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Ensemble learning predicts multiple sclerosis disease course in
the SUMMIT study
Yijun Zhao1, Tong Wang1, Riley Bove2,3,4, Bruce Cree2,3,4, Roland Henry2,3,4, Hrishikesh Lokhande5, Mariann Polgar-Turcsanyi 3,4,5,
Mark Anderson3,4,5, Rohit Bakshi 3,4,5, Howard L. Weiner3,4,5, Tanuja Chitnis 3,4,5✉ and SUMMIT Investigators*

The rate of disability accumulation varies across multiple sclerosis (MS) patients. Machine learning techniques may offer more
powerful means to predict disease course in MS patients. In our study, 724 patients from the Comprehensive Longitudinal
Investigation in MS at Brigham and Women’s Hospital (CLIMB study) and 400 patients from the EPIC dataset, University of California,
San Francisco, were included in the analysis. The primary outcome was an increase in Expanded Disability Status Scale (EDSS) ≥ 1.5
(worsening) or not (non-worsening) at up to 5 years after the baseline visit. Classification models were built using the CLIMB dataset
with patients’ clinical and MRI longitudinal observations in first 2 years, and further validated using the EPIC dataset. We compared
the performance of three popular machine learning algorithms (SVM, Logistic Regression, and Random Forest) and three ensemble
learning approaches (XGBoost, LightGBM, and a Meta-learner L). A “threshold” was established to trade-off the performance
between the two classes. Predictive features were identified and compared among different models. Machine learning models
achieved 0.79 and 0.83 AUC scores for the CLIMB and EPIC datasets, respectively, shortly after disease onset. Ensemble learning
methods were more effective and robust compared to standalone algorithms. Two ensemble models, XGBoost and LightGBM were
superior to the other four models evaluated in our study. Of variables evaluated, EDSS, Pyramidal Function, and Ambulatory Index
were the top common predictors in forecasting the MS disease course. Machine learning techniques, in particular ensemble
methods offer increased accuracy for the prediction of MS disease course.
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INTRODUCTION
The majority of currently approved multiple sclerosis (MS)
therapies primarily target relapses, and have limited effects on
halting the overall disability progression. Although a number of
clinical and demographic features have been associated with
long-term disease course in MS1–7, there is increasing evidence
that early and more aggressive treatment targeting relapses may
delay or prevent the long-term accumulation of disability8,9, but
this effect must be balanced with the potential increase in side
effects associated with more potent therapies. The identification
of patients who are more likely to accrue disability would allow
clinicians to institute more rigorous monitoring procedures and
potentially initiate more potent therapies early in the course of the
disease.
In our research, we apply machine learning techniques to

predict the disability level of MS patients at the five-year time
point using the first two years of clinical and neuroimaging
longitudinal data. The level of MS disability is measured by the
Expanded Disability Status Scale (EDSS) score10 using a 0–10 scale,
in which 0 is normal and 6 corresponds to walking with a cane.
Our goal is to predict which patients will accumulate disability
(“worsening”), and which are likely to remain without disability
accumulation (“non-worsening”) in their disease course. We define
“worsening” as an increase of 1.5 or more from the baseline EDSS
to the 5-year EDSS, and “non-worsening” as all other cases. The
threshold is selected based on the fact that an EDSS increase of
1.0 or 1.5 is clinically significant and generally sustained, and is

used as a primary or secondary endpoint in clinical trials of MS
therapies.
In this paper, we present our findings by applying ensemble

techniques to integrate information from multiple machine
learning classifiers. Ensemble learning has been proven to
produce better and more robust predictive performance com-
pared to any single model. In our experiment, we created a
heterogeneous Meta-learner L from three established machine
learning algorithms as our base classifiers: Support Vector Machines
(SVM), Logistic Regression, and Random Forest. We further
investigated the efficacy of two more homogeneous ensemble
learners, XGBoost and LightGBM, which have gained much
attention in recent years due to their superior performance11,12.
An additional motivation for our research is to study risk factors

affecting MS patients’ disease progressions. To this end, we ranked
the top predictors in our models and identified the most
predictive factors. Detailed findings and discussions are presented
in the “Results” section.

