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A validated, real-time prediction model for favorable outcomes
in hospitalized COVID-19 patients
Narges Razavian1,2,3,10, Vincent J. Major 1,10, Mukund Sudarshan 4,10, Jesse Burk-Rafel 5, Peter Stella 6, Hardev Randhawa7,
Seda Bilaloglu1, Ji Chen 1, Vuthy Nguy1, Walter Wang1, Hao Zhang1, Ilan Reinstein8, David Kudlowitz5, Cameron Zenger5, Meng Cao5,
Ruina Zhang5, Siddhant Dogra 5, Keerthi B. Harish 1, Brian Bosworth5,9, Fritz Francois5,9, Leora I. Horwitz1,2,5, Rajesh Ranganath1,3,4,
Jonathan Austrian5,7 and Yindalon Aphinyanaphongs 1,2✉

The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However,
few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474
prospective hospitalizations to develop and validate a parsimonious model to identify patients with favorable outcomes within 96 h of
a prediction, based on real-time lab values, vital signs, and oxygen support variables. In retrospective and prospective validation, the
model achieves high average precision (88.6% 95% CI: [88.4–88.7] and 90.8% [90.8–90.8]) and discrimination (95.1% [95.1–95.2] and
86.8% [86.8–86.9]) respectively. We implemented and integrated the model into the EHR, achieving a positive predictive value of
93.3% with 41% sensitivity. Preliminary results suggest clinicians are adopting these scores into their clinical workflows.
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INTRODUCTION
COVID-19 has created a public health crisis unseen in a century. As
of July 30th, 2020, worldwide cases exceed 17 million and deaths
have surpassed 667,000, with over 143,000 deaths occurring in the
United States alone1. New York emerged as an early epicenter,
and the increase in case burden strained the healthcare system.
Although New York’s initial surge has passed, the number of
infections continues to increase worldwide2. The significant
impact of COVID-19 is likely to persist until herd immunity is
achieved, effective therapies are developed, or a vaccine is
broadly implemented.
Faced with a novel disease with complex multi-organ manifes-

tations and an uncertain disease progression course, frontline
clinicians responded by sharing anecdotal management practices
among peers. Yet collective expert opinion is suboptimal and
susceptible to selection and cognitive biases. Epidemiologic
studies partially address these challenges3, but they do not
provide targeted information for individual patients at the point of
care. Machine learning methods are uniquely positioned to rapidly
aggregate the collective experiences of thousands of patients to
generate tailored predictions for each patient. As a consequence,
these methods have great potential to augment COVID-19 care.
To be effective, solutions involving machine learning must4,5 (1)

address a clearly defined use case that clinical leaders will
champion and (2) motivate changes in clinical management based
on model predictions. During the COVID-19 pandemic, the
operational needs of frontline clinicians have rapidly shifted. For
example, early in the pandemic—with testing in short supply—
predicting which patients likely had COVID-19 before a test result
had great importance to triage and cohorting. As the availability
and speed of testing progressed, this use case became obsolete at
our center. Similarly, while predicting deterioration is clinically

important, our health system had already implemented a general
clinical deterioration predictive model and did not have an
immediate use case for a COVID-19-specific deterioration model6.
Furthermore, since Intensive Care Unit (ICU) beds were already
limited to patients in immediate need of requiring higher levels of
care, predicting future needs would not dramatically change
clinical management.
After collaboration with clinical leaders, we selected identifica-

tion of patients at the lowest risk of adverse events—i.e., those
predicted to have favorable outcomes—as a primary focus. This
prediction task fulfills each of the requirements listed above, as
handling the surge of COVID-19 patients with a limited bed
capacity was a critical challenge faced by many hospitals.
Discharging patients safely to free up beds for incoming patients
is optimal as it does not require expanding human (e.g. nursing/
physician) or structural (beds/medical equipment) resources.
Given clinical uncertainty about patient trajectories in this novel
disease, accurate predictions could help augment clinical decision
making at the time the prediction is made. Finally, clinical leaders
overseeing inpatient units committed to support the adoption of
the prediction model.
As of the time of writing, at least 30 peer-reviewed papers

describing prognostic COVID-19 models have been published7–36.
These models use variables including patient demographics,
clinical values, and radiographic images to predict adverse events,
including severe pneumonia, intubation, transfer to ICU, and
death. Most models use more than one variable and most models
predict composite outcomes. Of the 30 models, 23 were trained
on patients in China7–29, 2 were trained on patients in the United
States30,31, and 5 were trained on patients in South Korea32 or
Europe33–36. Only 8 of the models underwent validation on either
held-out or external datasets7,10,14,18,19,24,26,36, and 1 underwent
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prospective validation17. No model predicted favorable outcomes
and no studies reported clinical implementation.
In this article, we describe how a collaboration among data

scientists, electronic health record (EHR) programmers (vendor-
and health system-based), clinical informaticians, frontline physi-
cians, and clinical leadership led to the development, prospective
validation, and implementation of a machine learning model for
real-time prediction of favorable outcomes within a 96 h window
among hospitalized COVID-19 patients.
Our approach differs from prior work in that we: (1) predict

favorable outcomes (as opposed to adverse outcomes), (2) use a
large COVID-19 patient cohort admitted across our hospitals, (3)
design a model that can easily be extended to other institutions,
(4) prospectively validate performance, and (5) integrate our
model in the EHR to provide a real-time clinical decision
support tool.

