers of the
DeepBeat model architecture. A similar approach has been applied before
successfully in related ECG arrhythmia detection®2. The motivation behind
using CDAE for unsupervised pretraining on simulated physiological
signals was to provide the earlier foundational layers of the DeepBeat
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model the ability to quickly identify learned features that constitute
important physiological signal elements.

DeepBeat was trained to classify two tasks through a shared structure.
The input is a single physiological PPG signal. The convolutional layers of
the first three layers include receptive field maps with initialized filter
weights from the pretrained CDAE encoder section. Three additional layers
were added after the encoder section, leading to a total of six shared
hidden layers. For hidden layers 4-6, leaky rectified linear unit*’, batch
normalization®®, and dropout layers and convolutional parameters were
selected through hyperparameter search. Model specification can be
found in Supplementary Table 5.

The quality assessment task (QA) and AF event-detection task builds
upon the six shared layers branching into two specialized arms, the QA
task and event-detection task. The QA arm consists of an additional
convolutional layer, rectified linear unit (ReLU), batch normalization,
dropout and two dense layers before final softmax activation for
classification is used. The event-detection task consisted of three additional
convolutional layers, each followed by a RelLU, batch normalization, and
dropout layers. Two additional dense layers were added before final
softmax activation. For all layers except the pretrained encoder, weights
were randomly initiated according to He distribution®3. With a given
training input, predictions for both tasks, QA and rhythm event detection
were estimated and backpropagation was used to update the weights and
the corresponding gradients throughout the network. Hyperparameter
optimization for the number of layers, activation functions, receptive field
map size, convolutional filter length, epochs, and stride was performed
using hyperas®’. The best performing model was selected by highest
F1 score on the validation data. We implemented DeepBeat using Python
3.5 and Keras® with Tensorflow 1.2*'. We trained the model on a cluster of
4 NVIDIA P100 GPU nodes.

DeepBeat performance metrics

Classification performance metrics were measured in two ways, per
episode and weighted macro-averaged across individuals using the
following metrics: sensitivity, specificity, false-positive rate, false-negative
rate, and F1 score. While accuracy is classically used for evaluating overall
performance, F1 scores are more useful with significant class imbalance, as
is the case here. Weighted macro-averaged are reported within the tables.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The data used to train DeepBeat (train, validate and test partitions) is available
through synapse (Synapse ID: syn21985690). Ambulatory dataset was made available
to Stanford for the current study and is not publicly available.

CODE AVAILABILITY

Trained DeepBeat model and code details can be found at https:/github.com/
AshleyLab/deepbeat.

Received: 24 January 2020; Accepted: 22 July 2020;
Published online: 09 September 2020

REFERENCES

1. William, A. D. et al. Assessing the accuracy of an automated atrial fibrillation
detection algorithm using smartphone technology: The iREAD Study. Heart
Rhythm 15, 1561-1565 (2018).

2. Shcherbina, A. et al. Accuracy in wrist-worn, sensor-based measurements of heart
rate and energy expenditure in a diverse cohort. J. Pers. Med. 7, 3 (2017).

3. Wasserlauf, J. et al. Smartwatch performance for the detection and quantification
of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 12, 006834 (2019).

4. Kim, B. S. & Yoo, S. K. Motion artifact reduction in photoplethysmography using
independent component analysis. IEEE Trans. Biomed. Eng. 53, 566-568 (2006).

5. Zhang, Z,, Pi, Z. & Liu, B. TROIKA: a general framework for heart rate monitoring
using wrist-type photoplethysmographic signals during intensive physical exer-
cise. IEEE Trans. Biomed. Eng. 62, 522-531 (2015).

npj Digital Medicine (2020) 116


https://github.com/AshleyLab/deepbeat
https://github.com/AshleyLab/deepbeat

np)

J. Torres-Soto and E.A. Ashley

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

. Lown, M., Yue, A, Lewith, G, Little, P. & Moore, M. Screening for Atrial Fibrillation

using Economical and accurate TechnologY (SAFETY)—a pilot study. BMJ Open 7,
e013535 (2017).

. Elgendi, M. Optimal signal quality index for photoplethysmogram signals.