RESULTS
Model performance
All experiments were conducted by running a nested cross-
validation. Specifically, the outer loop splits the data into ten
stratified nonoverlapping folds. Each of the ten folds will
subsequently be held out as the test data, while the remaining
folds form the training data. For each training set, we apply a
nested 10-fold cross-validation to select the hyper-parameters via
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a grid search based on the highest AUC (area under the ROC
curve) score. We report the average model performance of the
outer ten test folds. In addition to overall predictive accuracy,
sensitivity and specificity were used to measure the performance
in the positive and negative classes, respectively.
Table 1 presents our experimental results on the Comprehen-

sive Longitudinal Investigation in MS at Brigham and Women’s
Hospital (CLIMB) dataset using 6-month observation windows.
Since we are more interested in predicting the “worsening” class,
we applied different thresholds in the ROC curve to increase a
model’s sensitivity at the cost of lowering the specificity. For each
threshold displayed in column 1 of Table 1, we present a
performance comparison of the six models described in the
“Methods” section, using sensitivity, specificity, and overall
accuracies. Consequently, we can observe the trade-offs between
an increase in sensitivity and a decrease in specificity for each
model, as we shift the threshold. A healthcare institution can
select a desired threshold depending on its level of tolerance on
the insufficient performance of the “non-worsening” class (i.e., a
low specificity). From Table 1, we observe that:

● The highest accuracy on the “worsening” class that is of
practical value is about 80%. This is because further

improvement would lead to a <50% performance of the
“non-worsening” class. Given 80% as the benchmark on the
“worsening” class, XGBoost and LightGBM are the best
models, with each achieving close to 70% on the other class
at thresholds 0.35 and 0.3, respectively. Meta-learner L is the
next runner-up with 65% accuracy on the “non-
worsening” class.

● It is worth noting that some algorithms are more sensitive to
the shift of threshold values. For example, Random Forest
degenerated quickly as the threshold value moved <0.4. On
the other hand, XGBoost and LightGBM maintained a steady
trade-off between the two classes, as we varied the thresh-
olds. We conclude that they are the desirable models for our
task due to their superior performance and robustness.

Table 2 presents the validation results of our models using the
EPIC dataset. To facilitate a validation from a dataset with different
variables and data frequency, we rebuilt our models using the
CLIMB dataset, but with only the overlapping attributes of the two
datasets and with annual observations. The resulting models were
applied directly to the EPIC dataset to evaluate the efficacy of our
models. We first observe that, similar to Table 1, ensemble
methods continue to be the top performers for the CLIMB dataset.
However, the best attainable performance has decreased to ~75
and 61% for the “worsening” and “non-worsening” classes,
respectively. The reduced predicability is expected because the
results in Table 2 were obtained using fewer variables and less
data frequency than those in Table 1. We further observe that the
desired models for the CLIMB data align with the ones for the EPIC
dataset.
It is worth noting that SVM and Logistic Regression achieved

similar performance, as the ensemble methods for the CLIMB
dataset in Table 2. However, SVM didn’t sustain its effectiveness
for the EPIC dataset and Logistic Regression was not a favored
model in Table 1. Thus, we recommend ensemble models for our
classification task due to their robust performance across varied
datasets and experiments.
In addition to validating the optimal models across the two

datasets, we further evaluated the overall similarity of model
performance for all thresholds. To this end, we performed an
independent regression analysis for each evaluation metric (i.e.,
sensitivity, specificity, and overall), using the corresponding
accuracies of the two datasets. We present the regression statistics
in the last two rows of Table 2. The high R-square (correlation)
values indicate that our models’ performances in the two datasets
are highly similar. This is further evidenced by the regression
coefficients where a value closer to one indicates a better match.
In addition, the nearly zero p values imply the statistical
significance of the coefficients.
Lastly, we present the AUC scores for our experiments in Table

3. The “CLIMB-all” and “CLIMB-part” columns denote the models
trained using all and partial CLIMB features, respectively. In each
column, all machine learning models differ marginally in terms of
the AUC metric. However, AUC measures a model’s effectiveness
over all thresholds, including the ones without practical values.
The above closer analysis of Tables 1 and 2 revealed that the
ensemble algorithms produced the most useful results for the two
datasets in both experiments. We further observe that the models
achieved higher AUC scores on the validation (EPIC) dataset,
which confirms the generalizability of our models.

Risk factor analysis
We next examined the major factors that are predictive of MS
progression. Five linear and tree-based algorithms, SVM, Random
Forest, Logistic Regression, XGBoost, and LightGBM were selected
for the study. These models were chosen because their feature
importance was well defined. For linear models, the importance of
a feature is proportional to the magnitude of its coefficients.

Table 1. ML models applied to the CLIMB dataset with varying
thresholds.