RESULTS
Retrospective patient cohort
A retrospective cohort for model creation and validation included
all COVID-19 positive adults hospitalized at any of the four
hospitals of our institution from March 3, 2020 through April 26,
2020. This cohort included a total of 3,317 unique patients and
3,345 admissions. These patients were largely White (44.6%) with
an average age of 63.5 years (Table 1). More men (61.6%) than
women were included, consistent with other studies37–39.
We defined a favorable outcome as absence of adverse events:

significant oxygen support (including nasal cannula at flow rates
>6 L/min, face mask or high-flow device, or ventilator), admission
to ICU, death (or discharge to hospice), or return to the hospital
after discharge within 96 h of prediction (Methods). Patients could
experience multiple adverse events during the course of their
admission, e.g. requiring significant oxygen support before
admission to the ICU and death. Almost half (45.6%) of patients
required significant oxygen supporting devices (beyond nasal
cannula) at some point during their stay and one fifth (20.3%)
spent time in an ICU. The all time inhospital mortality rate was
21.2% with another 3.1% of patients being discharged to hospice.
Consistent with published literature40–46, we find that patients’

admission laboratory values differ between those who do and do
not go on to experience an adverse event during their hospitaliza-
tion: lower lymphocyte percentage (12.6% among patients with
adverse event vs. 19.7% among patients without adverse event;
Table 1) and eosinophil percentage (0.28% vs. 0.70%), with higher
neutrophil percentage (79.3% vs. 70.0%), blood urea nitrogen (27.5
vs. 21.7 mg/dL), D-dimer (1573.6 vs. 987.0 ng/mL), C-reactive protein
(149.0 vs. 97.0 mg/L), creatinine (1.6 vs. 1.4 mg/dL), ferritin (1609.4
vs. 1009.2 ng/mL), and troponin I (0.41 vs. 0.13 ng/mL). Similarly,
patients who had adverse events had higher maximum heart rate
(96.5 vs. 90.8), respiratory rate (25.8 vs. 21.6), and temperature (99.9
vs. 99.6 Fahrenheit), with lower minimum SpO2 rates (91.0% vs
93.9%) in the first 12 h after admission prior to their first complete
blood count (CBC) test result.

Model development stage 1: blackbox model
Four models (Logistic Regression, two ‘blackbox’ models: Random
Forest, LightGBM, and an ensemble of these three models) were
trained with all 65 variables (demographics, vital signs, laboratory
results, O2 utilization variables, and length-of-stay up to prediction
time) from all prediction instances (each time a CBC result
becomes available) on a training set (a sample of 60% of
retrospective cohort patients: 1990 unique patients, contributing
17,614 prediction instances). At every prediction instance, only
variables prior to prediction time were utilized. After tuning the
hyperparameters for each model via grid search and comparing
each model, the best performance on the validation set (20% of

retrospective cohort, 663 unique patients, contributing 4,903
prediction instances) was achieved by a LightGBM model with the
following hyperparameters: 500 decision trees, learning rate of
0.02, max of 5 leaves in one tree, 0.5 sampling rate for features,
max depth of 4 per tree, 1.0 L1 regularization and 2.0 L2
regularization, the minimal gain to perform split set to 0.05, and
minimal sum of Hessian in one leaf set to 5.0.

Model development stage 2: parsimonious model
Using conditional independence tests, we obtained p values for each
variable (Table 2) measuring conditional independence between
blackbox model predictions and the variable, conditioned on the rest
of variables. Using a p-value threshold of 0.2, 16 features were
selected. These features were combined into a final ‘parsimonious’
model as a logistic regression after quantile normalization of each
variable (Supplementary Fig. 1). The relative magnitude of each final
model coefficient (Table 2) is proportional to its contribution to the
final score. Positive coefficients were associated with a favorable
outcome, while negative coefficients were associated with a
decreased likelihood of a favorable outcome.
We then performed ablation analysis to remove features in the

linear model that did not improve performance. This analysis led
to the removal of age, BMI, and maximum oxygen saturation (in
the last 12 h). Of the 13 features included in the linear model, the
maximum value of nasal cannula oxygen flow rate (in the last 12 h)
feature had a non-linear, U-shaped individual conditional expecta-
tion plot with a maximum at a value of 3 L/min and was therefore
split into three binary indicators with cutoffs at 0 and 3.

Retrospective validation
Model performance was measured by discrimination (area under
the receiver operating characteristic curve; AUROC) and average
precision (area under the precision-recall curve; AUPRC), assessed
on a held-out set (independent from training or validation sets)
including 20% of the retrospective cohort: 664 unique patients,
contributing 5914 prediction instances overall. The blackbox and
parsimonious models achieved AUPRC of 90.3% (95% boot-
strapped confidence interval [CI]: 90.2–90.5) and 88.6% (95% CI:
88.4–88.7) respectively, while maintaining an AUROC of 95–96%
(Fig. 1a, b).
Both blackbox and parsimonious models maintained high

AUPRC (90.8%, 95% CI: [90.7–91.0] and 89.5%, [89.3–89.6],
respectively) for prediction times when patients were not
receiving significant oxygen support (any device beyond nasal
cannula with 6 L/min) but AUROC decreased for this subgroup
(80.0% [79.9–80.2] and 78.1% [77.9–78.3]; Fig. 1c, d). Similarly, both
models maintained high performance when applied to a subset of
predictions made after the patient was transferred out of the ICU
(AUPRC [95% CI] of 90.7% [90.3–91.2] and 85.7% [85.1–86.3] for
blackbox and parsimonious, respectively; AUROC [95% CI] of
95.4% [95.2–95.6] and 94.2% [93.9–94.4], respectively; Fig. 1e, f).

Deployment into the electronic health record
The final parsimonious model was implemented into our EHR to
make predictions every 30 min for each eligible patient. Predic-
tions were split into three color-coded groups. The lowest risk,
green-colored group were those with a score above a threshold
selected at 90% positive predictive value (PPV), 53% sensitivity
within the held-out set (threshold = 0.817). The moderate risk,
orange-colored group were those patients with a score lower than
green but above a second threshold corresponding to 80% PPV,
85% sensitivity (threshold = 0.583). The highest risk, red-colored
group were all remaining predictions. In the held-out set, these
two thresholds separated all predictions into three groups where
favorable outcomes within 96 h are observed in 90.0% of green,
67.3% of orange and 7.9% of red patients.
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Prior to displaying the model predictions to clinicians, a team
of medical students and practicing physicians assessed the face
validity, timing, and clinical utility of predictions. A variety of
patient types were reviewed including 30 patients who had a
green score, 8 of whom had left the ICU and 22 who had not.
Overall, 76.7% (23 of 30) of the green predictions were labeled
clinically valid where the primary clinical team acknowledged the
patient as low-risk or were beginning to consider discharge.