Bioengineering 3, 21 (2016).

. Poh, M.-Z. et al. Diagnostic assessment of a deep learning system for detecting

atrial fibrillation in pulse waveforms. Heart https://doi.org/10.1136/heartjnl-2018-
313147 (2018).

. Krivoshei, L. et al. Smart detection of atrial fibrillation. Europace 19, 753-757

(2017).

. Corino, V. D. A. et al. Detection of atrial fibrillation episodes using a wristband

device. Physiol. Meas. 38, 787-799 (2017).

. Tang, S-C. et al. Identification of atrial fibrillation by quantitative analyses of

fingertip photoplethysmogram. Sci. Rep. 7, 45644 (2017).

. Bashar, S. K. et al. Atrial fibrillation detection from wrist photoplethysmography

signals using smartwatches. Sci. Rep. 9, 15054 (2019).

. Madani, A., Arnaout, R, Mofrad, M. & Arnaout, R. Fast and accurate view classi-

fication of echocardiograms using deep learning. NPJ Digit. Med. 1, 6 (2018).

. Zhang, J. et al. Fully automated echocardiogram interpretation in clinical practice.

Circulation 138, 1623-1635 (2018).

. Johnson, K. W. et al. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 71,

2668-2679 (2018).

. Pereira, T. et al. Photoplethysmography based atrial fibrillation detection: a

review. NPJ Digit. Med. 3, 3 (2020).

. Shashikumar, S. P., Shah, A. J, Li, Q, Clifford, G. D. & Nemati, S. A deep learning

approach to monitoring and detecting atrial fibrillation using wearable tech-
nology. In 2017 IEEE EMBS International Conference on Biomedical Health Infor-
matics (BHI) 141-144 (2017).

. Tison, G. H. et al. Passive detection of atrial fibrillation using a commercially

available smartwatch. JAMA Cardiol. 3, 409-416 (2018).

. Turakhia, M. P. et al. Rationale and design of a large-scale, app-based study to

identify cardiac arrhythmias using a smartwatch: the Apple Heart Study. Am.
Heart J. 207, 66-75 (2019).

Shen, Y. et al. Ambulatory Atrial Fibrillation Monitoring Using Wearable Photo-
plethysmography with Deep Learning. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining 1909-1916,
(Association for Computing Machinery, 2019). https://doi.org/10.1145/
3292500.3330657.

Gotlibovych, I. et al. End-to-end deep learning from raw sensor data: atrial
fibrillation detection using wearables. arXiv [stat.ML], https://doi.org/10.1145/
nnnnnnn.nnnnnnn (2018).

Ochiai, K., Takahashi, S. & Fukazawa, Y. Arrhythmia detection from 2-lead ECG
using convolutional denoising autoencoders (2018).

Mcinnes, L, Healy, J, Saul, N. & GroBberger, L. UMAP: Uniform Manifold
Approximation and Projection. JOSS 3, 861 (2018).

Hadley, D., Hsu, D., Pickham, D., Drezner, J. A. & Froelicher, V. F. QT Corrections for
Long QT Risk Assessment: Implicationsfor the Preparticipation Examination. Clin.
J. Sport Med. 29, 285-291 (2019).

Erhan, D. et al. Why does unsupervised pre-training help deep learning? J. Mach.
Learn. Res. 11, 625-660 (2010).

Raghu, M. Zhang, C, Kleinberg, J. & Bengio, S. Transfusion: Understanding
Transfer Learning for Medical Imaging. In: H. Wallach (ed.) Advances in Neural
Information Processing Systems 32, 3347-3357 (Curran Associates, Inc., 2019).
Li, S., Liu, Z.-Q. & Chan, A. B. Heterogeneous multi-task learning for human pose
estimation with deep convolutional neural network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops 482-489
(2014).

Perez, M. V. et al. Large-scale assessment of a smartwatch to identify atrial
fibrillation. N. Engl. J. Med. 381, 1909-1917 (2019).

Charlton, P. H. et al. Extraction of respiratory signals from the electrocardiogram
and photoplethysmogram: technical and physiological determinants. Physiol.
Meas. 38, 669-690 (2017).