Threshold Model Sensitivity Specificity Overall

0.5 SVM 0.60 0.70 0.68

Logistic Regression 0.70 0.71 0.71

Random Forest 0.72 0.73 0.73

XGBoost 0.50 0.87 0.79

LightGBM 0.51 0.86 0.78

Meta-La 0.61 0.84 0.79

0.45 SVM 0.75 0.64 0.67

Logistic Regression 0.76 0.62 0.65

Random Forest 0.83 0.51 0.58

XGBoost 0.58 0.82 0.77

LightGBM 0.52 0.85 0.77

Meta-La 0.71 0.74 0.73

0.4 SVM 0.81 0.51 0.58

Logistic Regression 0.81 0.57 0.62

Random Forest 0.91 0.34 0.47

XGBoost 0.68 0.76 0.74

LightGBM 0.58 0.82 0.77

Meta-La 0.78 0.65 0.68

0.35 SVM 0.92 0.34 0.47

Logistic Regression 0.86 0.49 0.57

Random Forest 0.98 0.11 0.31

XGBoost 0.79 0.69 0.71

LightGBM 0.70 0.76 0.75

Meta-La 0.86 0.50 0.58

0.3 SVM 0.96 0.21 0.38

Logistic Regression 0.91 0.41 0.52

Random Forest 0.99 0.06 0.27

XGBoost 0.81 0.64 0.68

LightGBM 0.78 0.68 0.70

Meta-La 0.93 0.35 0.48

Bold numbers indicate models of high practical value.
aEnsemble of SVM, Logistic Regression, and Random Forest.
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Specifically, all linear models can be expressed as a linear
combination of the dependent variables13, i.e.,

y ¼ ω0 þ ω1x1 þ ω2x2 þ ¼ þ ωDxD; (1)

where y is the target, (x1, x2, …, xD) are the dependent variables,
and (ω0, ω1, …, ωD) are the model parameters. With a

preprocessed dataset, where each feature xi is normalized across
all samples, the magnitude of ωi indicates the contribution of xi in
making the prediction.
For Decision Tree (DT)-based models, the ranking follows the

order of attributes that the algorithm chooses to split the
branches. The algorithm implicitly performs feature selection by
selecting an available node that produces the most homo-
geneous (i.e., purest) subbranches using criteria, such as
Information Gain or Gini Index14. For a tree-based ensemble
algorithm, attributes are ranked according to their average rank
scores across all trees.
Table 4 presents the top ten risk factors identified by each of

the five models, using the CLIMB dataset.

● Examining the top five risk factors associated with each
model, we identified two consistent principal predictors
(highlighted in bold) across all models. The first one, as
expected, is either the EDSS score or its progression. It is worth
noting that our task is to predict a patient’s EDSS score at 5-
year mark, using the first 2-year observations. Thus, these
EDSS-related predictors are lagged observations at the onset
of the disease. The second principal predictor is a patient’s
pyramidal function measure. In addition, a patient’s MS

Table 2. Model validation using overlapping attributes and annual observations.