Timing of those green predictions either aligned with actions by
the primary clinical team or preceded those actions by one or
two days (a total of 34 days earlier, an average of 1.13 days).
Invalid green predictions typically had other active conditions
unrelated to their COVID-19 disease (e.g. untreated dental
abscess), while those patients discharged as orange or red
typically had pre-hospitalization oxygen requirements (e.g. BIPAP
for obstructive sleep apnea).

Table 1. Demographics, outcomes, biomarkers, and vital signs of retrospective cohort.

Patient Characteristics All Cohort
(% of n= 3317)

With Adverse
(% of n= 1712)

Without Adverse
(% of n= 1605)

P valuea

Demographics

Age, mean (sd) 63.5 (16.5) 65.3 (15.8) 61.5 (17.0) <0.0001

Sex, n (%) <0.0001

Female 1275 (38.4%) 571 (33.4%) 704 (43.9%)

Male 2042 (61.6%) 1141 (66.6%) 901 (56.1%)

Race, n (%) <0.0001

White 1481 (44.6%) 794 (46.4%) 687 (42.8%)

Black 508 (15.3%) 204 (11.9%) 304 (18.9%)

Asian 246 (7.4%) 141 (8.2%) 105 (6.5%)

Other Race 916 (27.6%) 478 (27.9%) 438 (27.3%)

Unknown 164 (4.9%) 84 (4.9%) 80 (5.0%)

Adverse Event Outcomes, n (%)

Mortality (For all time) 702 (21.2%)

Hospice Discharge 102 (3.1%)

ICU Admission 673 (20.3%)

O2 Support Devices Beyond Nasal Cannula 1513 (45.6%)

O2 Flow Rate > 6 L/min on Nasal Cannula 365 (11.0%)

Readmission within 96 h of discharge 20 (0.60%)

Biomarkers, first value measured, mean (sd)

Neutrophils Count (103/uL) 6.2 (5.4) 7.3 (6.7) 4.9 (3.0) <0.0001

Neutrophils Percent 74.8 (12.8) 79.3 (11.2) 70.0 (12.8) <0.0001

Lymphocytes Count (103/uL) 1.1 (1.7) 1.1 (2.3) 1.2 (0.74) 0.014

Lymphocytes Percent 16.0 (10.4) 12.6 (8.7) 19.7 (10.8) <0.0001

Eosinophils Count (103/uL) 0.03 (0.12) 0.02 (0.11) 0.05 (0.12) <0.0001

Eosinophils Percent 0.49 (1.2) 0.28 (1.0) 0.70 (1.4) <0.0001

Platelet Count (103/uL) 225.9 (98.45) 222.0 (95.6) 230.1 (101.2) 0.017

Blood Urea Nitrogen (mg/dL) 24.7 (22.8) 27.5 (23.8) 21.7 (21.2) <0.0001

Creatinine (mg/dL) 1.5 (1.8) 1.6 (1.7) 1.4 (1.9) 0.027

C-Reactive Protein (mg/L) 124.4 (86.3) 149.0 (87.8) 97.0 (75.8) <0.0001

D-Dimer (ng/mL DDU) 1295.7 (3582.4) 1573.6 (4101.2) 987.0 (2869.9) <0.0001

Ferritin (ng/mL) 1324.0 (2315.4) 1609.4 (2767.8) 1009.2 (1624.3) <0.0001

Lactate Dehydrogenase (U/L) 399.3 (243.9) 457.0 (279.5) 337.0 (178.8) <0.0001

Troponin I (ng/mL) 0.28 (2.7) 0.41 (3.5) 0.13 (1.3) 0.0032

Vital signs, first 12 h, mean (sd)

HR max 93.7 (17.9) 96.5 (19.4) 90.8 (15.7) <0.0001

Resp max 23.8 (7.1) 25.8 (8.3) 21.6 (4.7) <0.0001

SpO2 max (%) 96.3 (2.4) 96.0 (2.6) 96.6 (2.1) <0.0001

Temp max (F) 99.8 (1.5) 99.9 (1.6) 99.6 (1.4) <0.0001

HR min 80.2 (14.2) 80.9 (14.8) 79.5 (13.5) 0.0045

Resp min 18.9 (3.6) 19.3 (4.2) 18.5 (2.6) <0.0001

SpO2 min (%) 92.4 (4.9) 91.0 (5.8) 93.9 (2.9) <0.0001

Temp min (F) 98.4 (0.97) 98.5 (1.0) 98.4 (0.88) 0.12

aThe With Adverse and Without Adverse groups are compared with: (1) two-sided Welch’s t test for age, biomarkers, vital signs, and days since admission and
(2) Pearson’s χ2 test for sex, ethnicity and race.
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For all patients in the held-out set discharged alive, 77.8% of
patients (361 of 464) had at least one green score, and their first
green score occurred a median 3.2 (interquartile range: [1.4–5.4])
days before discharge. The vast majority of green patients who
were discharged alive never received care in an ICU (91.4%; 330 of
361). Those that did receive ICU care had much longer length of
stay before their first green score (Fig. 2a) but once green, they
had similar remaining length of stay before discharge (Fig. 2b).
The resulting scores, colors, and contributions populated both a

patient list column viewable by clinicians and a patient-specific
COVID-19 summary report, which aggregates data important for

care including specific vitals, biomarkers, medications. The core
component of the visualization was a colored oval containing that
patient’s risk score (Fig. 3). The column hover-bubble and report
section displayed a visualization containing the colored score, a
trendline of recent scores, and variables with their values and
contributions (Fig. 3).

Prospective validation
After retrospective validation, the model parameters were fixed,
and the model was integrated into the EHR and its real-time

Table 2. Distillation of a parsimonious model as a combination of conditionally independent variables.