IEEE SP Cup 2015 - |[EEE Signal Processing Society. http://archive.
signalprocessingsociety.org/community/sp-cup/ieee-sp-cup-2015/ (2015).
Karlen, W., Raman, S., Ansermino, J. M. & Dumont, G. A. Multiparameter respira-
tory rate estimation from the photoplethysmogram. IEEE Trans. Biomed. Eng. 60,
1946-1953 (2013).

Gondara, L. Medical image denoising using convolutional denoising auto-
encoders. In 2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW) 241-246 (2016).

He, K, Zhang, X,, Ren, S. & Sun, J. Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In 2015 IEEE International Con-
ference on Computer Vision (ICCV) 1026-1034 (2015).

Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. arXiv [cs.LG]
(2014).

npj Digital Medicine (2020) 116

35. Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. In
Computer Vision — ECCV 2014 818-833 (Springer International Publishing, 2014).

36. Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. In Advances in Neural Information
Processing Systems Vol. 27 (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D. & Weinberger, K. Q.) 3320-3328 (Curran Associates, Inc., 2014).

37. Maas, A. L, Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml Vol. 30, 3 (2013).

38. loffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning - Volume 37, 448-456
(JMLR.org, 2015).

39. Bergstra, J., Yamins, D. & Cox, D. D. Making a science of model search: hyper-
parameter optimization in hundreds of dimensions for vision architectures. In
Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, I-115-1-123 (JMLR.org, 2013).

40. O’'Donoghue, J. Introducing: Blocks and Fuel — Frameworks for Deep Learning in
Python - KDnuggets. https://www.kdnuggets.com/2015/10/blocks-fuel-deep-
learning-frameworks.html.

41. Abadi, M. et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv 2016: 1603. 04467 (2019).

ACKNOWLEDGEMENTS

We thank our academic and technology partners who helped with the project, with
thanks to Jeff Christle and Samsung partners at Samsung Strategy and Innovation
Centre. Some of the computing for this project was performed on the Sherlock
cluster. We would like to thank Stanford University and the Stanford Research
Computing Center for providing computational resources and support that
contributed to these research results. This work was supported by the US.
Department of Health & Human Services, U.S. National Library of Medicine (NLM) -
T15 LM 007033, the Big Data to Knowledge (BD2K) program and the National
Institutes of Health, Office of Strategic Coordination - The Common Fund.

AUTHOR CONTRIBUTIONS

JT.S. and E.A.A. conceptualised and designed the study. J.T.S. designed and coded
the algorithm. J.T.S. and E.A.A. drafted and critically revised the paper for important
intellectual content.

COMPETING INTERESTS

E.A.A. reports advisory board fees from Apple, DeepCell, Myokardia, and Personalis,
outside the submitted work. J.T.S. declares no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/
s41746-020-00320-4.

Correspondence and requests for materials should be addressed to E.A.A.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

Seoul National University Bundang Hospital


https://doi.org/10.1136/heartjnl-2018-313147
https://doi.org/10.1136/heartjnl-2018-313147
https://doi.org/10.1145/3292500.3330657
https://doi.org/10.1145/3292500.3330657
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://archive.signalprocessingsociety.org/community/sp-cup/ieee-sp-cup-2015/
http://archive.signalprocessingsociety.org/community/sp-cup/ieee-sp-cup-2015/
http://www.kdnuggets.com/2015/10/blocks-fuel-deep-learning-frameworks.html
http://www.kdnuggets.com/2015/10/blocks-fuel-deep-learning-frameworks.html
https://doi.org/10.1038/s41746-020-00320-4
https://doi.org/10.1038/s41746-020-00320-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Multi-task deep learning for cardiac rhythm detection in wearable devices
	Introduction
	Results
	Training the model
	Performance evaluation criteria
	Multitask learning is essential for high classification accuracy of AF observations
	Pretraining using CDAE increases classification accuracy
	Interpreting model predictions
	DeepBeat achieves strong performance on external data

	Discussion
	Methods
	Human studies
	Data preprocessing
	Signal quality assessment
	Algorithm
	DeepBeat performance metrics
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