Threshold Model Sensitivity Specificity Overall

CLIMB EPIC CLIMB EPIC CLIMB EPIC

0.5 SVM 0.63 0.81 0.75 0.70 0.72 0.74

Logistic Regression 0.64 0.76 0.78 0.72 0.75 0.73

Random Forest 0.62 0.83 0.77 0.65 0.74 0.71

XGBoost 0.58 0.75 0.75 0.71 0.71 0.72

LightGBM 0.56 0.62 0.75 0.83 0.71 0.76

Meta-La 0.61 0.78 0.79 0.76 0.75 0.77

0.45 SVM 0.76 0.90 0.61 0.45 0.64 0.60

Logistic Regression 0.69 0.83 0.69 0.65 0.69 0.71

Random Forest 0.73 0.90 0.63 0.53 0.65 0.65

XGBoost 0.68 0.79 0.70 0.66 0.70 0.70

LightGBM 0.69 0.69 0.68 0.77 0.68 0.74

Meta-La 0.70 0.85 0.68 0.70 0.68 0.75

0.4 SVM 0.84 0.93 0.47 0.42 0.55 0.59

Logistic Regression 0.78 0.88 0.60 0.59 0.64 0.68

Random Forest 0.85 0.92 0.54 0.39 0.61 0.56

XGBoost 0.75 0.85 0.62 0.60 0.65 0.68

LightGBM 0.75 0.73 0.61 0.73 0.64 0.73

Meta-La 0.81 0.90 0.58 0.58 0.63 0.68

0.35 SVM 0.92 0.96 0.37 0.32 0.50 0.53

Logistic Regression 0.86 0.92 0.51 0.51 0.59 0.64

Random Forest 0.89 0.96 0.45 0.31 0.55 0.52

XGBoost 0.85 0.87 0.54 0.60 0.61 0.69

LightGBM 0.85 0.80 0.52 0.70 0.60 0.73

Meta-La 0.88 0.93 0.49 0.52 0.58 0.65

0.3 SVM 0.93 0.98 0.25 0.23 0.40 0.47

Logistic Regression 0.90 0.93 0.41 0.48 0.52 0.63

Random Forest 0.95 0.95 0.30 0.24 0.45 0.47

XGBoost 0.90 0.90 0.45 0.56 0.55 0.67

LightGBM 0.92 0.86 0.42 0.62 0.53 0.70

Meta-La 0.93 0.96 0.38 0.37 0.51 0.56

Regression coef. (p value)
R-square (correlation)

1.08 (6.9E−08)
0.65 (0.81)

0.77 (8.6E−09)
0.70 (0.84)

0.88 (1.8E−08)
0.68 (0.83)

Bold numbers indicate models of high practical value.
aEnsemble of SVM, Logistic Regression, and Random Forest.

Table 3. AUC scores of six models across the two dataset.

Model CLIMB_alla CLIMB_partb EPIC

SVM 0.75 0.76 0.81

Logistic Regression 0.78 0.77 0.81

Random Forest 0.77 0.77 0.82

XGBoost 0.78 0.76 0.82

LightGBM 0.78 0.76 0.82

Meta-L 0.79 0.78 0.83

aModels trained using complete CLIMB data.
bModels trained using overlapping features of CLIMB and EPIC datasets,
and annual observations.
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disease category or its progression is another important
variable that appeared in four out of the five models.
Specifically, SVM and Logistic Regression are dependent on
ΔDISEASE_CATEGORY, while XGBoost and LightGBM rely on
the value of DISEASE_CATEGORY itself.

● Expanding our investigation to the top ten risk factors
associated with each model, we could identify two more
common risk factors across all models, namely DISEASE_AC-
TIVITY and AMBULATORY_INDEX (or its related change
ΔAMBULATORY_INDEX).

● In addition to the seven common risk factors revealed by all
models, the measure of a patient’s bowel and bladder
function is the next important risk factor to watch out for
because it appeared in three out of the five models.

● Furthermore, SVM, Logistic Regression, and Random Forest
rely on a patient’s total number of Gad+ lesions and TDS+
calculated brain parenchymal fraction in making their
predictions, whereas XGBoost and LightGBM utilize a
patient’s genetic information, i.e., FAMILY_MS, in their
decisions.

Table 5 presents the top ten risk factors identified by each of
the five models using the EPIC dataset.

● Examining the top five risk factors identified by each model,
we observe that the EPIC dataset displayed same top two
consistent principal predictors (i.e., EDSS and PYRAMIDAL_-
FUNCTION) like the CLIMB dataset across all models.

● Expanding to the top ten risk factors, we observe that the
volume of the cerebrospinal fluid and the brain gray matter
volume are two major predictors for the EPIC dataset. These
two variables were not included in the CLIMB dataset. We
recommend including them in the future CLIMB data
collection effort.

● Other major predictors identified for the EPIC dataset are AGE,
MENTAL_FUNCTION, and CEREBELLAR_FUNCTION. Although
these variables are among the risk factors presented in Table
4, their rankings are lower than other factors, including
DISEASE_CATEGORY, DISEASE_ACTIVITY, and AMBULATORY_
INDEX. Noting that the latter ones were not present in the
EPIC dataset, we recommend including them in the future
EPIC data collection effort.

Table 4. Top ten predictive features identified by five models using the CLIMB dataset.