Variable Explanation Conditional
Independence p value

Used in
Final Model

Final Model Coefficient
(+toward a favorable outcome)

Model Intercept +1.43

1 Age 0.016 X

2 Oxygen support device greater than nasal cannula 0.016 ✓ −7.31

3 Respiratory rate, maximum in last 12 h 0.016 ✓ −1.23

4 Oxygen saturation, maximum in last 12 h 0.016 X 0

5 Oxygen support device of nasal cannula 0.016 ✓ −0.816

6 Nasal cannula oxygen flow rate, maximum value in
last 12 h

0.016 ✓ 0 if flow > 3 L/min
+1.12 if 0 < flow <= 3 L/min
+0.424 if flow = 0

7 Oxygen saturation, minimum value in last 12 h 0.016 ✓ +1.52

8 Temperature, maximum value in last 12 h 0.016 ✓ −0.439

9 Lactate dehydrogenase, most recent value 0.016 ✓ −0.168

10 Platelet count, most recent value 0.016 ✓ +0.755

11 Blood urea nitrogen, most recent value 0.016 ✓ −1.30

12 C-reactive protein, most recent value 0.016 ✓ −0.558

13 Heart rate, minimum value in last 12 h 0.033 ✓ −0.437

14 Respiratory rate, minimum value in last 12 h 0.033 ✓ −0.407

15 Eosinophils percent, most recent value 0.148 ✓ +0.916

16 Body mass index, maximum value in last 12 h 0.148 X

17 No oxygen support device (i.e. room air) 0.803 X

18 Heart rate, maximum value in last 12 h 0.967 X

19 Neutrophil count, most recent value 0.967 X

20 Temperature, minimum value in last 12 h 0.984 X

21 Eosinophil count, most recent value 0.984 X

22 Weight, maximum value in last 12 h 0.984 X

23 Mean platelet volume, most recent value 0.984 X

24 Categorical variable of historical smoking behavior:
e.g. non-smoker or smoker

1.000 X

25 Lymphocyte count, most recent value 1.000 X

26 Female sex 1.000 X

27 Number of days since admission 1.000 X

28 Lymphocytes percent, most recent value 1.000 X

29 Categorical variable of current smoking behavior:
e.g. never, former, current smoker

1.000 X

30 Troponin I, most recent value 1.000 X

31 Neutrophils percent, most recent value 1.000 X

32 Body mass index, minimum value in last 12 h 1.000 X

33 Creatinine, most recent value 1.000 X

34 D-dimer, most recent value 1.000 X

35 Ferritin, most recent value 1.000 X

36 Weight, minimum value in last 12 h 1.000 X

37 Categorical variable of patient race and ethnicity 1.000 X
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Fig. 1 Predictive performance of the blackbox and parsimonious models on retrospective held-out set. Model performance in an unseen
20% sample of data including 664 unique patients and a total of 5,914 prediction instances. (a) precision recall curve (PRC) for all patients, and
(b) receiver operating characteristic (ROC) curve for all patients. (c) PRC for patients at times when patient does not need O2 support beyond
nasal cannula at 6 L/min (d) ROC curve for patients at times when patient does not need O2 support beyond nasal cannula of 6 L/min. (e) PRC
for patients transferred out of ICU, (f) ROC curve for patients transferred out of ICU. The shaded areas around each curve depict the empirical
bounds of one standard deviation computed with a bootstrap procedure with 100 iterations where, in each iteration, 50% of the held-out set
is sampled with replacement.
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Fig. 2 Timing of the first ‘green’ prediction for patients discharged alive from the retrospective held-out set. (a) Time from admission to
the first green score. (b) Time from the first green score to discharge. This analysis includes all held-out set patients with at least one green
score who were discharged alive (n= 361) and stratifies that group into patients that received some of their care in an ICU (n= 31) and those
who received no ICU care (n= 330).

Fig. 3 Electronic Health Record integration and visualization of predictions. Provider-facing view showing: (1) a patient list column, (2)
displaying model scores for a clinician’s list of patients. Hovering over the score triggers a dialog box (3) displaying model scores along with (4)
an explanation of contributing factors and (5) a trend line of recent scores. To reduce potential for confusion by clinicians, we display the
inverse of the model prediction raw score (i.e 1 - score) and scale the score from 0–100. Consequently, lower scores represent patients at lower
risk of adverse outcomes. Negative feature contributions are protective. Note, in the first prediction, the variable “Nasal cannula O2 flow rate
Max in last 12 h” has a value of “N/A” because their O2 device is greater than Nasal cannula.
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predictions were displayed to clinicians starting May 15, 2020.
Prospective performance was assessed using data collected from
May 15 to May 28, 2020 (predictions until May 24 with 96 h follow-
up). In those ten days, 109,913 predictions were generated for 445
patients and 474 admissions.
Among these prospectively scored patients, 35.1% (156)

required significant oxygen support, 5.4% (24) required more
than 6 L/min of oxygen while on nasal cannula, 7.2% (32) died,
2.2% (10) were discharged to hospice care, 19.8% (88) were
transferred to the ICU, and 1.8% (8) were discharged and
readmitted within 96 h. Overall, 44.0% (196 patients) experienced
an adverse event within 96 h of a prediction instance, which is
lower than the rate observed in our retrospective cohort (51.6%,
1712 of 3317, p= 0.003 by two-tailed Fisher’s exact test),
consistent with prior reports from our institution showing a
temporal improvement in outcomes3.
Prospective evaluation of the model achieved an AUPRC of

90.8% (95% CI: 90.8–90.8; Fig. 4a) and AUROC of 86.8% (95% CI:
86.8–86.9; Fig. 4b), similar to retrospective performance (AUPRC:
88.6%, and AUROC: 95.1%). Using the predefined green threshold,
the real-time model identified 41.0% of predictions as green with
93.3% PPV and 67.8% sensitivity (compared to 90% PPV and 53%
sensitivity in the retrospective held-out set), and favorable
outcomes are observed in 93.3%, 72.4%, and 23.5% of green,
orange, and red predictions, respectively, consistently higher than
the retrospective held-out set (90.0%, 67.3%, and 7.9%).
Prospective validation results updated for the time period May

15-July 28 2020 are included in Supplementary Note and
Supplementary Fig. 2.

Adoption into clinical practice
Since integration into the EHR, we monitored two high-level
metrics to assess score adoption into clinical practice. The model
predictions are visible in two places: multiple patients shown in a
patient list column (Fig. 3) and a single patient shown in a COVID-
19 Summary report. A patient list column metric counts the
number of times the model scores are shown in patient lists (not

counting each patient displayed). A summary report metric counts
the number of times a provider navigated to the COVID-19
Summary report to review data on a single patient.
More specifically, during the three weeks May 16 to June 5,

2020 (omitting the partial day of May 15), scores are shown in a
total of 1122 patient lists and 3,374 COVID-19 reports. Temporal
trends in these metrics suggest an increasing trend in the rate of
patient lists per day but a decreasing trend in COVID-19 reports
(Fig. 5). Together, these metrics describe an adoption of users
adding the patient list column, a result of outreach and
communication to users, and a decline in the number of COVID-
19 reports accessed, which may be explained by a decline in the
number of hospitalized COVID-19 patients. Future work will assess
the impact of these scores on physician perspectives and decision-
making.

DISCUSSION
The COVID-19 pandemic energized an existing inter-disciplinary
collaboration at our institution to successfully develop a predictive
model that was accurate and relevant for clinical care, could be
rapidly deployed within our EHR, and could be readily dissemi-
nated to other institutions. The final parsimonious model
exhibited strong model performance for the clinical task (Fig. 1)
and could be maintained with only 14 of the original 65 variables
combined in a logistic regression that is transparently explainable
(Fig. 3).
Yet model accuracy is not sufficient to ensure measurable

success; the prediction must be clinically applicable at the time of
prediction. We determined that our model predicts patients at
high probability of favorable outcomes a median of 3.2 days
before discharge (Fig. 2b), providing sufficient lead time to
commence and prepare for earlier and safer discharges. Our chart
review results suggest the green transition occurs, in many cases,
before any discharge planning is documented.
By identifying patients at low risk of an adverse event with high

precision, this system could support clinicians in prioritizing

Fig. 4 Prospective deployment and evaluation on real-time predictions. A total of 109,913 predictions were generated on 30-min intervals
for 445 patients and 474 admissions. (a) Precision recall curve. (b) Receiver operating characteristic curve. The shaded areas around each curve
depict the empirical bounds of one standard deviation computed with a bootstrap procedure with 100 iterations, where in each iteration, 50%
of the held-out set is sampled with replacement. Note: the shaded standard deviation of Fig. 4 are present but very small as the many
predictions made at a 30-min frequency decreases variance.
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patients who could safely transition to lower levels of care or be
discharged. By contrast, using published models that predict
occurrence of adverse events to guide discharge decisions may
not be as effective. The distinction between identification of
patients at low-risk of experiencing an adverse event rather than
those at high-risk is key. Although the binary outcome of an
adverse event or none is reciprocal, the methodology of tuning
model hyperparameters to identify the best model and then
selecting a threshold based on PPV is not. If the target outcome is
reversed, we would expect our methodology to discover a
different parsimonious model.
The key strengths of our approach are twofold. First, a reduced

variable set helps prevent overfitting by making it less likely that a
machine learning model will learn site-specific details47. Second,
our approach is easily integrated into third-party EHR systems.
Collaborating with our clinical decision support (CDS) experts, we
incorporated our intervention directly into standard clinical
workflows (Fig. 5): (1) the patient lists clinicians used when
reviewing and prioritizing their patients, and (2) the standard
report clinicians rely on to summarize COVID-19 aspects of care. By
incorporating the prediction at the appropriate time and place in
the EHR for the users responsible for discharge decisions, we
expect to maximize the impact of this intervention in the care of
COVID-19 patients48.
Although integration into an EHR system maximizes its impact

and simplifies dissemination to other institutions, it also adds
several significant constraints institutions must consider. Poten-
tially useful data available on retrospective data queries may not
be reliably accessible in real-time to make a prediction. For
example, codified comorbidities and prior medications may be
incomplete at the time of prediction, particularly for new patients
who have never received care within the health system. Therefore,
only data collected during admission are suitable for generalizable
modeling. Extraction of complex features such as means are
infeasible within the current EHR’s computing platform. These
data access challenges inside the EHR are part of the rationale
behind our two-step model development that produces a
parsimonious model reliant on a small number of inputs.
Despite the above constraints, the two-step methodology

applied to construct the parsimonious model did reveal previously
described3 prognostic indicators of adverse events in COVID-19
patients including vital signs such as hypoxia, C-reactive protein

and lactate dehydrogenase (Table 2). Yet many features com-
monly associated with worsening prognosis, such as age, gender,
lymphocyte count, and D-dimer ultimately did not contribute to
the final model. There are a variety of potential explanations for
this apparent discrepancy.
Differences between patients with and without adverse events

were observed for both neutrophil percent and lymphocyte
percent (and their absolute counts; Table 1) but the parsimonious
model used only eosinophil percent, as the alternatives were not
found to provide further information over eosinophils (Table 2),
reflecting probable redundancy between white blood cell
biomarkers. Both eosinophils percent and platelet count have
positive coefficients (Table 2) suggesting a positive association
between immune characteristics46 and thrombocytosis with fewer
adverse outcomes. Similar redundancy might also explain why
lactate dehydrogenase and C-reactive protein contributed to the
ultimate model while D-dimer and troponin did not. While age
and sex are marginally associated with adverse outcomes, neither
contibute to the final model, suggesting other variables account
for variance in these demographics such that they no longer aid
prediction. The reasoning for why these variables do not directly
contribute is unclear.
Epidemiologic studies have been critical in helping clinicians

understand this evolving disease entity and expedite predictive
model development. Yet the volume of clinical features associated
with adverse events precludes easy assimilation by clinicians at
the point of care. At our institution, a COVID-19 specific summary
report for each patient trends over 17 variables. The ability of
machine learning to synthesize and weigh multiple data inputs
facilitates more accurate application of the data to directly
impact care.
Another advantage of our approach is that model explanations

were made available to the clinicians along with real-time
predictions. Our parsimonious model, being linear, enabled a
seamless computation of contributing factors. Providing insight
into contributing factors helps improve trust in the model and we
believe will improve its incorporation into clinician decision
making. These explanations also helped mitigate some inherent
limitations of real-time models. For example, clinicians could
discount the model’s predictions if they found that some of the
inputs, like respiratory rate, were documented inaccurately.
Similarly, the model could not discriminate between patients