Rank SVM Logistic Regression Random Forest

1 ΔEDSS ΔEDSS ΔEDSS

2 PYRAMIDAL_FUNCTION PYRAMIDAL_FUNCTION EDSS

3 ΔLESION_VOLUME ΔAMBULATORY_INDEX PYRAMIDAL_FUNCTION

4 ΔDISEASE_CATEGORY MRI_STATUS AMBULATORY_INDEX

5 ΔAMBULATORY_INDEX ΔDISEASE_CATEGORY DISEASE_ACTIVITY

6 AMBULATORY_INDEX BOWEL_BLADDER_FUNCTION DISEASE_STEP

7 BOWEL_BLADDER_FUNCTION DISEASE_ACTIVITY ΔAMBULATORY_INDEX

8 ΔTOTAL_GD ΔTOTAL_GD ΔSENSORY_FUNCTION

9 DISEASE_ACTIVITY AMBULATORY_INDEX DISEASE_CATEGORY

10 ΔWALKING_ABILITY DISEASE_COURSE_SUBTYPE ΔBPF

Rank XGBoost LightGBM

1 ΔEDSS EDSS

2 EDSS ΔEDSS

3 DISEASE_CATEGORY DISEASE_CATEGORY

4 MRI_STATUS MRI_STATUS

5 PYRAMIDAL_FUNCTION PYRAMIDAL_FUNCTION

6 ATTACKPREV2Y AMBULATORY_INDEX

7 FAMILY_MS ATTACKPREV2Y

8 AMBULATORY_INDEX FAMILY_MS

9 DISEASE_ACTIVITY BOWEL_BLADDER_FUNCTION

10 VISIT_AGE DISEASE_ACTIVITY

Δ: change in the indicated variable.
AMBULATORY_INDEX: ordinal scale of gait capacity.
ATTACKPREV2Y: number of clinical relapses (attacks) in the previous 2 years.
BOWEL_BLADDER_FUNCTION: measure of bowel and bladder function from 0 (normal) to 6 (loss of bowel and bladder function).
DISEASE_ACTIVITY: physician reported metric of current inflammatory or progressive disease status.
DISEASE_CATEGORY: code indicating disease categories, such as primary progressive, secondary progressive, etc.
DISEASE_STEP: scale of disability.
EDSS: overall neurologic disability score.
FAMILY_MS: code indicating family history of MS, including mother, father, sibling, cousin, etc.
LESION_VOLUME: brain T2 lesion volume measured.
MRI_STATUS: presence of new MRI lesions.
PYRAMIDAL_FUNCTION: measure of pyramidal function from 0 (normal) to 6.
SENSORY_FUNCTION: measure of sensory disability ranging from 0 (normal) to 6 (sensation lost below the head).
BPF: brain parenchymal fraction.
TOTAL_GD: total number of Gad+ lesions.
VISIT_AGE: age of the subject.
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DISCUSSION
In this study, we applied machine learning techniques to predict
disability accumulation levels of MS patients at the 5-year mark
based on 2-year clinical observations. We built and validated our
models using two real-world datasets: 724 patients enrolled in the
CLIMB study at Brigham and Women’s Hospital, and 400 patients
from the EPIC dataset from the University of California, San
Francisco. We employed three baseline machine learning models
and three ensemble learners in our study. We further addressed
the data imbalance issue by increasing the weights for the
minority class. Our experimental results demonstrate that XGBoost
and LightGBM offer comparable predictive power for our task, and
their performances are more robust than the other four models
across the two datasets.
In addition, we examined the top risk factors identified by our

linear and tree-based models for both CLIMB and EPIC datasets.
Several common as well as independent variables were identified
from the two datasets, and future studies should consider
evaluating these further. We conclude that a patient’s change in
EDSS scores over the baseline value, pyramidal function measure,
MS disease category, disease activity, ambulatory index, volume of
the cerebrospinal fluid, and the brain gray matter volume are the

top predictive indicators to forecast a patient’s disability level in
5 years.
For future work, we plan to explore time series models, such as

recurrent neural networks to better capture the temporal
dependencies in the longitudial data. We also plan to incorporate
genetic information and additional biomarkers from patients’
medical records.

METHODS
Datasets
In this section, we describe the datasets, experimental design, and
machine learning methods we employed to conduct our study.
We included data from two prospectively followed cohorts that together

form part of the SUMMIT Consortium15. Our first dataset consists of 724
patients enrolled in the CLIMB16. CLIMB patients undergo a complete
neurological examination every six months, including measurement of
EDSS. MRI procedures are performed on these patients on an annual basis.
The dataset consists of 44 longitudinal and 24 demographic features. Of
these, we excluded variables with excessive missing values as well as
medication-related attributes. To reflect the change of a patient’s disease
progression, we added a lagged variable for each clinical attribute,
capturing the difference between the current and previous time points.
Categorical features were further preprocessed using one-hot encoding, a

Table 5. Top ten predictive features identified by five models using the EPIC dataset.

Rank SVM Logistic Regression Random Forest

1 ΔEDSS ΔEDSS ΔEDSS

2 BRAIN_GREY_VOLUME ΔPYRAMIDAL_FUNCTION EDSS

3 CEREBELLAR_FUNCTION VISIT_AGE ΔPYRAMIDAL_FUNCTION

4 ΔPYRAMIDAL_FUNCTION VENTRICULAR_CSF_VOLUME PYRAMIDAL_FUNCTION

5 ATTACKPREV2Y CEREBELLAR_FUNCTION BRAIN_WHITE_VOLUME

6 PYRAMIDAL_FUNCTION ATTACKPREV2Y SENSORY_FUNCTION

7 VENTRICULAR_CSF_VOLUME ΔMENTAL_FUNCTION VENTRICULAR_CSF_VOLUME

8 VISIT_AGE MENTAL_FUNCTION ΔBOWEL_BLADDER_FUNCTION

9 ΔBRAIN_GREY_VOLUME PYRAMIDAL_FUNCTION TIMED_WALK_TRIAL

10 MENTAL_FUNCTION BRAIN_GREY_VOLUME BRAIN_GREY_VOLUME

Rank XGBoost LightGBM

1 ΔEDSS ΔEDSS

2 EDSS EDSS

3 PYRAMIDAL_FUNCTION PYRAMIDAL_FUNCTION

4 ΔPYRAMIDAL_FUNCTION ΔPYRAMIDAL_FUNCTION

5 VISIT_AGE VISIT_AGE

6 ATTACKPREV2Y ATTACKPREV2Y

7 MENTAL_FUNCTION CEREBELLAR_FUNCTION

8 ΔBOWEL_BLADDER_FUNCTION ΔBOWEL_BLADDER_FUNCTION

9 CEREBELLAR_FUNCTION VENTRICULAR_CSF_VOLUME

10 VENTRICULAR_CSF_VOLUME BRAIN_GREY_VOLUME

Δ: change in the indicated variable.
ATTACKPREV2Y: number of clinical relapses (attacks) in the previous 2 years.
BOWEL_BLADDER_FUNCTION: measure of bowel and bladder function from 0 (normal) to 6 (loss of bowel and bladder function).
BRAIN_GREY_VOLUME: total brain gray matter volume.
BRAIN_WHITE_VOLUME: total brain white matter volume.
CEREBELLAR_FUNCTION: measure of cerebella function from 0 (normal) to 5 (severe ataxia)
EDSS: overall neurologic disability score.
MENTAL_FUNCTION: measure of mental function from 0 (normal) to 5 (dementia).
PYRAMIDAL_FUNCTION: measure of pyramidal function from 0 (normal) to 6 (tetraplegia).
SENSORY_FUNCTION: measure of sensory function from 0 (normal) to 6 (loss of sensation below head).
TIMED_WALK_TRIAL: average time (in seconds) for two trials of the 25-foot walk.
VENTRICULAR_CSF_VOLUME: volume of the cerebrospinal fluid in the ventricles. In the EPIC study, this is usually reported in cm3.
VISIT_AGE: age of the subject.
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technique in which an integer-encoded categorical variable is converted to
a set of binary variables, each of which indicates a unique value of the
category. One-hot encoding eliminates the artificial ordering introduced by
the integer values that a machine learning algorithm could exploit
erroneously. We applied one-hot encoding only to categorical variables,
but not to ordinal variables whose rankings could provide useful
information to the model. After preprocessing the data, we have a total
of 198 features over a 2-year observation window.
Our second dataset consists of 400 patients from the EPIC dataset from

the University of California, San Francisco. Unlike the CLIMB dataset,
patients in this dataset were monitored annually using 35 periodical
features and 10 demographic variables. After augmenting the selected
clinical attributes with additional lagged variables and preprocessing the
categorical features, we have a total of 105 features over a 2-year
observation window.

Imbalanced training data
Although we are more interested in predicting the “worsening” patients,
they form the minority class in our training data. Indeed, we have 165
“worsening” cases out of a total of 724 training samples in the CLIMB
dataset. We employed the cost-sensitive learning17 technique to address
the class imbalance issue during our model training. In this approach, a
higher cost (i.e., weight) is assigned to all minority instances to facilitate a
larger penalty when any of them are misclassified. For each algorithm, the
best weight was selected as a hyper-parameter using a nested tenfold
cross-validation during the model training. Specifically, we conducted a
grid search on a list of weights centered around the ratio of the majority to
minority samples, and selected the one with the highest average AUC
score on the ten test folds.
While treating the imbalanced training data prevents degenerated

models in which the predictions are biased towards the majority class,
accurate forecast for the “worsening” class is inherently more challenging
than that for the “non-worsening” class at the onset of the disease. To
address this issue, we further establish a probability “threshold” to classify
an instance belonging to the “worsening” class. Consequently, a lower
threshold leads to higher accuracy in the “worsening” class at the cost of
lower accuracy in the “non-worsening” class. Practitioners can select the
model at different thresholds depending on their preferred tolerance on
the false positive rate.