Fig. 5 Display of model scores to users within the EHR. Model scores can be shown to users in two different displays that correspond to
alternative clinical workflows. (a) Patient list (Fig. 3) display report indicated the number of times users navigated to a patient list that includes
our model scores. (b) COVID-19 report describes the number of times a user navigated to a summary report that contained various COVID-19
specific components including our model scores.
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receiving BIPAP for chronic obstructive sleep apnea versus for
acute respiratory failure. A clinician would have this background
and could consider the model’s score in that context.
Front-line clinicians continued to evolve their care for patients

with COVID-19 in response to research findings. Particularly during
the retrospective study period, March and April 2020, there were
rapid changes in testing and treatment practices. The data
collected about a COVID-19 patient in March is likely very different
from a similar patient seen in the prospective cohort in late May
2020. For example, the volume of D-dimer values for patients
increased dramatically from early March to April as clinicians
incorporated D-dimer screening into their care plans. These
expected differences in model variables and outcomes challenge
the generalizability of any predictive model, which emphasized
the importance of prospective validation.
Using oxygen therapy as both an input variable and an

outcome measure led the model to learn that patients on O2
devices are likely going to continue to remain on O2 devices in the
near future. Consequently, the model coefficient for significant
oxygen support overshadowed other variables and patients on
significant O2 devices uniformly had very low favorable outcome
scores. In consultation with our clinical leads, this model behavior
was acceptable given that these patients on significant oxygen
devices were clinically unlikely to be safe for discharge.
Furthermore, when excluding significant O2 support as an input
variable or omitting periods of significant O2 support, the model
performed worse overall and among patients not using O2
devices. Thus, we retained this variable and analyzed the subset of
patients without O2 devices separately, which demonstrated
excellent performance (Figs. 1c, d).
Construction of the parsimonious model as a linear model also

impacted how each variable’s contribution was explained to the
clinician. This constraint resulted in some explanations that were
clinically concerning, like hypothermic temperatures displaying as
a mildly protective feature (Table 1). This phenomenon occurs
because a linear model fits a linear slope to each variable and
misses U-shaped risk curves.
In summary, our model’s predictions were accurate, clinically

relevant, and presented in real time within the clinician’s
workflow. These features all enhance the likelihood that the
model will be clinically successful. To assess our model’s impact on
clinically important outcomes, a randomized controlled trial is
underway examining knowledge of favorable outcome prediction
on patient length of stay. With clinical value confirmed, we plan to
collaborate with the vendor community to rapidly disseminate the
model to other institutions.

METHODS
Compliance with ethical regulations
We followed NYU Grossman School of Medicine IRB protocol, and
completed an IRB checklist for research activities that may be classified
as quality improvement. This work met the NYU Grossman School of
Medicine IRB criteria for quality improvement work, not research involving
human subjects, and thus this work did not require IRB review and no
informed consent was required or obtained.

Definition of COVID-19
Patients are defined as COVID-19 positive (COVID+) if they have any
positive (detected) lab result for the SARS-CoV-2 virus by polymerase chain
reaction (PCR) before or during their index admission. Due to the rapidly
evolving availability of tests and ordering practices, our definition includes
SARS-CoV-2 PCR tests of patient sputum samples, nasopharyngeal swabs,
or oropharyngeal swabs conducted by in-house or governmental
laboratories. In-house testing started mid-March and produced fast results
(median time from specimen to result was 2.4 h in April 2020) that enabled
confirmation and inclusion of this group on their hospital day one.

Definition of a COVID-19 favorable outcome
A favorable outcome is the absence of any adverse events. An adverse
event was defined as the occurrence of any of the following events within
96 h:

1. Death or discharge to hospice,
2. ICU admission,
3. Significant oxygen support:

a. Mechanical ventilation,
b. Non-invasive positive-pressure ventilation (including BIPAP

and CPAP),
c. High-flow nasal cannula,
d. Face mask (including partial and non-rebreather), or
e. Nasal cannula flow rate greater than 6 L/min

4. If discharged, re-presentation to the emergency department or
readmission.

Each clinical event was mapped to structural fields in the EHR that are
documented as a part of routine clinical practice. The structural fields were
then validated by EHR programmers and clinical informaticians to the
target events. Clinical leadership selected these events because their
occurrence would indicate a patient who is unsafe for discharge. The
events evolved with clinical care guidance. For example, early in the
pandemic, certified home health agencies would not manage home
oxygen for COVID+ patients, so lower rates of oxygen supplementation
with nasal cannula were considered adverse. As agencies evolved their
practices, clinical leadership modified the oxygen adverse event to occur
after 6 L/min of nasal cannula

Retrospective cohort
All COVID+ adults hospitalized at any of the four hospitals of our
institution from March 3, 2020 through April 26, 2020, including adverse
events through April 30, 2020, were used for model creation and
validation. This cohort included a total of 3345 COVID+ admissions
including 3317 unique patients.

Patient data
We include age, sex, race, ethnicity, and smoking history in our analysis as
unchanging variables throughout an admission.
The following laboratory values were included: neutrophils, lympho-

cytes, and eosinophils (each absolute count and percent); platelet count
and mean platelet volume; blood urea nitrogen (BUN); creatinine; C-
reactive protein; D-dimer; ferritin; lactate dehydrogenase (LDH); and
troponin I. These laboratory values were selected because they were
routinely obtained among our cohort and literature reported their
association with increased likelihood of COVID infection, or adverse
outcomes among COVID+ patients.
As vital signs are collected many times a day and both high and low

abnormal values can be prognostic, minimum and maximum vital sign
values within the prior 12 h were calculated for heart rate, respiratory rate,
oxygen saturation by pulse oximetry (SpO2), and temperature. Weight and
body mass index (BMI) are similarly aggregated. Vital signs data, which was
used to calculate prior 12 h aggregate variables, was available at minute-
level resolution.
Three mutually exclusive categories of oxygen support were included as

variables: room air, nasal cannula, or an oxygen device that provides more
support than a nasal cannula (most commonly high flow nasal cannula,
non-rebreather mask, or ventilators). For the subset of nasal cannula, we
also include the maximum oxygen flow rate in the 12 h prior to prediction
as a continuous feature.
As COVID-19 is associated with a characteristic decompensation that

leads to death within one week of admission37, current length of stay was
included as a candidate predictor.

Missing data
Missing data is observed in lab values, weight/BMI, and vital signs where
data is not missing at random. For retrospective analysis, we excluded any
prediction instances where all vital signs (heart rate, respiratory rate,
oxygen saturation or temperature) were completely missing and no prior
measurement had been collected (4% of prediction instances). Missing rate
for 12-hour aggregate vital signs in remaining instances were under 2.3%.
These missing vital signs were imputed using the last, not-missing
minimum and maximum values. After this adjustment, the missing rate in
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the retrospective data for vital sign variables dropped to under 0.02%.
Similarly, the highest lab value missing rate was observed for D-Dimer
where 10% of patients had missing values. After forward-filling imputation,
remaining missing lab values or weight/BMI were filled with zeros which
would be learnable as a separate group within the distribution.
We compared imputation on remaining missing data by mean of the

observed values against the default imputation (forward fill and filling
remaining missing data with zero), and found no benefits in model
performance (AUPRC or AUROC) using imputation.
When implemented into the EHR, missing values prevent a score from

being generated and a “Missing Data” placeholder is shown to users.

Predictive modeling
The goal of our model is to predict the probability of no adverse event within
the 96 h after a prediction instance. We employed a two stage approach to
develop and deploy this model. In stage 1, we build a model that predicts the
outcome with high performance without imposing any deployment
constraints. To do so, we built a complex “blackbox” model that included
all variables. In stage 2, we distill this model into a “parsimonious” secondary
model that uses fewer variables, and has a simpler functional form, while
achieving equivalent performance. The simplicity of the parsimonious model
is intended to: (1) accommodate constrained EHR implementation require-
ments; (2) promote understandable explanations for how the entire model
arrives at its predictions and how the model evaluates individual patients (3)
facilitate generalizability to other populations and institutions. A model that
uses fewer variables to achieve the same predictive performance is less likely
to overfit to a particular institution.

Feature generation/ preparation
For the purposes of model creation and retrospective validation, a
prediction was generated every time a complete blood count (CBC)
resulted in the EHR for each included patient. In general the frequency is
about 24 h as staff was instructed to limit to one draw daily to limit
exposure. Prediction timing around each CBC result was selected after
early COVID-19 works reported dysregulation of different types of white
blood cells49.
CBC results prior to a confirmed PCR test were included in the

retrospective modeling, given the limited testing capacities in early March,
which imposed a lag between admission and COVID-19 confirmation (5.2%
of all held-out prediction instances). From March 16th onwards, in-house
testing capacities at our institute enabled rapid testing, which reduced the
rate of pre-PCR prediction to 0.9%.

Experimental design
During model development, we split the data (3,317 unique patients,
28,431 prediction instances) into a training set (60%), validation set (20%),
and held-out test set (20%) such that all predictions for any patient are
allocated to one group and there is no overlap between training, validation
or held-out test patients. The training set is used to fit both blackbox and
parsimonious models, while the validation set is used to select model
hyperparameters that achieve the highest performance. The final models
are retrospectively validated on the final held-out set of patients. This
multi-step process minimizes overfitting during parameter selection and
provides a robust estimate of out-of-sample performance.
The training set included 1990 unique patients, contributing 17,614

prediction instances. The validation set included 663 unique patients,
contributing 4,903 prediction times. The held-out test set included 664
unique patients, contributing 5914 prediction times.

Model development stage 1: blackbox model
We built four models for this task. The first model was a logistic regression.
We used the validation set to determine the regularization hyperparameter
(L1 or L2)50. An L-BFGS51 optimization method was used to learn the
coefficients within SKLearn52.
The second model built was a Random Forest (RF)53 classifier. RFs are

robust and successful nonlinear ensemble models, built over multiple
decision trees each over a subset of features and a subset of samples. The
subsampling of features and samples enables the decision trees within RF
to have low correlation, which is key to strong ensembling performance. In
this work, we tuned the RF model for number of trees and regularization
parameters such as maximum tree depth and minimum samples per leaf.
We used gini impurity coefficient for building each individual decision tree.

The subsampling rate was set to square root of total feature count. We
used the RF implementation within SKLearn52.
The third model was a LightGBM model54 which is an efficient variant of

gradient boosting decision tree55 method. LightGBM builds an ensemble
of decision trees but, in contrast to RF, decision trees are built iteratively
rather than independently. At each iteration, the next tree is built to lower
the residual error of predictions made by the current set of trees. We used
the LightGBM54 open source package in this study, and tuned for
hyperparameters including number of trees, a number of regularization
parameters, feature sub-sampling rate, and learning rate.
All three models above were optimized for weighted loss (by inverse

frequency of each class) to correct for class imbalance.
The fourth model was an ensemble of the three models above based on

a simple averaging of the model probabilities.
For each model, we computed the average of two statistics using the

validation set: the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve (AUPRC). The model
that achieved the highest score was chosen for model distillation in the
next stage.

Model development stage 2: parsimonious model
The goal of this stage was to reduce the variable set as much as possible
while maintaining performance at a level comparable to the blackbox
model. Using the blackbox model, we first ran a conditional independence
hypothesis test. Using this test, we selected important variables using a p-
value threshold. Finally, we built a parsimonious model using only the
important variables and established that its performance was comparable
to that of the blackbox model.

Conditional independence tests. Conditional independence tests ask the
question: how much additional information does a particular feature xj
contain about the outcome y over all the other variables. A simple and
effective way to test this in practice is to use a hypothesis test for
conditional independence56, which involves two pieces: a test statistic, and
a null distribution.
In this case, the test statistic T* is simply the performance of our

blackbox model on the validation set. To sample from the null distribution,
we first created a “null dataset” using the training and validation sets.
These null datasets replace the variable xj with random values designed to
be similar to the original value, but have no relation to the outcome. We
then fit the blackbox model to the null training set, and measure
performance on the null validation set. The performance of this “null
model” ~T is a sample from the null distribution.
Given our test statistic T* and K independent samples from the null

distribution, we can compute a p-value for every variable in our dataset.
This p-value indicates whether or not we can reject the null hypothesis that
xj provides no additional information about outcome y over all the other
variables.