Study design
Although both of our datasets are collected for similar research purposes,
the CLIMB data constitute patient records with semiannual clinical visits,
while the EPIC data are with annual follow-ups. In addition, the two
datasets exhibit <50% common demographic and clinical features. The
CLIMB study subjects provide informed consent, and this study is
approved by the Partners Human Research Committee. EPIC subjects
provide informed consent and this study is approved by the University of
California Human Research Protection Program.

Table 6 summarizes the differences between the two datasets and
presents their overlapping variables. These discrepancies prevent us from
conducting a straightforward model validation, using one dataset for the
other. To address this issue and, nonetheless, not limiting our model
evaluation only to the overlapping variables, we design our study in three
steps as follows.
Step 1: we train and evaluate our machine learning models using the

complete CLIMB data with a nested cross-validation approach. We analyze
the experimental results and draw our conclusions, including the efficacy
of our models.
Step 2: we conduct the same experiment on the CLIMB data, but only

with the set of variables overlapping with the EPIC data. The results will be
(1) compared to the ones from step 1 to confirm the robustness of our
models, and (2) validated using the EPIC dataset.
Step 3: we conduct our risk factor analysis by extracting the top ten

predictive variables from the linear (i.e., SVM and Logistic Regression) and
tree-based (i.e., Random Forest, XGboost, and LightGBM) models. Principle
risk factors are identified as the common predictors in these algorithms.
The same analysis is conducted independently for the two datasets using
their complete data. In addition to validating the common risk factors, our
study further helps to identify potential key biomarkers that the two
datasets failed to collect.

Baseline models
We selected the following three established and popular machine learning
algorithms as our baseline learners. These methods are illustrated in Fig. 1.
A SVM18 performs classification tasks by constructing a decision boundary

(i.e., hyperplanes) in a multidimensional space that separates instances of
different class labels. As illustrated in Fig. 1a, SVM strives to find a hyperplane
that has the maximum margin, i.e., the maximum distance between the
hyperplane and the data points of both classes. Maximizing the margin
distance reinforces that future data points can be classified with more
confidence. SVM is capable of transforming the data into a higher dimensional
space, using various kernel functions to enhance data separability. In our
study, we adhered to the linear SVM to facilitate risk factor analysis.
A Random Forest19 is a collection of DTs. A DT model uses a tree structure

to model the data, in which each leaf node corresponds to a class label and
attributes are represented as the internal nodes of the tree. Each branch
represents a potential value of its parent node (i.e., an attribute). The major
challenge in building a DT model is choosing the attribute for each node at
each level. Information Gain and Gini Index are the two popular metrics used
for attribute selection. DTs tend to have high variance since they are likely to
overfit the training data. A Random Forest model, illustrated in Fig. 1b,
creates a forest of DTs where each DT is trained with a subset of training
instances and a subset of attributes. By pooling predictions from multiple
DTs, a Random Forest reduces the variance of each individual DT and
achieves a more robust and superior performance. In our study, we used a
random forest of 50 DTs, where each tree was built with ten randomly
selected attributes. The rest of the model parameters were assigned the
default values in Python’s scikit-learn package.

Table 6. Comparison of the CLIMB and EPIC datasets.

Category CLIMB EPIC Common

# of subjects 724 400 n/a

# of “worsening” subjects 165 130 n/a

# of demographic features 24 10 5

# longitudinal features 44 35 14

Clinical visit frequency 6 months 12 months 12 months

Common features

Demographic features Age Gender Smoking history

Ethnicity Race

Longitudinal features Attack previous 6m Disease category Sensory function

Attack previous 2Y EDSS Total GD

Bowel–bladder function Lesion volume Visual function

Brainstem function Mental function Walk 25 ft time

Cerebellar function Pyramidal function
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Logistic regression20 is a generalized linear model that studies the
association between a categorical response variable Y and a set of
independent (explanatory) variables X= {X1, X2, …, Xn}. As illustrated in
Fig. 1c, the Y variable is first modeled as a linear function of X with
coefficients W= {W0, W2, …, Wn}, and then the predictions (yi’s) are
transformed into probability scores using a sigmoid function f yð Þ ¼ 1

1þe�y .
In a binary classification task, the scores indicate a corresponding
instance’s likelihood of belonging to the positive class. Thus, a cutoff
(e.g., 0.5) can be established as a decision boundary to further categorize
the instances into the more likely class. The “training” process involves
adjusting the coefficients to maximize the cross-entropy of the model
outputs and the true class labels.