Selecting features. To deploy a model with as few variables as possible, we
chose the features using a threshold on p-values generated by our
conditional independence test. We used a threshold of 0.2 with no multiple
testing correction in order to boost the power of our selection process.

Building a parsimonious model. Using our important variables, we built a
logistic regression as our parsimonious model. Logistic regression with a
small set of variables is easy to deploy and highly interpretable. To prepare
the data for this model, we applied additional preprocessing steps.
As is common in medical datasets, we observed many outliers in our data.

Linear models are sensitive to outliers, so we quantile transformed each
variable. This involved computing 1000 quantiles for each variable, and
replacing each feature value with its respective quantile. The result was a
dataset whose variables are scaled from 0 to 1, so outliers do not significantly
impact the training of our parsimonious model. We compute quantiles using
only the training set, and apply these quantiles to the validation and test sets.
Next, we filtered out variables that were not found to impact the

performance of the logistic regression. We found age and maximum oxygen
saturation (previous 12 h) to have no impact on either the AUROC or average
precision of the parsimonious model using an ablation analysis. We manually
removed age as it had a non-zero coefficient in the model.
Finally, we “linearized” our remaining important variables. For each

important variable, we visualized the individual conditional expectation
(ICE). An ICE is computed by fixing all but one of the variables, and varying
this single variable from its minimum value to its maximum. As we varied this
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variable, we observed changes in the prediction of the blackbox model to
create an ICE plot. If the ICE plot appears roughly linear, the variable interacts
with the outcome in a linear manner. In some cases, the ICE plot would
appear to have a U-shape. For any variable with such an ICE plot, we split the
variable into two binary indicators. Using the minimum or maximum of the U
as a threshold, the indicators represented whether the observed value was
above or below this threshold.
Using the set of important, quantile normalized, and linearized variables,

we fit a logistic regression. During optimization, we used an elastic net
regularizer, which is a weighted combination of L1 and L2 regularization,
where the weights on each are hyperparameters. We performed a grid search
to identify hyperparameters of the linear model: the regularization, and elastic
net mixing parameters. We chose the setting that helps maximize the average
of AUROC and AUPRC on the validation set.

Model Implementation
In order to make predictions accessible to the care team in real-time
through the institution’s EHR (Epic Systems, Verona, WI), the parsimonious
model was implemented as a cloud-based model within Epic’s Cognitive
Computing Platform. Each model variable is extracted directly from the
operational database in real time. Exclusions are also implemented: age <
18 years, patient class not equal to inpatient, and no active COVID-19
infection. An active COVID-19 infection is automatically applied at the
patient level when a PCR test for SARS-COV-2 returns positive (or
detected), typically within two hours of admission. Patients tested in an
outpatient setting who are then admitted are included. Resulting
predictions are scaled between 0 and 100 and shown in a patient list.
Every 30min, an updated prediction is generated for every eligible patient
to incorporate any newly collected data.

Color thresholds
Probability thresholds are selected within the held-out set to separate
patients at low-risk of an adverse event in 96 h from moderate- and high-
risk patients. These groups are colored to indicate their risk: green as low-
risk, orange as moderate-risk, and red as high-risk. The planned application
warrants a pure set of green, low-risk patients to aid consistent decision-
making with few false positives. As such, a high positive predictive value
(PPV or precision) of 90% is selected for the green to orange threshold—
from every ten green patients, one will develop an adverse event—and
80% PPV for the orange to red threshold—from every ten green or orange
patients, two will develop adverse events.

Assessing face validity of parsimonious model
To better understand how the model predictions could be integrated into
care decisions, medical students supervised by attending physicians
reviewed over 30 clinical patient encounters. The encounters were chosen
to reflect a variety of patients who reached their first low risk of adverse
event prediction at different time points in their stay. Key questions for the
review team were (a) did the clinical team believe the patient was
medically ready for discharge at the time of the prediction and what the
barriers were to discharge. (b) could the model prediction impact the
care plan.

Model explanation
Each prediction is displayed with a list of variables that contribute to that
score. For each variable, the raw value is stated, e.g. Minimum SpO2 of
88%, along with a percentage of its contribution to the total score for that
individual prediction. Contributions of each variable can be positive or
negative and are computed as proportions where the total sum of
absolute values is 100%:

ci ¼ βi xiP
i βixij j ; (1)

where x is the vector of quantile normalized variables and β is the vector of
linear coefficients.

Prospective validation
The aim of this prospective validation is to assess whether the parsimonious
model can maintain its held-out set performance when deployed live into an
EHR. A prospective observational cohort of hospitalized, COVID+ adults was
collected including scored patients spanning May 15 to May 24, 2020, and a

4-day follow up to May 28, 2020 for potential adverse event observations.
Predictions were generated for 445 patients over 474 admissions every
30min, accounting for a total of 109,913 prediction instances.
In order to assess prospective performance of the recreated parsimo-

nious model, each score produced during this study period is used to
compute AUROC and AUPRC as well as PPV and sensitivity at the green
threshold. We used a bootstrapping method with 100 iterations to
compute 95% confidence intervals. At each iteration, the performance
statistics were computed over a randomly selected (with replacement) of
50% of the held-out samples.

Reporting summary
Further information on research design is available in the Nature Research
Life Sciences Reporting Summary linked to this article.

DATA AVAILABILITY
Due to specific institutional requirements governing privacy protection, data used in
this study will not be available.

CODE AVAILABILITY
Code for model development and implementation is available upon reasonable
request. Much of the code for data retrieval and processing is specific to the
particular data challenges of our institution and would not replicate elsewhere. The
final deployed model’s coefficient and intercepts are available within Table 2.
Deployed model can be transferred via Epic Turbocharger service, upon reasonable
request.
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