Ensemble models
In addition to individual machine learning algorithms, we explored
ensemble techniques21 to integrate information from the three base
classifiers described above. Ensemble learning is a family of algorithms that
seek to create a “strong” classifier based on a group of “weak” classifiers. In
this context, “strong” and “weak” refer to how accurately the classifiers can
predict the target variable. Ensemble learning has been proven to produce
improved and more robust performance than single models.
Figure 2a illustrates the principle of ensemble learning. Specifically,

multiple base classifiers, L1, L2, …, Ln, are built for the original classification
task with the training data D. A Meta-learner L is constructed by combining

the predictions, P1, P2,…, Pn, from the base classifiers to improve predictive
accuracy. Our Meta-learner L is an example of a heterogeneous ensemble
because its base learners are obtained from different machine learning
algorithms. Our next model, XGBoost22, explores the efficacy of a
homogeneous ensemble, where the base classifiers are obtained using a
single machine learning algorithm. For the task of combining the
outcomes from the base learners, we applied stacked generalization23, in
which an additional linear regression model was trained to predict the
target variable in D based on the individual predictions from our three
baseline classifiers. Stacking typically yields better performance than a
straightforward majority voting approach.
We investigated the performance of XGBoost22, an algorithm that has

gained much popularity and attention since its inception in 2016. XGBoost
was the winning algorithm for a number of machine learning competitions.
The algorithm belongs to the family of homogeneous ensemble methods, in
which the base learners, L1, L2, …, Ln, are created using a single machine
learning algorithm exploiting the concept of “adaptive boosting”24. Figure 2b
illustrates the concept of “adaptive boosting”. In particular, a sequence of
classifiers is generated with the new model aiming to correct the errors
made by the previous model. This correction is achieved by boosting the
weights of the misclassified training instances in the previous model so that
the new model will have a higher likelihood of correctly classifying them.
Predictions from these homogenous learners are integrated into a final
decision using methods, such as majority voting or stacked generalization23.
In XGBoost, instead of boosting the weights, the algorithm fits the new

Fig. 2 Illustration of ensemble learning and adaptive boosting. a Ensemble learning: L1, L2, …, Ln are independent learners trained on the
entire training data D. The stacked generalizer is a logistic regression model trained to produce a final prediction P based on the decisions
from individual classifiers. Model performance is measured using the final predictions. b Adaptive boosting: checkmarks and crosses indicate
correctly and incorrectly classified instances, respectively. The heights of the rectangles are proportional to the weights of the training
instances. A sequence of learners, L1, L2, …, Ln, is generated with each new model trained on a re-weighted dataset, which boosts the weights
of the misclassified training instances in the previous model.

Fig. 1 Illustration of three baseline machine learning models. a Support Vector Machine: red squares and blue circles represent data from
different classes. The optimal decision plane achieves the largest separation, or margin, between the two classes. b A Random Forest with n
decision trees. Each tree is trained with a randomly sampled subset of training data. Predictions from all trees are combined using majority
voting to produce a final decision. c Logistic Regression with one dependent variable. The blue line is the linear regression model of the
observed data. The sigmoid function transforms the linear model’s predictions into values between 0 and 1, which indicate the observations’
likelihood of belonging to the positive class.
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model to residuals of the previous model and then minimizes the loss when
adding the latest model. The process is equivalent to updating your model
with a gradient descent toward a local optimum solution.
The third ensemble learner we employed in our study is LightGBM25, a

gradient boosting tree-based framework which implements two new
techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB). In particular, with GOSS, the algorithm keeps all large
gradient instances and only samples from the population of small gradient
instances. Thus, GOSS focuses on large gradient instances as they are
considered undertrained. With EFB, the algorithm bundles mutually
exclusive features (i.e., they rarely take nonzero values simultaneously) to
reduce the number of features. Compared to other tree-based algorithms,
LightGBM produces much more complex trees by following a leaf-wise
split rather than a level-wise split, which is the main factor contributing to
LightGBM’s superior performance.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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CODE AVAILABILITY
Models are developed in Python programming language with pandas, sklearn, and
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com/tongwangnuliba/Ensemble-Learning-Predicts-Multiple-Sclerosis-Disease-Course.
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